
I. Warm-up Problems for Todd Quinto’s Linz Talks

If you feel so inclined, here are some problems you could think about before my talks. They lead
to some calculations I will discuss during the talks. All problems are optional!

1. Let ϕ : R→ R be a C∞ function of compact support and assume ϕ(0) 6= 0. For ξ ∈ R, define

F (ξ) =

∫ ∞
0

ϕ(x)e−ixξdx.

Use integration by parts twice to show that there are constants c > 0, C > 0, and K > 0
such that for |ξ| ≥ K

c

|ξ|
≤ |F (ξ)| ≤ C

|ξ|
.

2. Prove that if f ∈ L1(R2) then for each x ∈ R2,∫ 2π

θ=0

∫ ∞
t=−∞

f(x+ tθ⊥)dtdθ = f ∗ 2

|x|

where θ⊥ = (− sin(θ), cos(θ)) and

f ∗ g(x) =

∫
y∈R2

f(x− y)g(y)dy.

3. Let α ∈ (0, π). Prove that if f ∈ L1(R2) then for each x ∈ R2,∫ α

θ=0

∫ ∞
t=−∞

f(x+ tθ⊥)dtdθ = f ∗ T (x)

|x|

where T (x) is 1 if x is in the cone ∪{tθ⊥|t ∈ R, θ ∈ [0, α]) and 0 otherwise.

II. Definitions and Homework Problems for Linz Talks

If you feel so inclined, below are some problems you could do after the first or second talk.
All problems are optional!

First, I give some definitions that I will present in my talks.

Definition 1 Let θ ∈ [0, 2π] and t ∈ R. Then we define θ = (cos(θ), sin(θ)) and θ⊥ =
(− sin(θ), cos(θ)) and the line L(θ, p) = {x ∈ R2

∣∣x · θ = p}.
Let f ∈ L1(R2). We define the Radon transform of f to be

Rf(θ, p) =

∫
x∈L(θ,p)

f(x)ds

where ds is arc length measure on the line.

1



Let g ∈ L1([0, 2π]× R). We define the dual Radon transform of g to be

R∗g(x) =

∫ 2π

θ=0
g(θ, x · θ)dθ

where ds is arc length measure on the line.

If α ∈ (0, π) then we define the limited angle dual Radon transform of g to be

R∗αg(x) =

∫ α

θ=0
g(θ, x · θ)dθ

Definition 2 Let f be a locally integrable function (or distribution). Let (x0, ξ0) ∈ Rn ×
Rn \ {0}. Then, f is smooth near x0 in direction ξ0 if there exists a cutoff function ϕ at x0
(ϕ ∈ C∞c (Rn) and ϕ(x0) 6= 0) such that the Fourier transform F(ϕf)(ξ) is rapidly decreasing
at ∞ (decreasing faster than any power of 1/|ξ|) in V .

If f is not smooth near x0 in direction ξ0 then (x0, ξ0) ∈WF(f) the wavefront set of f .

4. Use the result of warm-up problem 1 and special cutoff functions to show that if

f(x, y) =

{
1 x ≥ 0

0 x < 0
then

WF(f) = {((0, y), (ξ1, 0)
∣∣y ∈ R, ξ1 6= 0}.

5. Use the result of warm-up problem 1 and special cutoff functions to show that if

f(x, y) =

{
1 x ≥ 0 and y ≥ 0

0 otherwise
then

WF(f) = {((0, y), (ξ1, 0)
∣∣y > 0, ξ1 6= 0} ∪ {((x, 0), (0, ξ2)

∣∣x > 0, ξ2 6= 0}
∪ {((0, 0), (ξ1, ξ2)

∣∣(ξ1, ξ2) 6= 0}.

6. Let g : Rn → R be C∞. Then, for any function f , WF(f) = WF(f + g).

7. Let x0 ∈ Rn and let f = g in a neighborhood of x0. Let ξ0 ∈ Rn with ξ0 6= 0. Then,
(x0, ξ0) ∈WF(f) iff (x0, ξ0) ∈WF(g).

g : Rn → R be C∞. Then, for any function f , WF(f) = WF(f + g).

8. Use the result of warm-up problem 2 to show that R∗Rf = f ∗ 1
|x| .

9. Use the result of warm-up problem 3 to show that R∗αRf = f ∗ T (x)|x| where T (x) is 1 if x is in

the cone ∪{tθ⊥|t ∈ R, θ ∈ [0, α]).
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