Fundamentals: Exercise on Kinematics

Let $\mathbb{D H}$ be the algebra of dual Qquaternions, which is generated over \mathbb{R} by $\mathbf{i}, \mathbf{j}, \mathbf{k}, \epsilon$ with relations

$$
\begin{gathered}
\mathbf{i}^{2}+1=\mathbf{j}^{2}+1=\mathbf{k}^{2}+1=\epsilon^{2}=0 \\
\mathbf{i j}=\mathbf{k}, \mathbf{j} \mathbf{i}=-\mathbf{k}, \mathbf{k i}=\mathbf{j}, \mathbf{i} \mathbf{k}=-\mathbf{j}, \mathbf{j} \mathbf{k}=\mathbf{i}, \mathbf{k} \mathbf{j}=-\mathbf{i} \\
\epsilon \mathbf{i}=\mathbf{i} \epsilon, \epsilon \mathbf{j}=\mathbf{j} \epsilon, \epsilon \mathbf{k}=\mathbf{k} \epsilon
\end{gathered}
$$

The norm $N(h)$ of a dual quaternion h is defined as the product with its conjugate, where

$$
\bar{\epsilon}=e, \overline{\mathbf{i}}=-\mathbf{i}, \overline{\mathbf{j}}=-\mathbf{j}, \overline{\mathbf{k}}=-\mathbf{k}
$$

The norm is multiplicative, i.e. $N(a b)=N(a) N(b)$, and it is in general a dual number, i.e. a linear combination of 1 and ϵ.
Let \mathbb{H} be the subspace generated by $(1, \mathbf{i}, \mathbf{j}, \mathbf{k})$ (the skew field of quaternions). Let V be the subspace generated by ($\mathbf{i}, \mathbf{j}, \mathbf{k}$). Let $\epsilon \mathbb{H}$ be the subspace generated by ($\epsilon, \epsilon \mathbf{i}, \epsilon \mathbf{j}, \epsilon \mathbf{k}$) (a two-sided ideal), which is also the set of all dual quaternions with zero norm. Let \mathbb{S} be the set of all dual quaternions with real norm. Then $\mathbb{S} \backslash \epsilon \mathbb{H}$ together with multiplication is a group.
For any $h=p+\epsilon q$ in $\mathbb{S} \backslash \epsilon \mathbb{H}(p$ and q are supposed to be in $\mathbb{H})$, we define $\alpha(h)$ as the map sending $v \in V$ to $\frac{p v \bar{p}+q \bar{p}}{p \bar{p}}$. Prove that α is group homomorphism from $\mathbb{S} \backslash \epsilon \mathbb{H}$ into the group of Euclidean motions, i.e. the group of all affine linear maps from V to itself preserving distance and orientation. Here the length of a vector in V is defined as the square root of the norm.

