I. Warm-up Problems for Todd Quinto's Linz Talks

If you feel so inclined, here are some problems you could think about before my talks. They lead to some calculations I will discuss during the talks. All problems are optional!

1. Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞} function of compact support and assume $\varphi(0) \neq 0$. For $\xi \in \mathbb{R}$, define

$$
F(\xi)=\int_{0}^{\infty} \varphi(x) e^{-i x \xi} d x
$$

Use integration by parts twice to show that there are constants $c>0, C>0$, and $K>0$ such that for $|\xi| \geq K$

$$
\frac{c}{|\xi|} \leq|F(\xi)| \leq \frac{C}{|\xi|} .
$$

2. Prove that if $f \in L^{1}\left(\mathbb{R}^{2}\right)$ then for each $x \in \mathbb{R}^{2}$,

$$
\int_{\theta=0}^{2 \pi} \int_{t=-\infty}^{\infty} f\left(x+t \theta^{\perp}\right) d t d \theta=f * \frac{2}{|x|}
$$

where $\theta^{\perp}=(-\sin (\theta), \cos (\theta))$ and

$$
f * g(x)=\int_{y \in \mathbb{R}^{2}} f(x-y) g(y) d y
$$

3. Let $\alpha \in(0, \pi)$. Prove that if $f \in L^{1}\left(\mathbb{R}^{2}\right)$ then for each $x \in \mathbb{R}^{2}$,

$$
\int_{\theta=0}^{\alpha} \int_{t=-\infty}^{\infty} f\left(x+t \theta^{\perp}\right) d t d \theta=f * \frac{T(x)}{|x|}
$$

where $T(x)$ is 1 if x is in the cone $\cup\left\{t \theta^{\perp} \mid t \in \mathbb{R}, \theta \in[0, \alpha]\right)$ and 0 otherwise.

II. Definitions and Homework Problems for Linz Talks

If you feel so inclined, below are some problems you could do after the first or second talk. All problems are optional!
First, I give some definitions that I will present in my talks.
Definition 1 Let $\theta \in[0,2 \pi]$ and $t \in \mathbb{R}$. Then we define $\bar{\theta}=(\cos (\theta), \sin (\theta))$ and $\theta^{\perp}=$ $(-\sin (\theta), \cos (\theta))$ and the line $L(\theta, p)=\left\{x \in \mathbb{R}^{2} \mid x \cdot \bar{\theta}=p\right\}$. Let $f \in L^{1}\left(\mathbb{R}^{2}\right)$. We define the Radon transform of f to be

$$
R f(\theta, p)=\int_{x \in L(\theta, p)} f(x) d s
$$

where ds is arc length measure on the line.

Let $g \in L^{1}([0,2 \pi] \times \mathbb{R})$. We define the dual Radon transform of g to be

$$
R^{*} g(x)=\int_{\theta=0}^{2 \pi} g(\theta, x \cdot \bar{\theta}) d \theta
$$

where $d s$ is arc length measure on the line.
If $\alpha \in(0, \pi)$ then we define the limited angle dual Radon transform of g to be

$$
R_{\alpha}^{*} g(x)=\int_{\theta=0}^{\alpha} g(\theta, x \cdot \bar{\theta}) d \theta
$$

Definition 2 Let f be a locally integrable function (or distribution). Let $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times$ $\mathbb{R}^{n} \backslash\{0\}$. Then, f is smooth near x_{0} in direction ξ_{0} if there exists a cutoff function φ at x_{0} $\left(\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right.$ and $\left.\varphi\left(x_{0}\right) \neq 0\right)$ such that the Fourier transform $\mathcal{F}(\varphi f)(\xi)$ is rapidly decreasing at ∞ (decreasing faster than any power of $1 /|\xi|$) in V.
If f is not smooth near x_{0} in direction ξ_{0} then $\left(x_{0}, \xi_{0}\right) \in \mathrm{WF}(f)$ the wavefront set of f.
4. Use the result of warm-up problem 1 and special cutoff functions to show that if $f(x, y)=\left\{\begin{array}{ll}1 & x \geq 0 \\ 0 & x<0\end{array}\right.$ then

$$
\mathrm{WF}(f)=\left\{\left((0, y),\left(\xi_{1}, 0\right) \mid y \in \mathbb{R}, \xi_{1} \neq 0\right\}\right.
$$

5. Use the result of warm-up problem 1 and special cutoff functions to show that if $f(x, y)=\left\{\begin{array}{ll}1 & x \geq 0 \text { and } y \geq 0 \\ 0 & \text { otherwise }\end{array}\right.$ then

$$
\begin{gathered}
\mathrm{WF}(f)=\left\{((0 , y) , (\xi _ { 1 } , 0) | y > 0 , \xi _ { 1 } \neq 0 \} \cup \left\{\left((x, 0),\left(0, \xi_{2}\right) \mid x>0, \xi_{2} \neq 0\right\}\right.\right. \\
\cup\left\{\left((0,0),\left(\xi_{1}, \xi_{2}\right) \mid\left(\xi_{1}, \xi_{2}\right) \neq 0\right\}\right.
\end{gathered}
$$

6. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{∞}. Then, for any function $f, \mathrm{WF}(f)=\mathrm{WF}(f+g)$.
7. Let $x_{0} \in \mathbb{R}^{n}$ and let $f=g$ in a neighborhood of x_{0}. Let $\xi_{0} \in \mathbb{R}^{n}$ with $\xi_{0} \neq 0$. Then, $\left(x_{0}, \xi_{0}\right) \in \mathrm{WF}(f)$ iff $\left(x_{0}, \xi_{0}\right) \in \mathrm{WF}(g)$.
$g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{∞}. Then, for any function $f, \mathrm{WF}(f)=\mathrm{WF}(f+g)$.
8. Use the result of warm-up problem 2 to show that $R^{*} R f=f * \frac{1}{|x|}$.
9. Use the result of warm-up problem 3 to show that $R_{\alpha}^{*} R f=f * \frac{T(x)}{|x|}$ where $T(x)$ is 1 if x is in the cone $\cup\left\{t \theta^{\perp} \mid t \in \mathbb{R}, \theta \in[0, \alpha]\right)$.
