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1 Model problem

Find u: [0,1] — R such that

f(z) forall z € (0,1),
u(0=u(1l)=0
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for given f: (0,1) — R.
Discretization: Let n € N. We choose nodes x; with

O=xp<m<...<zp1 <z, =1.

By these nodes the interval [0, 1] is divided into n subintervals. For simplicity we consider
equidistant subdivisions only:

1
zi=i-h with h=—.
n

Discretization by a finite difference method:

1

u//(:l:) ~ ﬁ

(u(x — h) = 2u(z) + u(z + h)).
This leads to a system of n — 1 equations

1
ﬁ(ui_l —2ui+ui+1) = f(z;) foralli=1,2,....n—1

for the unknowns u; for i = 1,...,n — 1. Here u; denotes the approximation to u(x;).
Observe that it is natural to set uy = wu,, = 0 because of the boundary conditions. In
matrix-vector notation:

-1 2 Up—1 f(@n-1)
—~ —_—— ~——
K U [

Typical properties of Kj,: large, sparse and, in the case considered here, symmetric.

2 w-Jacobi method

Let w > 0. The w-Jacobi method is a simple iterative method for solving the linear system

It reads: . . ‘
u ™ = 4w D (£, - Ku)

with Dy, = diag Kj, = %I. Hence, the w-Jacobi method can be written as:

| R |
™ =+ 55 (£, - K?)



2.1 Convergence analysis

We have 2 2
i+1 w : w .
LL%] ):{[—TK}Q;f)+7ih25h<ﬂg)aih>>
—_——
Sh
Let u} be the exact solution:
Kyuy, = £,
and let gg-j ) be the error of the k-th iterate:
2 = —u
Then we have
. . ‘ B2 ,
M = — ™ =g — ) = - (£, - Kau?)
h? ; h?
=i, —uf) = K (i~ ) = |1 K| 2
2 2 J
and, therefore, . 4
2 = Gzl

2.2 Discrete Fourier transform

For, k =1,...,n — 1, we introduce the vectors

Pk = (\/ﬁ Sin(knrm,-)) e R 1

i=1,...,n—1
It is easy to see that
<£h,k7£h,l> = 5k7l7

where (.,.) denotes the Euclidean inner product and d;; denotes Kronecker’s delta.
So{¢, .+ k=1,...,n— 1} is a orthonormal basis of R"~".
Moreover, Lo is an eigenvector of Kj:

4 1
thth = Ank Phk with  App = 2 sin? <§k’7rh) .

We have
0</\h,1 <... </\h,k <... <)\h,n—1

For the extreme eigenvalues we obtain for h < 1:

4 1 4 1
A1 = 7 sin? <§7rh) ~ e Zﬂ'QhQ = 72
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and

4 n—1 4 T 1 4 4
An—1 = 7 sin? ( 5 7rh> =12 sin? (5 — Ewh) =12 cos (—Wh) 72

Since {p, ,: k=1,...,n—1} is a basis of R"™!, a vector z;, = (2i),_; _, ; € R"' can
be uniquely written in the following form:

n—1

Zh = Zékfh,k (1)

k=1

with coefficients 2, € R that define a vector 2, = (%),_, ,_, € R"%

Interpretation of (1): Decomposition of the vector g,; in modes of different frequency.
Small values of k (close to 1) correspond to low-frequency modes, large values of k (close
to n — 1) correspond to high-frequency modes.

One can show that the Fourier transform z, +— 2, is isometric, i.e.:

||§h|| = thH,

where ||.|| denotes the Euclidean norm.

2.3 Fourier analysis

We use the discrete Fourier transform to represent the errors in the following form:

n—1 n—1
j+1 (41 ’ 5
zﬁf ) _ Z G )Sohk and Ei(zj) _ Z Z}i]) o
k=1 k=1

Then

LG4 G41) wh? G wh? 1= .0)
/\‘] J A~
% P 2 {I - TKh] zy) [] - TKh] > 40
k=1

n—1 n—1
wh? (4 wh?
= [I — —Kh] Zl(f])fh,k [] - —)\h k:| 5 Pk
k=1

This implies

2 k)
and
n—1 n—1 2 2
i+1) (j+1) wh NS
o CROEDMIEESMNCY
k=1 k=1
wh? TP (LN 0|12 wh? o2
< e |1 ] () = e, [ ] ]




It follows that

) Z 569 < o) [29]] = ||
with 12
W
A

One can show that p(h,w) = p(Sk) = ||Skl|, where p(Sy) and ||Sy|| denote the spectral
radius and the spectral norm of S, respectively.
Properties of p(h,w):
1

4
haw)<1le=0<w< = N
p(h,w) “ S Wt sin? (4(n— Lwh)  cos? (Sah)

and
p(h,, wopt) = IIiJiIl p(ha w)

for
4 1 ,
wO - = —
PR (M Arner) sin? (37h) + cos? (37h)

. 1
Popt = p(h,wopt) =1 — 2 sin? (§Fh> ~ 1

So, the method has a very slow convergence rate for h < 1.
However, different modes of the error (corresponding to different values of k) show
different convergence behavior, described by the reduction factor

wh?
1=
' 5 A

1
= ‘1 — 2w sin® (ﬁkﬂ'h)’ = |1 —w (1 —cos(kmh))|

Case w = 1: Reduction factor

|cos (kmh)|

Therefore,
e slow convergence for k close to 1 or n — 1
e fast convergence for modes k close to 3

Case w = %: Reduction factor
1 1 1
’5 + 5 cos (lmrh)‘ = cos’ <§k7rh)

Therefore,

e slow convergence for the high-frequency modes



e fast convergence for the low-frequency modes. Observe that

|3

1 1
cos? (—lmh) < - for k>
2 2

So, after a few iterates, the error may not be small but high-frequency modes are
strongly reduced: the error is smooth.

Smoothing rate:

In summary, we have for w = %:

. . 1
20T — Chk 29 with ¢y = cos (ilmh> forall k=1,....,n—1

1 1 1
h,— | ~1 d h,=— ) =—.
p(hg) 1 ad u(ng) =3

If k is replaced by n — k, it follows

resulting in

2njjk1) = C%L,nfk ’27(1]—16
with
1 . 1
Chon—k = COS §(n — k)wh | =sin | —k7h
Therefore,

én]jkl) =50, 27 with s, = sin <§k’7rh) forall k=1,...,.n—1

In particular, it follows for n even that
59T =
2

since

3 A two-grid method

3.1 The algorithm

Let QELO) be an initial guess of the exact solution uj. We proceed as follows to compute the
next iterate gg) of the two-grid method:



e Smoothing step

First a few , say v steps, of the w-Jacobi method are performed:
ggo’jﬂ) =38 (g%o’j),i}) for j=0,...,v—1 with ugo,o) = ggo).

Then the ideal correction z;,, given by
Uy, = MELO’V) + Zp,
is the solution of the residual equation
Knzy = [, — Khﬂi(low =Ty (2)

In the following second step of the method an approximation of this ideal correction
is computed.

e Coarse grid correction

We have seen that the error is smooth after a few step of the w-Jacobi method.
Therefore, r, can be represented on a coarser mesh very accurately.

— Restriction
We assume n = 2N and consider a coarse grid with the following nodes:

1
Xr=1-H with H:N for I=0,1,...,N.

Obviously, we have X; = z; for i = 21.
We define a coarse grid representation r; of r;, by the following averaging

1 1 1 . .
THI = 1 Thi-1+ B Thi+ 1 Thit1 With =21
or in matrix-vector notation
g = [}flfh

with an appropriate (N — 1)-by-(n — 1) matrix I}7.
— Coarse grid correction equation

Instead of the residual equation (2) on the original (fine) grid we solve the
corresponding equation on the coarse grid:

Kpwy =1y (3)
with the (N — 1)-by-(/NV — 1) matrix
2 -1
1 |—1 2 .
Ky=—
H H?2 o
-1 2

The correction wy,; is computed by solving (3) exactly.
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— Prolongation
The correction wy; has to be extended to a vector w, on the fine grid. This is
done by interpolation:

Wh,i = WH,T and Whi+1 = 5 (wHJ + wHJH) for =21

or, in matrix-vector notation
wy, = Tjwy.
with an appropriate (n — 1)-by-(N — 1) matrix I%.

We use w;, instead of 2z, for defining the next iterate of one step of the two-grid

method:
u = ul™ + w,

In summary, we obtain
) (0,v) (0,v) (0,v)

w, = fwy, =+ Thwy = w™ + Ky = ™ + K
P i (1, — Kol
This leads to the following relation for the associated errors:
A =i -l =i - o)~ G (f, — Kaul)
i~ o0~ TG () = [ TG 0] 20

I G ) sp

TGM
M,

-

3.2 Fourier analysis

For
n—1 n—1 n—1
0) _ ~(0) 0w) _ 2(0,v) 1) _ ~(1)
Zp = “hkPpgr Eh T “hk Pk and  z," = “hk Pk
k=1 k=1 k=1
it follows that
g = st a) v s, forall k=1,...,N -1
~(1 ~(0,v
Bk = 2w (4)
A =t a) 2 A0 forall k=1,...,N 1

Therefore,



e fast convergence for high-frequency modes
e slow convergence or stagnation for the other modes.
From the Fourier analysis of the w-Jacobi method we know that

g = g o forall k=1,...,N—1
~(0,v) 1 2(0)
ZpN = 2_l,zh,N
g =) o forall k=1,...,N -1,

since ¢y p—r = Sp k- Therefore,

(1) _ 2 2v (0 2 2v 2(0) _
Zhke = Shik Chik Zhnk T Chp Sh Zpny forall k=1... N—1
0 1o
hN T 9u RN
~(1) 2 2v (0 2 _2v 2(0) _
Zhnk = Shk Chk “hn—t T Chok Shok Zhn—k forall £k=1,...,N—1
Then, for k=1,...,N — 1,
£(1) 2 w2 (1) ]
(Zf;k _ [Sh,k Chik Chk Sh,k:| '(Zisk
~(1 - 2 2v 2 2v ~(1
Zhon—k Shk Chk Chk Shkl | Zpn_k
2 2w [ +(0)
— {1 1} [Sh,k Ch.k 0 } ?};k
= 2 2w (0
1 1 O ChJC Sh,k‘ _Zh7’n—k'

Now
Sy = o(chy) and dys = o,(s,) with 6,(z) = (1 - 2)a”

By elementary calculations one can show that

v 1

- <

:gg[%,}lc] a (v+ 1)1 = ev

Therefore,
(1 Y ~(0
-l e atell
Gl ]| 0 csielll || |20,
=2 %

- (y + 1)1/+1



This implies

N-1 N
ol _l.m] _ 4 (1) 12
Zp|l T En || T Z 5(1) + 2 v ]
k=1 h,n—Fk
A e N 11?2
< h.k + {_] |2(0) |2
> y (0 o h,N
(v + 1)+ | ,; L;S,%k 2
r v 12 N-1 A(O 2 v
< e o || ey = [ | )
| (v + 1)v+1 el | | 2 (v + 1)v+1
% Z(O)H2
IPESETN
Hence o
(1) v (0)
S E CESG =

This shows that the two-grid method converges with a rate that is uniformly smaller than
1 (independent of h). The convergence rate decreases if v increases:

2V < 2
(v+1)v+1 ~ ev

4 Multigrid methods

Recursive application of the two-grid idea.
o V-cycle

o W-cycle

5 Exercises

Let N € N and set
1 1
n=2N, h=—, z; =1h, H:N:2h’ X;=1H =2Ih = x9; = x; for i = 21.
n

The following abbreviations are introduced:
(1 1
Sp ) = Sin <§k7rh) ,  Chjk = COS (§I{J7Th> for k=1,...,n—1

and . .
SHk = sin (?{:WH) ,  CHJ = COS (?mH) for k=1,...,N—1.
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For k=1,...,n —1 the vectors ¢ ., given by

Phr = (\/ﬁ Sin(k;ﬂxi)) e R" 1,

i=1,....,n—1

build an orthonormal basis in R*'. For k =1,..., N — 1 the vectors #y .0 given by

Oy = (\/ 2H sin(lmXﬂ) c RV,

i=1,.,N—1

build an orthonormal basis in RV~1.

e Show that
4
Knp, = A, With  Apy = psi’k for k=1,...,n—1
and
2

4
KHfH,k = )\H,kEH’k with  Agp = e sy for k=1,...,N—1

Hint: sin(z — y) + sin(x 4+ y) = 2sinx cosy.

e Show:
n—1 n—1
If z,= Zak P then Kz, = Z ay, i with o) = A\g g
k=1 k=1

fork=1,...,n— 1.

For the fine-grid vector r, = (4;),_, , , its restriction ry = (rgz);_, n_; to the
coarse grid is given by

1 1 1 ) _
THI = 1 Thi-1+ 3 Thi+ 1 Thit1 With @ =21,
in short:
'y = Il?fh'
e Show that
1
Ii?%lk = _Cf?hka,k forallk=1,...,N —1,

SN

forall k=1,...,N —1

Hint for the last identity: Show first: the i-th component of ¢, ~ is equal to —(=1)
times the i-th component of [
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e Show:
n—1 N-1 1
If r, =Y B #,4 then Ii'ry, = Brone with B, = 7 (Cir i B — 831, Bt -
k=1 k=1
The coarse grid correction equation reads.

Kpwy =1y

e Show:
N—1 N1 1
If rg= Z Tk Py then wy = Z e Ppy With = N
— k=1 7

~_; to a fine-grid vector

Wh,; = WH,T for all I = 1,...,N—1
Whi+1 = 5 [UJHJ + wH,I—}—l] for all I = 0, c. ,N
with ¢ = 217, in short:
wy, = Ifwy.

e Show:
IIZfHk =2 [cikahk - Sikfhnfk forall k=1,...,N —1.
e Show: N1 1
If wy= Z‘Skffﬂy then wy = [jwy = Z(Sgﬂfhk
k=1 ’ k=1 |
with

S=v2c, 0, forallk=1,...,N—1,
oy =0,
0 =—V2sp, 0, forallk=1,...,N—1

e Use these results for the action of K, I, K5, and I%, and show (4).
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