Fundamentals of Numerical and Symbolic Computations

Multigrid Methods

Walter Zulehner
Institute of Computational Mathematics
Johannes Kepler University Linz
WS 2011/12

Contents

1 Model problem 1
2ω-Jacobi method 2
2.1 Convergence analysis 3
2.2 Discrete Fourier transform 3
2.3 Fourier analysis 4
3 A two-grid method 6
3.1 The algorithm 6
3.2 Fourier analysis 8
4 Multigrid methods 10
5 Exercises 10
References 12

1 Model problem

Find $u:[0,1] \longrightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad \text { for all } x \in(0,1), \\
u(0 & =u(1)=0
\end{aligned}
$$

for given $f:(0,1) \longrightarrow \mathbb{R}$.
Discretization: Let $n \in \mathbb{N}$. We choose nodes x_{i} with

$$
0=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=1 .
$$

By these nodes the interval $[0,1]$ is divided into n subintervals. For simplicity we consider equidistant subdivisions only:

$$
x_{i}=i \cdot h \quad \text { with } \quad h=\frac{1}{n} .
$$

Discretization by a finite difference method:

$$
u^{\prime \prime}(x) \approx \frac{1}{h^{2}}(u(x-h)-2 u(x)+u(x+h))
$$

This leads to a system of $n-1$ equations

$$
\frac{1}{h^{2}}\left(u_{i-1}-2 u_{i}+u_{i+1}\right)=f\left(x_{i}\right) \quad \text { for all } i=1,2, \ldots, n-1
$$

for the unknowns u_{i} for $i=1, \ldots, n-1$. Here u_{i} denotes the approximation to $u\left(x_{i}\right)$. Observe that it is natural to set $u_{0}=u_{n}=0$ because of the boundary conditions. In matrix-vector notation:

$$
\underbrace{\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]}_{K_{h}} \underbrace{\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1}
\end{array}\right]}_{\underline{u}_{h}}=\underbrace{\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n-1}\right)
\end{array}\right]}_{\underline{f}_{h}}
$$

Typical properties of K_{h} : large, sparse and, in the case considered here, symmetric.

2ω-Jacobi method

Let $\omega>0$. The ω-Jacobi method is a simple iterative method for solving the linear system

$$
K_{h} \underline{u}_{h}=\underline{f}_{h} .
$$

It reads:

$$
\underline{u}_{h}^{(j+1)}=\underline{u}_{h}^{(j)}+\omega D_{h}^{-1}\left(\underline{f}_{h}-K_{h} \underline{u}_{h}^{(j)}\right)
$$

with $D_{h}=\operatorname{diag} K_{h}=\frac{2}{h^{2}} I$. Hence, the ω-Jacobi method can be written as:

$$
\underline{u}_{h}^{(j+1)}=\underline{u}_{h}^{(j)}+\frac{\omega h^{2}}{2}\left(\underline{f}_{h}-K_{h} \underline{u}_{h}^{(j)}\right) .
$$

2.1 Convergence analysis

We have

$$
\underline{u}_{h}^{(j+1)}=\underbrace{\left[I-\frac{\omega h^{2}}{2} K\right]}_{S_{h}} \underline{u}_{h}^{(j)}+\frac{\omega h^{2}}{2} \underline{f}_{h}=\mathcal{S}_{h}\left(\underline{u}_{h}^{(j)}, \underline{f}_{h}\right),
$$

Let \underline{u}_{h}^{*} be the exact solution:

$$
K_{h} \underline{u}_{h}^{*}=\underline{f}_{h}
$$

and let $\underline{z}_{j}^{(j)}$ be the error of the k-th iterate:

$$
\underline{z}_{j}^{(j)}=\underline{u}_{h}^{*}-\underline{u}_{h}^{(j)} .
$$

Then we have

$$
\begin{aligned}
\underline{z}_{j}^{(j+1)}=\underline{u}_{h}^{*}-\underline{u}_{h}^{(j+1)} & =\underline{u}_{h}^{*}-\underline{u}_{h}^{(j)}-\frac{\omega h^{2}}{2}\left(\underline{f}_{h}-K_{h} \underline{u}_{h}^{(j)}\right) \\
& =\underline{u}_{h}^{*}-\underline{u}_{h}^{(j)}-\frac{\omega h^{2}}{2} K_{h}\left(\underline{u}_{h}^{*}-\underline{u}_{h}^{(j)}\right)=\left[I-\frac{\omega h^{2}}{2} K_{h}\right] \underline{z}_{j}^{(j)}
\end{aligned}
$$

and, therefore,

$$
\underline{z}_{j}^{(j+1)}=S_{h} \underline{z}_{h}^{(j)} .
$$

2.2 Discrete Fourier transform

For, $k=1, \ldots, n-1$, we introduce the vectors

$$
\underline{\varphi}_{h, k}=\left(\sqrt{2 h} \sin \left(k \pi x_{i}\right)\right)_{i=1, \ldots, n-1} \in \mathbb{R}^{n-1}
$$

It is easy to see that

$$
\left\langle\underline{\varphi}_{h, k}, \underline{\varphi}_{h, l}\right\rangle=\delta_{k, l},
$$

where $\langle.,$.$\rangle denotes the Euclidean inner product and \delta_{k l}$ denotes Kronecker's delta.
So $\left\{\underline{\varphi}_{h, k}: k=1, \ldots, n-1\right\}$ is a orthonormal basis of \mathbb{R}^{n-1}.
Moreover, $\underline{\varphi}_{h, k}$ is an eigenvector of K_{h} :

$$
K_{h} \underline{\varphi}_{h, k}=\lambda_{h, k} \underline{\varphi}_{h, k} \quad \text { with } \quad \lambda_{h, k}=\frac{4}{h^{2}} \sin ^{2}\left(\frac{1}{2} k \pi h\right) .
$$

We have

$$
0<\lambda_{h, 1}<\ldots<\lambda_{h, k}<\ldots<\lambda_{h, n-1}
$$

For the extreme eigenvalues we obtain for $h \ll 1$:

$$
\lambda_{h, 1}=\frac{4}{h^{2}} \sin ^{2}\left(\frac{1}{2} \pi h\right) \approx \frac{4}{h^{2}} \frac{1}{4} \pi^{2} h^{2}=\pi^{2}
$$

and

$$
\lambda_{h, n-1}=\frac{4}{h^{2}} \sin ^{2}\left(\frac{n-1}{2} \pi h\right)=\frac{4}{h^{2}} \sin ^{2}\left(\frac{\pi}{2}-\frac{1}{2} \pi h\right)=\frac{4}{h^{2}} \cos ^{2}\left(\frac{1}{2} \pi h\right) \approx \frac{4}{h^{2}}
$$

Since $\left\{\underline{\varphi}_{h, k}: k=1, \ldots, n-1\right\}$ is a basis of \mathbb{R}^{n-1}, a vector $\underline{z}_{h}=\left(z_{i}\right)_{i=1, \ldots, n-1} \in \mathbb{R}^{n-1}$ can be uniquely written in the following form:

$$
\begin{equation*}
\underline{z}_{h}=\sum_{k=1}^{n-1} \hat{z}_{k} \underline{\varphi}_{h, k} \tag{1}
\end{equation*}
$$

with coefficients $\hat{z}_{k} \in \mathbb{R}$ that define a vector $\hat{\underline{z}}_{h}=\left(\hat{z}_{k}\right)_{k=1, \ldots, n-1} \in \mathbb{R}^{n-1}$.
Interpretation of (1): Decomposition of the vector \underline{z}_{h} in modes of different frequency. Small values of k (close to 1) correspond to low-frequency modes, large values of k (close to $n-1$) correspond to high-frequency modes.

One can show that the Fourier transform $\underline{z}_{h} \mapsto \underline{\hat{z}}_{h}$ is isometric, i.e.:

$$
\left\|\underline{z}_{h}\right\|=\left\|\underline{\hat{z}}_{h}\right\|,
$$

where $\|$.$\| denotes the Euclidean norm.$

2.3 Fourier analysis

We use the discrete Fourier transform to represent the errors in the following form:

$$
\underline{z}_{h}^{(j+1)}=\sum_{k=1}^{n-1} \hat{z}_{k}^{(j+1)} \underline{\varphi}_{h, k} \quad \text { and } \quad \underline{z}_{h}^{(j)}=\sum_{k=1}^{n-1} \hat{z}_{k}^{(j)} \underline{\varphi}_{h, k}
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n-1} \hat{z}_{k}^{(j+1)} \underline{\varphi}_{h, k} & =\underline{z}_{h}^{(j+1)}=\left[I-\frac{\omega h^{2}}{2} K_{h}\right] \underline{z}_{h}^{(j)}=\left[I-\frac{\omega h^{2}}{2} K_{h}\right] \sum_{k=1}^{n-1} \hat{z}_{k}^{(j)} \underline{\varphi}_{h, k} \\
& =\sum_{k=1}^{n-1}\left[I-\frac{\omega h^{2}}{2} K_{h}\right] \hat{z}_{k}^{(j)} \underline{\varphi}_{h, k}=\sum_{k=1}^{n-1}\left[I-\frac{\omega h^{2}}{2} \lambda_{h, k}\right] \hat{z}_{k}^{(j)} \underline{\varphi}_{h, k}
\end{aligned}
$$

This implies

$$
\hat{z}_{k}^{(j+1)}=\left[I-\frac{\omega h^{2}}{2} \lambda_{h, k}\right] \hat{z}_{k}^{(j)}
$$

and

$$
\begin{aligned}
\left\|\hat{z}_{k}^{(j+1)}\right\|^{2} & =\sum_{k=1}^{n-1}\left(\hat{z}_{k}^{(j+1)}\right)^{2}=\sum_{k=1}^{n-1}\left[I-\frac{\omega h^{2}}{2} \lambda_{h, k}\right]^{2}\left(\hat{z}_{k}^{(j)}\right)^{2} \\
& \leq \max _{k=1, \ldots, n-1}\left[I-\frac{\omega h^{2}}{2} \lambda_{h, k}\right]^{2} \sum_{k=1}^{n-1}\left(\hat{z}_{k}^{(j)}\right)^{2}\left\|\hat{z}_{k}^{(j)}\right\|^{2}=\max _{k=1, \ldots, n-1}\left[1-\frac{\omega h^{2}}{2} \lambda_{h, k}\right]^{2}\left\|\hat{z}_{k}^{(j)}\right\|^{2}
\end{aligned}
$$

It follows that

$$
\left\|z_{k}^{(j+1)}\right\|=\left\|\hat{z}_{k}^{(j+1)}\right\| \leq \rho(h, \omega)\left\|\hat{z}_{k}^{(j)}\right\|=\left\|z_{k}^{(j)}\right\|
$$

with

$$
\rho(h, \omega)=\max _{k=1, \ldots, n-1}\left|1-\frac{\omega h^{2}}{2} \lambda_{h, k}\right|
$$

One can show that $\rho(h, \omega)=\rho\left(S_{h}\right)=\left\|S_{h}\right\|$, where $\rho\left(S_{h}\right)$ and $\left\|S_{h}\right\|$ denote the spectral radius and the spectral norm of S_{h}, respectively.

Properties of $\rho(h, \omega)$:

$$
\rho(h, \omega)<1 \Longleftrightarrow 0<\omega<\frac{4}{h^{2} \lambda_{h, n-1}}=\frac{1}{\sin ^{2}\left(\frac{1}{2}(n-1) \pi h\right)}=\frac{1}{\cos ^{2}\left(\frac{1}{2} \pi h\right)}
$$

and

$$
\rho\left(h, \omega_{\text {opt }}\right)=\min _{\omega} \rho(h, \omega)
$$

for

$$
\begin{gathered}
\omega_{\mathrm{opt}}=\frac{4}{h^{2}\left(\lambda_{h, 1}+\lambda_{h, n-1}\right)}=\frac{1}{\sin ^{2}\left(\frac{1}{2} \pi h\right)+\cos ^{2}\left(\frac{1}{2} \pi h\right)}=1 \\
\rho_{\mathrm{opt}}=\rho\left(h, \omega_{\mathrm{opt}}\right)=1-2 \sin ^{2}\left(\frac{1}{2} \pi h\right) \approx 1
\end{gathered}
$$

So, the method has a very slow convergence rate for $h \ll 1$.
However, different modes of the error (corresponding to different values of k) show different convergence behavior, described by the reduction factor

$$
\left|1-\frac{\omega h^{2}}{2} \lambda_{h, k}\right|=\left|1-2 \omega \sin ^{2}\left(\frac{1}{2} k \pi h\right)\right|=|1-\omega(1-\cos (k \pi h))|
$$

Case $\omega=1$: Reduction factor

$$
|\cos (k \pi h)|
$$

Therefore,

- slow convergence for k close to 1 or $n-1$
- fast convergence for modes k close to $\frac{n}{2}$

Case $\omega=\frac{1}{2}$: Reduction factor

$$
\left|\frac{1}{2}+\frac{1}{2} \cos (k \pi h)\right|=\cos ^{2}\left(\frac{1}{2} k \pi h\right)
$$

Therefore,

- slow convergence for the high-frequency modes
- fast convergence for the low-frequency modes. Observe that

$$
\cos ^{2}\left(\frac{1}{2} k \pi h\right) \leq \frac{1}{2} \quad \text { for } \quad k \geq \frac{n}{2}
$$

So, after a few iterates, the error may not be small but high-frequency modes are strongly reduced: the error is smooth.
Smoothing rate:

$$
\mu(h, \omega)=\max _{k \geq \frac{n}{2}}\left|1-\frac{\omega h^{2}}{2} \lambda_{h, k}\right|
$$

In summary, we have for $\omega=\frac{1}{2}$:

$$
\hat{z}_{k}^{(j+1)}=c_{h, k}^{2} \hat{z}_{k}^{(j)} \quad \text { with } \quad c_{h, k}=\cos \left(\frac{1}{2} k \pi h\right) \quad \text { for all } \quad k=1, \ldots, n-1
$$

resulting in

$$
\rho\left(h, \frac{1}{2}\right) \approx 1 \quad \text { and } \quad \mu\left(h, \frac{1}{2}\right)=\frac{1}{2} .
$$

If k is replaced by $n-k$, it follows

$$
\hat{z}_{n-k}^{(j+1)}=c_{h, n-k}^{2} \hat{z}_{n-k}^{(j)}
$$

with

$$
c_{h, n-k}=\cos \left(\frac{1}{2}(n-k) \pi h\right)=\sin \left(\frac{1}{2} k \pi h\right)
$$

Therefore,

$$
\hat{z}_{n-k}^{(j+1)}=s_{h, k}^{2} \hat{z}_{n-k}^{(j)} \quad \text { with } \quad s_{h, k}=\sin \left(\frac{1}{2} k \pi h\right) \quad \text { for all } \quad k=1, \ldots, n-1
$$

In particular, it follows for n even that

$$
\hat{z}_{\frac{n}{2}}^{(j+1)}=\frac{1}{2} \hat{z}_{\frac{n}{2}}^{(j)},
$$

since

$$
c_{h, \frac{n}{2}}^{2}=\cos ^{2}\left(\frac{\pi}{4}\right)=\frac{1}{2} .
$$

3 A two-grid method

3.1 The algorithm

Let $\underline{u}_{h}^{(0)}$ be an initial guess of the exact solution \underline{u}_{h}^{*}. We proceed as follows to compute the next iterate $\underline{u}_{h}^{(1)}$ of the two-grid method:

- Smoothing step

First a few, say ν steps, of the ω-Jacobi method are performed:

$$
\underline{u}_{h}^{(0, j+1)}=\mathcal{S}_{h}\left(\underline{u}_{h}^{(0, j)}, \underline{f}_{h}\right) \quad \text { for } \quad j=0, \ldots, \nu-1 \quad \text { with } \quad \underline{u}_{h}^{(0,0)}=\underline{u}_{h}^{(0)} .
$$

Then the ideal correction \underline{z}_{h}, given by

$$
\underline{u}_{h}^{*}=\underline{u}_{h}^{(0, \nu)}+\underline{z}_{h}
$$

is the solution of the residual equation

$$
\begin{equation*}
K_{h} \underline{z}_{h}=\underline{f}_{h}-K_{h} \underline{u}_{h}^{(0, \nu)} \equiv \underline{r}_{h} \tag{2}
\end{equation*}
$$

In the following second step of the method an approximation of this ideal correction is computed.

- Coarse grid correction

We have seen that the error is smooth after a few step of the ω-Jacobi method. Therefore, \underline{r}_{h} can be represented on a coarser mesh very accurately.

- Restriction

We assume $n=2 N$ and consider a coarse grid with the following nodes:

$$
X_{I}=I \cdot H \quad \text { with } \quad H=\frac{1}{N} \quad \text { for } \quad I=0,1, \ldots, N
$$

Obviously, we have $X_{I}=x_{i}$ for $i=2 I$.
We define a coarse grid representation \underline{r}_{H} of \underline{r}_{h} by the following averaging

$$
r_{H, I}=\frac{1}{4} r_{h, i-1}+\frac{1}{2} r_{h, i}+\frac{1}{4} r_{h, i+1} \quad \text { with } \quad i=2 I
$$

or in matrix-vector notation

$$
\underline{r}_{H}=I_{h}^{H} \underline{r}_{h}
$$

with an appropriate $(N-1)$-by- $(n-1)$ matrix I_{h}^{H}.

- Coarse grid correction equation

Instead of the residual equation (2) on the original (fine) grid we solve the corresponding equation on the coarse grid:

$$
\begin{equation*}
K_{H} \underline{w}_{H}=\underline{r}_{H} \tag{3}
\end{equation*}
$$

with the $(N-1)$-by- $(N-1)$ matrix

$$
K_{H}=\frac{1}{H^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

The correction \underline{w}_{H} is computed by solving (3) exactly.

- Prolongation

The correction \underline{w}_{H} has to be extended to a vector \underline{w}_{h} on the fine grid. This is done by interpolation:

$$
w_{h, i}=w_{H, I} \quad \text { and } \quad w_{h, i+1}=\frac{1}{2}\left(w_{H, I}+w_{H, I+1}\right) \quad \text { for } \quad i=2 I
$$

or, in matrix-vector notation

$$
\underline{w}_{h}=I_{H}^{h} \underline{w}_{H} .
$$

with an appropriate $(n-1)$-by- $(N-1)$ matrix I_{H}^{h}.
We use \underline{w}_{h} instead of \underline{z}_{h} for defining the next iterate of one step of the two-grid method:

$$
\underline{u}_{h}^{(1)}=\underline{u}_{h}^{(0, \nu)}+\underline{w}_{h}
$$

In summary, we obtain

$$
\begin{aligned}
\underline{u}_{h}^{(1)} & =\underline{u}_{h}^{(0, \nu)}+\underline{w}_{h}=\underline{u}_{h}^{(0, \nu)}+I_{H}^{h} \underline{w}_{H}=\underline{u}_{h}^{(0, \nu)}+I_{H}^{h} K_{H}^{-1} \underline{r}_{H}=\underline{u}_{h}^{(0, \nu)}+I_{H}^{h} K_{H}^{-1} I_{h}^{H} \underline{r}_{h} \\
& =\underline{u}_{h}^{(0, \nu)}+I_{H}^{h} K_{H}^{-1} I_{h}^{H}\left(\underline{f}_{h}-K_{h} \underline{u}_{h}^{(0, \nu)}\right)
\end{aligned}
$$

This leads to the following relation for the associated errors:

$$
\begin{aligned}
\underline{z}_{h}^{(1)} & =\underline{u}_{h}^{*}-\underline{u}_{h}^{(1)}=\underline{u}_{h}^{*}-\underline{u}_{h}^{(0)}-I_{H}^{h} K_{H}^{-1} I_{h}^{H}\left(\underline{f}_{h}-K_{h} \underline{u}_{h}^{(0, \nu)}\right) \\
& =\underline{u}_{h}^{*}-\underline{u}_{h}^{(0)}-I_{H}^{h} K_{H}^{-1} I_{h}^{H} K_{h}\left(\underline{u}_{h}^{*}-\underline{u}_{h}^{(0, \nu)}\right)=\left[I-I_{H}^{h} K_{H}^{-1} I_{h}^{H} K_{h}\right] \underline{z}_{h}^{(0, \nu)} \\
& =\underbrace{\left[I-I_{H}^{h} K_{H}^{-1} I_{h}^{H} K_{h}\right] S_{h}^{\nu}}_{M_{h}^{T G M}} \underline{z}_{h}^{(0)}
\end{aligned}
$$

3.2 Fourier analysis

For

$$
\underline{z}_{h}^{(0)}=\sum_{k=1}^{n-1} \hat{z}_{h, k}^{(0)} \underline{\varphi}_{h, k}, \quad \underline{z}_{h}^{(0, \nu)}=\sum_{k=1}^{n-1} \hat{z}_{h, k}^{(0, \nu)} \underline{\varphi}_{h, k} \quad \text { and } \quad \underline{z}_{h}^{(1)}=\sum_{k=1}^{n-1} \hat{z}_{h, k}^{(1)} \underline{\varphi}_{h, k}
$$

it follows that

$$
\begin{align*}
\hat{z}_{h, k}^{(1)} & =s_{h, k}^{2} \hat{z}_{h, k}^{(0, \nu)}+c_{h, k}^{2} \hat{z}_{h, n-k}^{(0, \nu)} \quad \text { for all } \quad k=1, \ldots, N-1 \\
\hat{z}_{h, N}^{(1)} & =\hat{z}_{h, N}^{(0, \nu)} \tag{4}\\
\hat{z}_{h, n-k}^{(1)} & =s_{h, k}^{2} \hat{z}_{h, k}^{(0, \nu)}+c_{h, k}^{2} \hat{z}_{h, n-k}^{(0, \nu)} \quad \text { for all } \quad k=1, \ldots, N-1
\end{align*}
$$

Therefore,

- fast convergence for high-frequency modes
- slow convergence or stagnation for the other modes.

From the Fourier analysis of the ω-Jacobi method we know that

$$
\begin{aligned}
\hat{z}_{h, k}^{(0, \nu)} & =c_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)} \quad \text { for all } \quad k=1, \ldots, N-1 \\
\hat{z}_{h, N}^{(0, \nu)} & =\frac{1}{2^{\nu}} \hat{z}_{h, N}^{(0)} \\
\hat{z}_{h, n-k}^{(0, \nu)} & =s_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)} \quad \text { for all } \quad k=1, \ldots, N-1,
\end{aligned}
$$

since $c_{h, n-k}=s_{h, k}$. Therefore,

$$
\begin{aligned}
\hat{z}_{h, k}^{(1)} & =s_{h, k}^{2} c_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)}+c_{h, k}^{2} s_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)} \quad \text { for all } \quad k=1, \ldots, N-1 \\
\hat{z}_{h, N}^{(1)} & =\frac{1}{2^{\nu}} \hat{z}_{h, N}^{(0)} \\
\hat{z}_{h, n-k}^{(1)} & =s_{h, k}^{2} c_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)}+c_{h, k}^{2} s_{h, k}^{2 \nu} \hat{z}_{h, n-k}^{(0)} \quad \text { for all } \quad k=1, \ldots, N-1
\end{aligned}
$$

Then, for $k=1, \ldots, N-1$,

$$
\begin{aligned}
{\left[\begin{array}{c}
\hat{z}_{h, k}^{(1)} \\
\hat{z}_{h, n-k}^{(1)}
\end{array}\right] } & =\left[\begin{array}{ccc}
s_{h, k}^{2} c_{h, k}^{2 \nu} & c_{h, k}^{2} s_{h, k}^{2 \nu} \\
s_{h, k}^{2} c_{h, k}^{2} & c_{h, k}^{2} & s_{h, k}^{2}
\end{array}\right]\left[\begin{array}{c}
\hat{z}_{h, k}^{(1)} \\
\hat{z}_{h, n-k}^{(1)}
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
s_{h, k}^{2} c_{h, k}^{2 \nu} & 0 \\
0 & c_{h, k}^{2} s_{h, k}^{2 \nu}
\end{array}\right]\left[\begin{array}{c}
\hat{z}_{h, k}^{(0)} \\
\hat{z}_{h, n-k}^{(0)}
\end{array}\right]
\end{aligned}
$$

Now

$$
s_{h, k}^{2} c_{h, k}^{2 \nu}=\phi_{\nu}\left(c_{h, k}^{2}\right) \quad \text { and } \quad c_{h, k}^{2} s_{h, k}^{2 \nu}=\phi_{\nu}\left(s_{h, k}^{2}\right) \quad \text { with } \quad \phi_{\nu}(x)=(1-x) x^{\nu}
$$

By elementary calculations one can show that

$$
\max _{x \in[0,1]} \phi_{\nu}(x)=\frac{\nu^{\nu}}{(\nu+1)^{\nu+1}} \leq \frac{1}{e \nu}
$$

Therefore,

$$
\left\|\left[\begin{array}{c}
\hat{z}_{h, k}^{(1)} \\
\hat{z}_{h, n-k}^{(1)}
\end{array}\right]\right\| \leq \underbrace{\left\|\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]\right\|}_{=2} \underbrace{\left\|\left[\begin{array}{cc}
s_{h, k}^{2} c_{h, k}^{2 \nu} & 0 \\
0 & c_{h, k}^{2} s_{h, k}^{2 \nu}
\end{array}\right]\right\|}_{\leq \frac{\nu^{\nu}}{(\nu+1)^{\nu+1}}}\| \|\left[\begin{array}{c}
\hat{z}_{h, k}^{(0)} \\
\hat{z}_{h, n-k}^{(0)}
\end{array}\right] \|
$$

This implies

$$
\begin{aligned}
\left\|\underline{z}_{h}^{(1)}\right\|^{2} & =\left\|\hat{\underline{z}}_{h}^{(1)}\right\|^{2}=\sum_{k=1}^{N-1}\left\|\left[\begin{array}{c}
\hat{z}_{h, k}^{(1)} \\
\hat{z}_{h, n-k}^{(1)}
\end{array}\right]\right\|^{2}+\left|\hat{z}_{h, N}^{(1)}\right|^{2} \\
& \leq\left[\frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}}\right]^{2} \sum_{k=1}^{N-1}\left\|\left[\begin{array}{c}
\hat{z}_{h, k}^{(0)} \\
\hat{z}_{h, n-k}^{(0)}
\end{array}\right]\right\|^{2}+\left[\frac{1}{2^{\nu}}\right]^{2}\left|\hat{z}_{h, N}^{(0)}\right|^{2} \\
& \leq\left[\frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}}\right]^{2}\left\{\sum_{k=1}^{N-1}\left\|\left[\begin{array}{c}
\hat{z}_{h, k}^{(0)} \\
\hat{z}_{h, n-k}^{(0)}
\end{array}\right]\right\|^{2}+\left|\hat{z}_{h, N}^{(0)}\right|^{2}\right\}=\left[\frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}}\right]^{2}\left\|\hat{z}_{h}^{(0)}\right\|^{2} \\
& =\left[\frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}}\right]^{2}\left\|\underline{z}_{h}^{(0)}\right\|^{2}
\end{aligned}
$$

Hence

$$
\left\|\underline{z}_{h}^{(1)}\right\| \leq \frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}}\left\|\underline{z}_{h}^{(0)}\right\|
$$

This shows that the two-grid method converges with a rate that is uniformly smaller than 1 (independent of h). The convergence rate decreases if ν increases:

$$
\frac{2 \nu^{\nu}}{(\nu+1)^{\nu+1}} \leq \frac{2}{e \nu} .
$$

4 Multigrid methods

Recursive application of the two-grid idea.

- V-cycle
- W-cycle

5 Exercises

Let $N \in \mathbb{N}$ and set

$$
n=2 N, h=\frac{1}{n}, x_{i}=i h, \quad H=\frac{1}{N}=2 h, \quad X_{I}=I H=2 I h=x_{2 I}=x_{i} \text { for } i=2 I .
$$

The following abbreviations are introduced:

$$
s_{h, k}=\sin \left(\frac{1}{2} k \pi h\right), \quad c_{h, k}=\cos \left(\frac{1}{2} k \pi h\right) \quad \text { for } \quad k=1, \ldots, n-1
$$

and

$$
s_{H, k}=\sin \left(\frac{1}{2} k \pi H\right), \quad c_{H, k}=\cos \left(\frac{1}{2} k \pi H\right) \quad \text { for } \quad k=1, \ldots, N-1 .
$$

For $k=1, \ldots, n-1$ the vectors $\underline{\varphi}_{n, k}$, given by

$$
\underline{\varphi}_{h, k}=\left(\sqrt{2 h} \sin \left(k \pi x_{i}\right)\right)_{i=1, \ldots, n-1} \in \mathbb{R}^{n-1}
$$

build an orthonormal basis in \mathbb{R}^{n-1}. For $k=1, \ldots, N-1$ the vectors $\underline{\varphi}_{H, k}$, given by

$$
\underline{\varphi}_{H, k}=\left(\sqrt{2 H} \sin \left(k \pi X_{i}\right)\right)_{i=1, \ldots, N-1} \in \mathbb{R}^{N-1}
$$

build an orthonormal basis in \mathbb{R}^{N-1}.

- Show that

$$
K_{h} \underline{\varphi}_{h, k}=\lambda_{h, k} \underline{\varphi}_{h, k} \quad \text { with } \quad \lambda_{h, k}=\frac{4}{h^{2}} s_{h, k}^{2} \quad \text { for } \quad k=1, \ldots, n-1
$$

and

$$
K_{H} \underline{\varphi}_{H, k}=\lambda_{H, k} \underline{\varphi}_{H, k} \quad \text { with } \quad \lambda_{H, k}=\frac{4}{H^{2}} s_{H, k}^{2} \quad \text { for } \quad k=1, \ldots, N-1
$$

Hint: $\sin (x-y)+\sin (x+y)=2 \sin x \cos y$.

- Show:

$$
\text { If } \quad \underline{z}_{h}=\sum_{k=1}^{n-1} \alpha_{k} \underline{\varphi}_{h, k}, \quad \text { then } \quad K_{h} \underline{z}_{h}=\sum_{k=1}^{n-1} \alpha_{k}^{\prime} \underline{\varphi}_{h, k} \quad \text { with } \quad \alpha_{k}^{\prime}=\lambda_{h, k} \alpha_{k}
$$

for $k=1, \ldots, n-1$.
For the fine-grid vector $\underline{r}_{h}=\left(r_{h, i}\right)_{i=1, \ldots, n-1}$ its restriction $\underline{r}_{H}=\left(r_{H, I}\right)_{I=1, \ldots, N-1}$ to the coarse grid is given by

$$
r_{H, I}=\frac{1}{4} r_{h, i-1}+\frac{1}{2} r_{h, i}+\frac{1}{4} r_{h, i+1} \quad \text { with } \quad i=2 I,
$$

in short:

$$
\underline{r}_{H}=I_{h}^{H} \underline{r}_{h} .
$$

- Show that

$$
\begin{aligned}
I_{h}^{H} \underline{\varphi}_{h, k} & =\frac{1}{\sqrt{2}} c_{h, k}^{2} \underline{\varphi}_{H, k} \quad \text { for all } k=1, \ldots, N-1, \\
I_{h}^{H} \underline{\varphi}_{h, N} & =0, \\
I_{h}^{H} \underline{\varphi}_{h, n-k} & =-\frac{1}{\sqrt{2}} s_{h, k}^{2} \underline{\varphi}_{H, k} \quad \text { for all } k=1, \ldots, N-1
\end{aligned}
$$

Hint for the last identity: Show first: the i-th component of $\underline{\varphi}_{h, n-k}$ is equal to $-(-1)^{i}$ times the i-th component of $\underline{\varphi}_{h, k}$.

- Show:

If $\underline{r}_{h}=\sum_{k=1}^{n-1} \beta_{k} \underline{\varphi}_{h, k}$, then $I_{h}^{H} \underline{r}_{h}=\sum_{k=1}^{N-1} \beta_{k}^{\prime} \varphi_{H, k}$ with $\beta_{k}^{\prime}=\frac{1}{\sqrt{2}}\left[c_{h, k}^{2} \beta_{k}-s_{h, k}^{2} \beta_{n-k}\right]$.
The coarse grid correction equation reads.

$$
K_{H} \underline{w}_{H}=\underline{r}_{H}
$$

- Show:

$$
\text { If } \quad \underline{r}_{H}=\sum_{k=1}^{N-1} \gamma_{k} \underline{\varphi}_{H, k}, \quad \text { then } \quad \underline{w}_{H}=\sum_{k=1}^{N-1} \gamma_{k}^{\prime} \underline{\varphi}_{H, k} \quad \text { with } \quad \gamma_{k}^{\prime}=\frac{1}{\lambda_{H, k}} \gamma_{k} \text {. }
$$

The prolongation of the coarse-grid vector $\underline{w}_{H}=\left(w_{H, I}\right)_{I=1, \ldots, N-1}$ to a fine-grid vector $\underline{w}_{h}=\left(w_{h, i}\right)_{i=1, \ldots, n-1}$ is given by

$$
\begin{aligned}
w_{h, i} & =w_{H, I} \quad \text { for all } I=1, \ldots, N-1 \\
w_{h, i+1} & =\frac{1}{2}\left[w_{H, I}+w_{H, I+1}\right] \quad \text { for all } I=0, \ldots, N
\end{aligned}
$$

with $i=2 I$, in short:

$$
\underline{w}_{h}=I_{H}^{h} \underline{w}_{H} .
$$

- Show:

$$
I_{H}^{h} \underline{\varphi}_{H, k}=\sqrt{2}\left[c_{h, k}^{2} \underline{\varphi}_{h, k}-s_{h, k}^{2} \underline{\varphi}_{h, n-k}\right] \quad \text { for all } k=1, \ldots, N-1 .
$$

- Show:

$$
\text { If } \quad \underline{w}_{H}=\sum_{k=1}^{N-1} \delta_{k} \underline{\varphi}_{H, k}, \quad \text { then } \quad w_{h}=I_{H}^{h} \underline{w}_{H}=\sum_{k=1}^{n-1} \delta_{k}^{\prime} \underline{\varphi}_{h, k}
$$

with

$$
\begin{aligned}
\delta_{k}^{\prime} & =\sqrt{2} c_{h, k}^{2} \delta_{k} \quad \text { for all } k=1, \ldots, N-1 \\
\delta_{N}^{\prime} & =0, \\
\delta_{n-k}^{\prime} & =-\sqrt{2} s_{h, k}^{2} \delta_{k} \quad \text { for all } k=1, \ldots, N-1
\end{aligned}
$$

- Use these results for the action of $K_{h}, I_{h}^{H}, K_{H}^{-1}$, and I_{H}^{h}, and show (4).

References

[1] W. Hackbusch, Multi-Grid Methods and Applications, Berlin: Springer-Verlag, 1985.
[2] W. Hackbusch, Iterative Solutions of Large Sparse Systems of Equations, New York: Springer-Verlag, 1994.

