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Abstract

Consider an algebraic ODE (AODE) of the form F (x , y , y ′) = 0,
where F is a tri-variate polynomial, and y ′ = dy

dx
. The polynomial

F defines an algebraic surface, which we assume to admit a
rational parametrization. Based on such a parametrization we can
generically determine the existence of a rational general solution,
and, in the positive case, also compute one. This method depends
crucially on the determination of rational invariant algebraic curves.

Further research is directed towards a classification of AODEs
w.r.t. groups of transformations (affine, birational) preserving
rational solvability. First results have been reached for affine
transformation groups.
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The problem
An algebraic ordinary differential equation (AODE) is given by

F (x , y , y ′, . . . , y (n)) = 0 ,

where F is a differential polynomial in K [x ]{y} with K being a
differential field and the derivation ′ being d

dx
.

Such an AODE is autonomous iff F does not depend on x ; i.e.,
F ∈ K{y}.

The radical differential ideal {F} can be decomposed

{F} = ({F} : S)
︸ ︷︷ ︸

general component

∩ {F ,S}
︸ ︷︷ ︸

singular component

,

where S is the separant of F (derivative of F w.r.t. y (n)).
If F is irreducible, {F} : S is a prime differential ideal; its generic
zero is called a general solution of the AODE
F (x , y , y ′, . . . , y (n)) = 0.

J.F. Ritt, Differential Algebra (1950)

E. Hubert, The general solution of an ODE, Proc. ISSAC 1996



Problem: Rational general solution of AODE of order 1

given: an AODE F (x , y , y ′) = 0, F irreducible in Q[x , y , y ′]

decide: does this AODE have a rational general solution

find: if so, find it

Example: F ≡ y ′2 + 3y ′ − 2y − 3x = 0.
general solution: y = 1

2((x + c)2 + 3c), where c is an arbitrary
constant.
The separant of F is S = 2y ′ + 3. So the singular solution of F is
y = −3

2x − 9
8 .



Rational parametrizations

An irreducible algebraic hypersurface V (in affine space over C) is
defined as the zero locus of an irreducible polynomial f (x1, . . . , xn);
i.e.,

V = {a = (a1, . . . , an) | f (a) = 0} .

A rational parametrization of V is a tuple of rational functions

P(t1, . . . , tn−1) =
(
x1(t), . . . , xn(t)

)

satisfying
f (x1(t), . . . , xn(t)) = 0 .

A hypersurface having a rational parametrization is called a
unirational variety.



The singular cubic
y2 − x3 − x2 = 0

has the rational, in fact polynomial, parametrization

x(t) = t2 − 1, y(t) = t3 − t .

So this is a unirational curve.
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The tacnode curve defined by

2x4 − 3x2y + y4 − 2y3 + y2 = 0

has the parametrization

x(t) =
t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

y(t) =
t2 − 4t + 4

2t4 − 16t3 + 40t2 − 32t + 9
.
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The non-singular (elliptic) cubic

y2 − x3 + x = 0

does not have a rational parametrization.
It is not unirational.
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◮ a parametrization of a curve (or a surface, or an algebraic
variety) is a generic point or generic zero of the curve; i.e. a
polynomial vanishes on the whole curve if and only if it
vanishes on this generic point

◮ so only irreducible curves (varieties) can have a rational
parametrization

◮ the curves having a rational parametrization are exactly the
curves of genus 0



These definitions carry over to hypersurfaces in higher dimensions.
For instance, the canal surface around Viviani’s temple
(intersection of sphere and cylinder) has a rational parametrization.



Proper parametrizations

A parametrization P(t) of a curve C is proper iff it is a birational
isomorphism between the line and the curve C (analogously for
surface parametrizations P(s, t)); i.e. P has a rational inverse.
A curve with a proper parametrization is a rational curve.

◮ every unirational curve is rational (Lüroth)

◮ every unirational surface is rational (Castelnuovo)

◮ in dimension ≥ 4 unirationality is not equivalent to rationality



◮ parametrizations, indeed proper parametrizations, of curves
and surfaces can be determined

◮ from a proper (curve) parametrization P(t) we get all the
other parametrizations by substituting rational functions R(t)
for t:

P(R(t))

◮ we know strict bounds for the degree of a proper curve
parametrization in terms of the degree of the defining
polynomial, and vice versa:

deg(P(t)) = max{degx(f ), degy (f )}

deg(x(t)) = degy (f ), deg(y(t)) = degx(f )



For details on parametrizations of algebraic curves we refer to

J.R. Sendra, F. Winkler, S. Pérez-D́ıaz,
Rational Algebraic Curves – A Computer Algebra Approach,

Springer-Verlag Heidelberg (2008)



Autonomous case F (y , y ′) = 0

Rational algebraic curves

First we concentrate on algebraic and geometric questions:

◮ The algebraic curve C : F (s, t) = 0 is a rational curve iff there
exist (s(x), t(x)) in K(x)2 (a rational parametrization) s.t.

F (s(x), t(x)) = 0.

If a rational parametrization exists, then we can compute one.
But rational parametrizations are not unique.

◮ Given a rational parametric curve (s(x), t(x)), there is a
unique irreducible polynomial F (s, t) such that

F (s(x), t(x)) = 0.



◮ One can also compute a proper rational parametrization
(s(x), t(x)) of F (s, t) = 0; i.e. an invertible rational mapping
and its inverse is also rational.

◮ If (s(x), t(x)) is a proper rational parametrization of
F (s, t) = 0 and (s(x), t(x)) is another rational
parametrization of F (s, t) = 0, then there exists a rational
function T (x) such that

(s(x), t(x)) = (s(T (x)), t(T (x))).

So proper parametrizations are most general parametrizations.



◮ A rational solution of F (y , y ′) = 0 corresponds to a proper
rational parametrization of the algebraic curve F (y , z) = 0.

◮ Conversely, from a proper rational parametrization
(f (x), g(x)) of the curve F (y , z) = 0 we get a rational
solution of F (y , y ′) = 0 if and only if there is a linear rational
function T (x) such that f (T (x))′ = g(T (x)).
If T (x) exists, then a rational solution of F (y , y ′) = 0 is:
y = f (T (x)).
The rational general solution of F (y , y ′) = 0 is (for an
arbitrary constant C ): y = f (T (x + C ))

◮ Feng and Gao described a complete algorithm along these
lines.
R. Feng, X-S. Gao, “Rational general solutions of algebraic ordinary
differential equations”, Proc. ISSAC2004. ACM Press, New York,
155-162, 2004.
R. Feng, X-S. Gao, “A polynomial time algorithm for finding
rational general solutions of first order autonomous ODEs”, J.
Symb. Comp., 41, 739-762, 2006.



Remark:

◮ A degree bound for proper parametrizations of a rational
algebraic curve is given in
J.R. Sendra, F. Winkler, “Tracing index of rational curve

parametrizations”, Comp.Aided Geom.Design, 18:771–795, 2001.

This degree bound also provides a degree bound for rational
general solutions of a differential equation F (y , y ′) = 0.

◮ During the parametrization process we need to find regular
points on the curve C : F (y , z) = 0. The quality of these
points, i.e., the necessary degree of the algebraic field
extension, determines the quality of the coefficients in the
parametrization and ultimately in the rational general solution
of the DE F (y , y ′) = 0. For optimal field extensions see
J.R. Sendra, F. Winkler, Parametrization of algebraic curves over

optimal field extensions, J. Symb. Comp., 23, 191–207, 1997.



The general (non-autonomous) case F (x , y , y ′) = 0

◮ When we consider the autonomous algebraic differential
equation F (y , y ′) = 0, it is necessary that F (y , z) = 0 is a
rational curve. Otherwise, the differential equation
F (y , y ′) = 0 has no non-trivial rational solution.

◮ It is now natural to assume that the solution surface
F (x , y , z) = 0 is a rational algebraic surface, i.e. rationally
parametrized by

P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)).

Then P(s, t) creates a rational solution of F (x , y , y ′) = 0 if
and only if we can find two rational functions s(x) and t(x)
which solve the following associated system:

s ′ =
f1(s, t)

g(s, t)
, t ′ =

f2(s, t)

g(s, t)
, (1)



where f1(s, t), f2(s, t), g(s, t) are rational functions in s, t and
defined by

f1(s, t) =
∂χ2(s, t)

∂t
− χ3(s, t) ·

∂χ1(s, t)

∂t
,

f2(s, t) =χ3(s, t) ·
∂χ1(s, t)

∂s
−

∂χ2(s, t)

∂s
,

g(s, t) =
∂χ1(s, t)

∂s
·
∂χ2(s, t)

∂t
−

∂χ1(s, t)

∂t
·
∂χ2(s, t)

∂s
.

(2)

The system (1) is called the associated system of F (x , y , y ′) = 0
with respect to P(s, t).

The construction of the associated system and the following
theorem can be found in
L.X.C. Ngô, F. Winkler, “Rational general solutions of first order

non-autonomous parametrizable ODEs”, J. Symb. Comp., 45(12),

1426–1441, 2010.



Properties of the associated system:

The associated system of F (x , y , y ′) = 0 w.r.t. P has the form

s ′ =
N1(s, t)

M1(s, t)
, t ′ =

N2(s, t)

M2(s, t)
(3)

The corresponding polynomial system of (3) is

s ′ = N1M2, t ′ = N2M1. (4)

Theorem
There is a one-to-one correspondence between rational general

solutions of the algebraic differential equation F (x , y , y ′) = 0,
which is parametrized by P(s, t), and rational general solutions of

its associated system with respect to P(s, t).

The associated system is

◮ autonomous

◮ of order 1

◮ of degree 1 in the derivatives



Solving the associated system

Lemma
Every non-trivial rational solution of the associated system (3)
corresponds to a rational algebraic curve G (s, t) = 0 satisfying

Gs · N1M2 + Gt · N2M1 ∈ 〈G 〉 . (5)

Definition
A rational algebraic curve G (s, t) = 0 satisfying (5) is called a
rational invariant algebraic curve of the system (3).

In case the system (3), (4) has no dicritical singularities, i.e., in the
generic case, there is an upper bound for irreducible invariant
algebraic curves:
M.M. Carnicer, “The Poincaré problem in the nondicritical case”, Annals

of Mathematics, 140(2):289–294, 1994.



Reparametrization:

Theorem
Let G (s, t) = 0 be a rational invariant algebraic curve of the

associated system (3) such that G ∤ M1 and G ∤ M2. Let

(s(x), t(x)) be a proper rational parametrization of G (s, t) = 0.
W.l.o.g. assume s ′(x) 6= 0.
Then (s(x), t(x)) creates a rational solution of the associated

system if and only if there is a linear rational function T (x) such

that

T ′ =
1

s ′(T )
·

N1(s(T ), t(T ))

M1(s(T ), t(T ))
. (6)

In this case, (s(T (x)), t(T (x))) is a rational solution of the

associated system.

L.X.C. Ngô, F. Winkler, “Rational general solutions of planar rational

systems of autonomous ODEs”, J. Symb. Comp. 46(10), 1173–1186,

2011.



Rational general solutions

Invariant algebraic curves come in families depending on
parameters. Such families give rise to rational general solutions.

Theorem
Let R(x) = (s(x), t(x)) be a non-trivial rational solution of the

system (3). Let H(s, t) be the monic defining polynomial of the

curve parametrized by R(x).
Then R(x) is a rational general solution of the system (3)
if and only if

the coefficients of H(s, t) contain a transcendental constant.



associated system (3):

s ′ =
N1(s, t)

M1(s, t)
, t ′ =

N2(s, t)

M2(s, t)

A first integral is a non-constant bivariate function W (s, t)
satisfying

N1

M1
Ws +

N2

M2
Wt = 0 .

Theorem
The associated system (3) has a rational general solution if and

only if it has a rational first integral
U

V
∈ K(s, t) with

gcd(U,V ) = 1 and any irreducible factor of U − cV determines a

rational solution curve for a transcendental constant c over K.



Algorithm RATSOLVE
Input: a parametrizable ODE F (x , y , y ′) = 0;
Output: a rational general solution of F (x , y , y ′) = 0, if there is
one.

1. Compute a proper rational parametrization P(s, t) of
F (x , y , z) = 0.

2. Compute the associated system w.r.t P(s, t);

3. Compute the set I of irreducible invariant algebraic curves of
the associated system;

4. If I contains an irreducible invariant algebraic curve
G (s, t) = 0 with a transcendental coefficient, then check
whether G (s, t) = 0 is a rational curve.

5. If G (s, t) is a rational curve, then parametrize this curve to
find a rational general solution (s(x), t(x)) of the system;

6. Compute c = χ1(s(x), t(x)) − x ;

7. Return y = χ2(s(x − c), t(x − c)).



Example: L.X.C. Ngô, F. Winkler, “Rational general solutions of

parametrizable AODEs”, Publ.Math.Debrecen, 79(3–4), 573–587, 2011.

Consider the differential equation

F (x , y , y ′) ≡ y ′2 + 3y ′ − 2y − 3x = 0 .

The solution surface z2 + 3z − 2y − 3x = 0 has the parametrization

P(s, t) =

(
t

s
+

2s + t2

s2
,−

1

s
−

2s + t2

s2
,
t

s

)

.

This is a proper parametrization and its associated system is

s ′ = st, t ′ = s + t2 .

Irreducible invariant algebraic curves of the system are:

G (s, t) = s, G (s, t) = t2 + 2s, G (s, t) = s2 + ct2 + 2cs



The first algebraic curve s = 0 can be parametrized by
Q(x) = (0, x). Running Step 5 in RATSOLVE, the differential
equation defining the reparametrization is

T ′ = T 2.

Hence T (x) = −
1

x
. Therefore, the rational solution corresponding

to G (s, t) = s is

s(x) = 0, t(x) =
1

x
.

However, this solution does not belong to the domain of P(s, t).
Therefore, it is not corresponding to any solution of F (x , y , y ′) = 0
parametrized by P(s, t).



The second algebraic curve t2 + 2s = 0 can be parametrized by

Q(x) =

(

−
x2

2
, x

)

. Running Step 5 in RATSOLVE, the differential

equation defining the reparametrization is

T ′ =
1

2
T 2.

Hence T (x) = −
2

x
. Therefore, the rational solution corresponding

to G (s, t) = t2 + 2s is

s(x) = −
2

x2
, t(x) = −

2

x
.

The parametrization P(s, t) maps this solution to the solution

y(x) =
1

2
x2 of F (x , y , y ′) = 0.



The third algebraic curve s2 + ct2 + 2cs = 0 can be parametrized
by

Q(x) =

(

−
2c

1 + cx2
,−

2cx

1 + cx2

)

.

Running Step 5 in RATSOLVE, the differential equation defining
the reparametrization is T ′ = 1. Hence T (x) = x . So the rational
solution in this case is

s(x) = −
2c

1 + cx2
, t(x) = −

2cx

1 + cx2
.

Since G (s, t) contains a transcendental constant, the above
solution is a rational general solution of the associated system.
Therefore, the rational general solution of F (x , y , y ′) = 0 is

y =
1

2
x2 +

1

c
x +

1

2c2
+

3

2c
,

which, after a change of parameter, can be written as

y =
1

2
(x2 + 2cx + c2 + 3c).



Generalization to higher order

this is work in progress with L.X.Chau Ngô and Yanli Huang
Y. Huang, L.X.C. Ngô, F. Winkler, “Rational general solutions of
trivariate rational systems of autonomous ODEs”, Proc. MACIS
2011, 93–100, 2011.

we give only an example



Example: Consider the differential equation

F (x , y , y ′, y ′′) = 3xy ′′ − 3yy ′′ + 2y ′2 − 6y ′ = 0.

The solution hypersurface
F (x , y , z ,w) = 3xw − 3yw + 2z2 − 6z = 0 of this differential
equation has a proper parametrization

P(s1, s2, s3) = (s1 + s2 − s2
3 , s2

1 s3 + s2 − s2
3 , 3s1s3, 6s3) .

Therefore, the associated system of the original differential
equation with respect to P is

s ′1 = 1, s ′2 =
2s2

3

s1
, s ′3 =

s3

s1



an invariant algebraic space curve for this system is given by the
intersection of the 2 surfaces

H1 = x2 − c2
1 s2

1 + c2, H2 = s3 + c1s1 .

This curve has the proper parametrization

(s1(x), s2(x), s3(x)) = (
1

x
,
c2
1

x2
− c2,−

c1

x
) .

We check whether we can find a transformation T into a solution
of the associated system:

T ′(x) =
1

s ′1(T (x))
= −T 2(x) .

This leads to T (x) = 1
x
. So

(ŝ1(x), ŝ2(x), ŝ3(x)) = (s(T (x)), s(T (x)), s(T (x)))
= (x , c2

1x2 − c2, −c1x)

is a rational solution of the associated system.



Actually the implicit desciption of this rational solution is decribed
by the Gröbner basis

G = {s3 + c1s1,−s2
3 + s2 + c2}

containing 2 independent transcendental constants in the
coefficients.
So (ŝ1(x), ŝ2(x), ŝ3(x)) is a rational general solution.
We transform it into a rational general solution of the original
equation by requiring that P(ŝ1, ŝ2, ŝ3) should be x :

y(x) = ŝ1(x + c2)
2ŝ3(x + c2) + ŝ2(x + c2) − ŝ3(x + c2)

2

= −c1(x + c2)
3 − c2



Classification of AODEs / differential orbits

joint work with L.X.C. Ngô and J.R. Sendra

◮ consider a group of transformations leaving the associated
system of an AODE invariant; orbits w.r.t. such a
transformation group contain AODEs of equal complexity in
terms of determining rational solutions

◮ we study some well-known classes of equations and relate
them to this algebro-geometric approach

◮ it turns out that being autonomous is not an intrinsic property
of an AODE; certain classes contain both autonomous and
non-autonomous AODEs



L.X.C. Ngô, J.R. Sendra, F. Winkler, “Classification of algebraic
ODEs with respect to their rational solvability”, to appear in
Contemporary Mathematics, 2012.

The group G of affine transformations

L : K(x)3 −→ K(x)]3

v 7→





1 0 0
b a 0
0 0 a



 v +





0
c

b





leaves the associated system of an AODE invariant, and therefore
also the rational solvability.



Theorem
The group G defines a group action on AODEs by

G × AODE → AODE
(L,F ) 7→ L · F = (F ◦ L−1)(x , y , y ′) .

Theorem
Let F be a parametrizable AODE, and L ∈ G. For every proper

rational parametrization P of the surface F (x , y , z) = 0, the

associated system of F (x , y , y ′) = 0 w.r.t. P and the associated

system of (L · F )(x , y , y ′) = 0 w.r.t. L ◦ P are equal.



Example: As in the previous example we consider the differential
equation

F (x , y , y ′) ≡ y ′2 + 3y ′ − 2y − 3x = 0.

We first check whether in the class of F there exists an
autonomous AODE. For this, we apply a generic L to F to get

(L·F )(x , y , y ′) =
1

a2
y ′2+

3

a
y ′−

2b

a2
y ′−

2

a
y+

2b

a
x−3x−

3b

a
+

b2

a2
+

2c

a
.

Therefore, for every a 6= 0 and b such that 2b − 3a = 0, we get an
autonomous AODE. In particular, for a = 1, b = 3/2, and c = 0
we get

L =











1 0 0
3

2
1 0

0 0 1




 ,






0
0
3

2









 ,

i.e., we obtain

F (L−1(x , y , y ′)) ≡ y ′2 − 2y −
9

4
= 0.



Future research

◮ classification of AODEs according to birational
transformations −→ Goal 1.2.1

◮ extension of the methods to more general types of
parametrizations (radical, algebraic, power series, ...)
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Thank you for your attention!
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