
The Concrete Tetrahedron

Manuel Kauers · RISC

1



Introduction

2



Introduction

3



Introduction

Recall: Quicksort

3



Introduction

Recall: Quicksort

a1 a2 a3 an

3



Introduction

Recall: Quicksort

a1 a2 a3 an

3



Introduction

Recall: Quicksort

a1 a2 a3 an

ai ≤ a1

3



Introduction

Recall: Quicksort

a1 a2 a3 an

ai ≤ a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3 an

ai ≤ a1 a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3

x


kth

an

ai ≤ a1 a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements

x


kth

an

ai ≤ a1 a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements

x


kth

︸ ︷︷ ︸

n− k elements

an

ai ≤ a1 a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn =

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

3



Introduction

Recall: Quicksort

a1 a2 a3

︸ ︷︷ ︸

k − 1 elements
 sort recursively

x


kth

︸ ︷︷ ︸

n− k elements
 sort recursively

an

ai ≤ a1 a1 ai ≥ a1

If cn is the average number of comparisons, then

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)
c0 = 0

3



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

0, 0, 1,
8

3
,

29

6
,

37

5
,

103

10
,

472

35
,

2369

140
,

2593

126
,

30791

1260
,

32891

1155
,

452993

13860
,

476753

12870
,

499061

12012
,

2080328

45045
,

18358463

360360
,

18999103

340340
,

124184839

2042040
,

127860511

1939938
,

26274175

369512
,

8982005

117572
,

211524139

2586584
,

648798629

7436429
,

16562041459

178474296
,

16891532467

171609900
,

154883957203

1487285800
,

157646059403

1434168450
,

4649180818987

40156716600
,

4724140023307

38818159380
,

148699793966557

1164544781400
,

603533261726728

4512611027925
,

306005750313839

2187932619600
,

28193110155949

193052878200
,

28557152726269

187537081680
,

28911389436109

182327718300
,

1082484349417033

6563797858800
,

1094921019044233

6391066336200
,

1107047657733433

6227192840400
,

1118879324130193

6071513019390
,

46347630304850333

242860520775600
,

46810221772994333

237078127423800
,

290325706098215417

1422468764542800
,

3223454611135768387

15291539218835100
,

3252678441642875467

14951727236194320
,

3281281745920812427

14626689687581400
,

155536644130160510069

672827725628744400
,

156826230604282270169

658810481344812225
,

7746413484856243587431

31622903104550986800
,

7807129458816981482087

30990445042459967064
,

7866679725761316320759

30382789257313693200
,

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

200 400 600 800 1000

2000

4000

6000

8000

10 000

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n cn

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n cnx
n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

cn = −2n+ 2
n∑

k=0

Hk

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

cn = −2n+ 2
n∑

k=0

Hk

cn = 2(n+ 1)Hn − 4n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

cn = −2n+ 2
n∑

k=0

Hk

cn ∼ 2n log(n) (n→∞) cn = 2(n+ 1)Hn − 4n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

cn = −2n+ 2
n∑

k=0

Hk

cn ∼ 2n log(n) (n→∞) cn = 2(n+ 1)Hn − 4n

4



Introduction

cn = (n− 1) +
1

n

n∑

k=1

(
ck−1 + cn−k

)

(n+ 1)cn+1 − (n+ 2)cn = 2n
∞∑

n=0
cnx

n = −2x+2 log(1−x)
(1−x)2

cn = 2(n+ 1)
n−1∑

k=0

k
(k+1)(k+2)

cn = −2n+ 2
n∑

k=0

Hk

cn ∼ 2n log(n) (n→∞) cn = 2(n+ 1)Hn − 4n

4



Introduction

How to do such conversions using computer algebra.

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

◮ Recurrence equations

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

◮ Recurrence equations

◮ Generating functions

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

◮ Recurrence equations

◮ Generating functions

◮ Asymptotic estimates

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

◮ Recurrence equations

◮ Generating functions

◮ Asymptotic estimates

The interrelations between these four concepts form what we call
the concrete tetrahedron.

5



Introduction

How to do such conversions using computer algebra.

More precisely: We want algorithms for working with

◮ Symbolic sums

◮ Recurrence equations

◮ Generating functions

◮ Asymptotic estimates

The interrelations between these four concepts form what we call
the concrete tetrahedron.

Why “concrete”?

5



Introduction

6



Introduction

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques for solving problems. One you, the

reader, have learned the material in this book, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Let’s agree for now on a slightly modified version:

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques for solving problems. One you, the

reader, have learned the material in this book, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Let’s agree for now on a slightly modified version:

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques
symbolic computation

for solving problems. One you, the

reader, have learned the material in this book, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Let’s agree for now on a slightly modified version:

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques
symbolic computation

for solving problems. One you, the

reader
student

, have learned the material in this book, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Let’s agree for now on a slightly modified version:

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques
symbolic computation

for solving problems. One you, the

reader
student

, have learned the material in this book
lecture

, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Let’s agree for now on a slightly modified version:

\But what exatly is Conrete Mathematis? It is a blend of

ontinuous and disrete mathematis. More onretely, it is

the ontrolled manipulation of mathematial formulas, using a

olletion of tehniques
symbolic computation

for solving problems. One you, the

reader
student

, have learned the material in this book
lecture

, all you will need

is a ool head, a large sheet of paper, and a fairly deent hand-
decent computer algebra system

writing in order to evaluate horrendous-looking sums, to solve

omplex reurrene equations, and to disover subtle patterns

in data."

6



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

7



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

◮ compute the sequence of its partial sums: bn =
∑n

k=0 ak

7



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

◮ compute the sequence of its partial sums: bn =
∑n

k=0 ak
◮ find its recurrence equations: an = F (an−1, an−2)

7



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

◮ compute the sequence of its partial sums: bn =
∑n

k=0 ak
◮ find its recurrence equations: an = F (an−1, an−2)

◮ determine its generating function: a(x) =
∑∞

n=0 anx
n

7



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

◮ compute the sequence of its partial sums: bn =
∑n

k=0 ak
◮ find its recurrence equations: an = F (an−1, an−2)

◮ determine its generating function: a(x) =
∑∞

n=0 anx
n

◮ estimate its asymptotic growth: an = O(bn) (n→∞)

7



Introduction

Naive wish: We want to have algorithms, which, given some
infinite sequence (an)

∞
n=0 as input,

◮ compute the sequence of its partial sums: bn =
∑n

k=0 ak
◮ find its recurrence equations: an = F (an−1, an−2)

◮ determine its generating function: a(x) =
∑∞

n=0 anx
n

◮ estimate its asymptotic growth: an = O(bn) (n→∞)

Problem: Such algorithms cannot exist.

7



Introduction

Problem: Such algorithms cannot exist.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

◮ Hence there is no data structure for storing infinite sequences.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

◮ Hence there is no data structure for storing infinite sequences.

◮ Hence there is no algorithm operating on infinite sequences.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

◮ Hence there is no data structure for storing infinite sequences.

◮ Hence there is no algorithm operating on infinite sequences.

Workaround: Be more modest!

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

◮ Hence there is no data structure for storing infinite sequences.

◮ Hence there is no algorithm operating on infinite sequences.

Workaround: Be more modest!

Consider algorithms applicable to certain infinite sequences only.

8



Introduction

Problem: Such algorithms cannot exist.

Reason:

◮ Algorithms can only operate with finite data.

◮ There are only countably many different pieces of finite data.

◮ But there are uncountably many infinite sequences.

◮ Hence there is no data structure for storing infinite sequences.

◮ Hence there is no algorithm operating on infinite sequences.

Workaround: Be more modest!

Consider algorithms applicable to certain infinite sequences only.
(For suitably chosen meanings of “certain”.)

8



Introduction

In other words:

9



Introduction

In other words: We must limit ourselves to classes of sequences,
which are such that their elements can be represented
(distinguished) in finite terms.

9



Introduction

In other words: We must limit ourselves to classes of sequences,
which are such that their elements can be represented
(distinguished) in finite terms.

This still leaves a lot freedom.

9



Introduction

In other words: We must limit ourselves to classes of sequences,
which are such that their elements can be represented
(distinguished) in finite terms.

This still leaves a lot freedom.

What do we want from a such a class?

9



Introduction

In other words: We must limit ourselves to classes of sequences,
which are such that their elements can be represented
(distinguished) in finite terms.

This still leaves a lot freedom.

What do we want from a such a class?

◮ It should not be too big, because the more special the
elements in the class, the better we can compute with them.

9



Introduction

In other words: We must limit ourselves to classes of sequences,
which are such that their elements can be represented
(distinguished) in finite terms.

This still leaves a lot freedom.

What do we want from a such a class?

◮ It should not be too big, because the more special the
elements in the class, the better we can compute with them.

◮ It should not be too small, because it should contain many
sequences which arise in applications.

9



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

10



Introduction

Summary:

11



Introduction

Summary:

◮ We want to solve problems in discrete mathematics using
computer algebra.

11



Introduction

Summary:

◮ We want to solve problems in discrete mathematics using
computer algebra.

◮ More precisely: We want to prove, discover, or simplify
statements about infinite sequences.

11



Introduction

Summary:

◮ We want to solve problems in discrete mathematics using
computer algebra.

◮ More precisely: We want to prove, discover, or simplify
statements about infinite sequences.

◮ The concrete tetrahedron:
◮ Symbolic sums
◮ Recurrence equations
◮ Generating functions
◮ Asymptotic estimates

11



Introduction

Summary:

◮ We want to solve problems in discrete mathematics using
computer algebra.
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statements about infinite sequences.

◮ The concrete tetrahedron:
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◮ Generating functions
◮ Asymptotic estimates

◮ Classes of infinite sequences:
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◮ Hypergeometric terms
◮ Algebraic generating functions
◮ Holonomic sequences
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(
n
0
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◮ By recurrence and initial values

Example: an+3 = an − 3an+1 + 3an+2, a0=2, a1=1, a2=6.

◮ By its generating function (“in closed form”)

Example:
∞∑

n=0
anx

n = 9x2−5x+2
(1−x)3
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◮ generating function → closed form:
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◮ We can’t tell for sure without knowing how it continues.

◮ But it can be instructive to find plausible candidates.

◮ Good candidates often give useful hints about the problem
from which the sequence originates.

◮ Once a conjecture is born, it may be possible to prove it by an
independent argument.

◮ How to find trustworthy candidates?
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d << N , then this is a strong indication for a polynomial
sequence.
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◮ Interpolation.

◮ Pade Approximation.

If the Pade approximant of the first N terms has the form
poly(x)

(1−x)d+1 , then this hints at a polynomial sequence of

degree ≤ d.
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◮ Interpolation.

◮ Pade Approximation.

◮ Recurrence Matching.
If the given data matches the linear recurrence for polynomials
of degree d, then this is perhaps not just a coincidence.
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◮ Interpolation.

◮ Pade Approximation.

◮ Recurrence Matching.

◮ Asymptotics.

If (an)
∞
n=0 is a polynomial sequence of degree d, then

lim
n→∞

n(an+1−an)
an

= d.

Therefore, if n(an+1 − an)/an does not seem to converge to a
nonnegative integer, our sequence is probably not polynomial.

16



Polynomial Sequences

C Asymptotics

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function:

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

a(x) =
∞∑

n=0

anx
n

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

a(x) =
∞∑

n=0

anx
n

-3 -2 -1 1 2 3

-4

-2

2

4

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

a(x) =
∞∑

n=0

anx
n

-3 -2 -1 1 2 3

-4

-2

2

4

17



Polynomial Sequences

C Asymptotics

◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

a(x) =
∞∑

n=0

anx
n

-3 -2 -1 1 2 3

-4

-2

2

4

◮ A pole of multiplicity d at x = ξ implies an = O(nd−1ξ−n).
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◮ From the closed form: trivial.

◮ From the generating function: In general, the asymptotic
behavior of any sequence (an)

∞
n=0 is determined by the

singularities of its generating function which are closest to 0

a(x) =
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n=0

anx
n

-3 -2 -1 1 2 3

-4
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2

4

◮ A pole of multiplicity d at x = ξ implies an = O(nd−1ξ−n).

◮ For polynomial sequences of degree d, it follows an = O(nd).
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n=0, find
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4. via Faulhaber’s formula

◮ Let Bn denote the nth Bernoulli number.

◮ Then

n∑

k=0

kd =
1

d+ 1

d∑

k=0

Bk

(
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k

)

(n+ 1)d−k+1.
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Polynomial Sequences

D Summation
Given a polynomial sequence (an)

∞
n=0, find

∑n
k=0 ak.

4. via Faulhaber’s formula

◮ Let Bn denote the nth Bernoulli number.

◮ Then

n∑

k=0

kd =
1

d+ 1

d∑

k=0

Bk

(
d+ 1

k

)

(n+ 1)d−k+1.

◮ This can be used to sum a polynomial termwise in the
standard basis.
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Holonomic Sequences and Power Series

Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.
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exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! : (n+ 2)an+2 − (n+ 1)an+1 − an = 0
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Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Examples:

◮ 2n: an+1 − 2an = 0

◮ n!: an+1 − (n+ 1)an = 0

◮

∑n
k=0

(−1)k

k! : (n+ 2)an+2 − (n+ 1)an+1 − an = 0

◮ Fibonacci numbers, Harmonic numbers, Perrin numbers,
diagonal Delannoy numbers, Motzkin numbers, Catalan
numbers, Apery numbers, Schröder numbers, . . .

24



Holonomic Sequences and Power Series

Definition (discrete case). A sequence (an)
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◮ Fibonacci numbers, Harmonic numbers, Perrin numbers,
diagonal Delannoy numbers, Motzkin numbers, Catalan
numbers, Apery numbers, Schröder numbers, . . .

◮ Many sequences which have no name and no closed form.
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Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Not holonomic:

◮ 22
n
.

◮ The sequence of prime numbers.

◮ Many sequences which have no name and no closed form.

This means that these sequences can (provably) not be viewed as
solutions of a linear recurrence equation with polynomial coefficients.
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Holonomic Sequences and Power Series

Definition (discrete case). A sequence (an)
∞
n=0 in a field K is

called holonomic (or P-finite or D-finite or P-recursive) if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

Approximately 25% of
the sequences in
Sloane’s Online
Encyclopedia of Integer
Sequences fall into this
category.
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n=0 is uniquely
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Holonomic Sequences and Power Series

Theorem. The solution set of a linear recurrence equation of
order r whose leading coefficient has s integer roots greater than r
is a vector space of dimension s+ r.

Consequence: A holonomic sequence (an)
∞
n=0 is uniquely

determined by

◮ the recurrence equation

◮ a finite number of initial values a0, a1, a2, . . . , ak
(We can take k = max(r,max{n ∈ N : pr(n− r) = 0}).)

Consequence: A holonomic sequence can be represented exactly by
a finite amount of data.
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◮ an = the number of involutions of n letters
⇐⇒ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0,
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26



Holonomic Sequences and Power Series

Examples.

◮ an = 2n ⇐⇒ an+1 − 2an = 0, a0 = 1

◮ an = n! ⇐⇒ an+1 − (n+ 1)an = 0, a0 = 1

◮ an =
∑n

k=0
(−1)k

k!
⇐⇒ (n+ 2)an+2 − (n+ 1)an+1 − an = 0,

a0 = 1, a1 = 0

◮ an = the number of involutions of n letters
⇐⇒ an+3 + nan+2 − (3n+ 6)an+1 − (n+ 1)(n+ 2)an = 0,

a0 = 1, a1 = 1, a2 = 2

◮ an = 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . .
⇐⇒ (n− 6)an+1 − (n− 5)an = 0,

a0 = a1 = · · · = a6 = 0, a7 = 1
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Holonomic Sequences and Power Series

Definition (“continuous” case). A formal power series f ∈ K[[x]] is
called holonomic (or D-finite or P-finite) if there exist polynomials
p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.
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Holonomic Sequences and Power Series
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(r)(x) = 0.

Examples:

◮ exp(x): f ′(x)− f(x) = 0

◮ log(1− x): (x− 1)f ′′(x)− f ′(x) = 0

◮
1

1+
√
1−x2

: (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0
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function, Kelvin functions, Mathieu functions, . . .
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◮ Many functions which have no name and no closed form.
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Holonomic Sequences and Power Series

Definition (“continuous” case). A formal power series f ∈ K[[x]] is
called holonomic (or D-finite or P-finite) if there exist polynomials
p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Not holonomic:

◮ exp(exp(x)− 1).

◮ The Riemann Zeta function.

◮ Many functions which have no name and no closed form.

This means that these functions can (provably) not be viewed as so-
lutions of a linear differential equation with polynomial coefficients.
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Holonomic Sequences and Power Series

Definition (“continuous” case). A formal power series f ∈ K[[x]] is
called holonomic (or D-finite or P-finite) if there exist polynomials
p0, . . . , pr, not all zero, such that

p0(x)f(x) + p1(x)f
′(x) + p2(x)f

′′(x) + · · ·+ pr(x)f
(r)(x) = 0.

Approximately 60% of the
functions in Abramowitz
and Stegun’s handbook
fall into this category.
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Theorem. A linear differential equation of order r with polynomial
coefficients can have at most r linearly independent solutions
in K[[x]].
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Holonomic Sequences and Power Series

Theorem. A linear differential equation of order r with polynomial
coefficients can have at most r linearly independent solutions
in K[[x]].

Consequence: A holonomic power series is uniquely determined by

◮ the differential equation

◮ a finite number of initial terms f(0), f ′(0), f ′′(0), . . . , f (k)(0)
(Usually, k = r suffices.)

Consequence: A holonomic power series can be represented exactly
by a finite amount of data.

28



Holonomic Sequences and Power Series

Examples.

29



Holonomic Sequences and Power Series

Examples.

◮ f(x) = exp(x)

29



Holonomic Sequences and Power Series

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

29



Holonomic Sequences and Power Series

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)

29



Holonomic Sequences and Power Series

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

29



Holonomic Sequences and Power Series

Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2
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⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

◮ f(x) = the fifth modified Bessel function of the first kind
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Examples.

◮ f(x) = exp(x)
⇐⇒ f ′(x)− f(x) = 0, f(0) = 1

◮ f(x) = log(1− x)
⇐⇒ (x− 1)f ′′(x)− f ′(x) = 0, f(0) = 0, f ′(0) = −1

◮ f(x) = 1
1+

√
1−x2

⇐⇒ (x3 − x)f ′′(x) + (4x2 − 3)f ′(x) + 2xf(x) = 0,
f(0) = 1

2 , f
′(0) = 0

◮ f(x) = the fifth modified Bessel function of the first kind
⇐⇒ x2f ′′(x) + xf ′(x)− (x2 + 25)f(x) = 0,

f(0) = f ′(0) = · · · = f (4)(0) = 0, f (5)(0) = 1
32
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Holonomic Sequences and Power Series

1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310,

33747490, 288654574, 2480593546, 21400729382,

185239360178, 1607913963614, 13991107041306,

122002082809110, 1065855419418690, 9327252391907790

81744134786314410, 9327252391907790, . . .
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Holonomic Sequences and Power Series

1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310,

33747490, 288654574, 2480593546, 21400729382,

185239360178, 1607913963614, 13991107041306,

122002082809110, 1065855419418690, 9327252391907790

81744134786314410, 9327252391907790, . . .

Is this a holonomic sequence?
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Holonomic Sequences and Power Series

Let’s see whether the data satisfies a recurrence of the form

(c0,0+c0,1n)an,n+(c1,0+c1,1n)an+1,n+1+(c2,0+c2,1n)an+2,n+2 = 0

where the ci,j are some as yet unknown numbers.
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Let’s see whether the data satisfies a recurrence of the form

(c0,0+c0,1n)an,n+(c1,0+c1,1n)an+1,n+1+(c2,0+c2,1n)an+2,n+2 = 0

where the ci,j are some as yet unknown numbers.

If we won’t find any recurrence of this form, we can try again with
higher order and/or higher degree.
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Match the recurrence template (“ansatz”) against the data.

n = 0 : (c0,0 + c0,10)1 + (c1,0 + c1,10)2 + (c2,0 + c2,10)14 = 0
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Match the recurrence template (“ansatz”) against the data.

n = 0 : (c0,0 + c0,10)1 + (c1,0 + c1,10)2 + (c2,0 + c2,10)14 = 0

n = 1 : (c0,0 + c0,11)2 + (c1,0 + c1,11)14 + (c2,0 + c2,11)106 = 0

n = 2 : (c0,0 + c0,12)14 + (c1,0 + c1,12)106 + (c2,0 + c2,12)838 = 0

...

n = 8 : (c0,0 + c0,18)3968310 + (c1,0 + c1,18)33747490

+ (c2,0 + c2,18)288654574 = 0
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Match the recurrence template (“ansatz”) against the data.



























1 0 2 0 14 0

2 2 14 14 106 106

14 28 106 212 838 1676

106 318 838 2514 6802 20406

838 3352 6802 27208 56190 224760

6802 34010 56190 280950 470010 2350050

56190 337140 470010 2820060 3968310 23809860

470010 3290070 3968310 27778170 33747490 236232430

3968310 31746480 33747490 269979920 288654574 2309236592









































c0,0
c0,1
c1,0
c1,1
c2,0
c2,1















=















0

0

0

0

0

0
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Solve this linear system!

30



Holonomic Sequences and Power Series

Match the recurrence template (“ansatz”) against the data.



























1 0 2 0 14 0

2 2 14 14 106 106

14 28 106 212 838 1676

106 318 838 2514 6802 20406

838 3352 6802 27208 56190 224760

6802 34010 56190 280950 470010 2350050

56190 337140 470010 2820060 3968310 23809860

470010 3290070 3968310 27778170 33747490 236232430

3968310 31746480 33747490 269979920 288654574 2309236592









































c0,0
c0,1
c1,0
c1,1
c2,0
c2,1















=















0

0

0

0

0

0















Solve this linear system!

Since there are more equations than variables, we expect 0 solutions.
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Holonomic Sequences and Power Series

Strangely enough, there happens to be a solution!

(c0,0, c0,1, c1,0, c1,1, c2,0, c2,1) = (0, 9,−14,−10, 2, 1)
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9, 10, . . . , 15, even though these terms were not used during the
computation.
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Strangely enough, there happens to be a solution!

(c0,0, c0,1, c1,0, c1,1, c2,0, c2,1) = (0, 9,−14,−10, 2, 1)

It follows that for n = 0, 1, 2, . . . , 8 we have

9nan − (10n+ 14)an+1 + (n+ 2)an+2 = 0

Even more strangely, this recurrence continues to hold for n =
9, 10, . . . , 15, even though these terms were not used during the
computation.

Either we witness a veeeery unlikely coincidence,
or we have indeed found a recurrence which has some meaning.
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Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.
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Holonomic Sequences and Power Series

Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

It’s pretty the same as for algebraic numbers.

Naive question: What are the roots of the polynomial x5− 3x+1 ?

Expert answer: RootOf( Z5 − 3 Z + 1, index = 1),
RootOf( Z5 − 3 Z + 1, index = 2),
RootOf( Z5 − 3 Z + 1, index = 3),
RootOf( Z5 − 3 Z + 1, index = 4),
RootOf( Z5 − 3 Z + 1, index = 5).
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Naive question: What are the solutions of the recurrence

(3n+ 2)an+2 − 2(n+ 3)an+1 + (2n− 7)an = 0 ?
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Holonomic Sequences and Power Series

Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

For holonomic sequences:

Naive question: What are the solutions of the recurrence

(3n+ 2)an+2 − 2(n+ 3)an+1 + (2n− 7)an = 0 ?

A holonomist’s answer: There is exactly one solution with a0 = 0,
a1 = 1, exactly one solution with a0 = 1, a1 = 0, and every other
solution is a K-linear combination of those two.
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When computing with holonomic objects, we compute with the
equations through which they are defined.
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Holonomic Sequences and Power Series

Warning: In the big class of holonomic sequences and power series,
we no longer have a canonical notion of “closed form”.

When computing with holonomic objects, we compute with the
equations through which they are defined.

Like before, our goal is to establish computational links between

◮ recurrence equations

◮ generating functions

◮ asymptotic estimates

◮ symbolic sums

31



Holonomic Sequences and Power Series

A Recurrence equations:
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Holonomic Sequences and Power Series

A Recurrence equations:

Trivial: Holonomic sequences are given in terms of a recurrence.
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B Generating Functions
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Holonomic Sequences and Power Series

B Generating Functions

Theorem. Let a(x) =
∞∑

n=0
anx

n. Then:

(an)
∞
n=0 is holonomic as sequence

⇐⇒ a(x) is holonomic as a power series
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◮ Given a recurrence for (an)
∞
n=0, we can compute a differential

equation for a(x).
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n. Then:
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n=0 is holonomic as sequence

⇐⇒ a(x) is holonomic as a power series

The theorem is algorithmic:

◮ Given a recurrence for (an)
∞
n=0, we can compute a differential

equation for a(x).

◮ Given a differential equation for a(x), we can compute a
recurrence for (an)

∞
n=0.
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anx

n. Then:
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⇐⇒ a(x) is holonomic as a power series
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Theorem. Let a(x) =
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anx

n. Then:

(an)
∞
n=0 is holonomic as sequence

⇐⇒ a(x) is holonomic as a power series

Examples.

INPUT: a′(x)− a(x) = 0, a(0) = 1 (i.e., a(x) = exp(x))
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Holonomic Sequences and Power Series

B Generating Functions

Theorem. Let a(x) =
∞∑

n=0
anx

n. Then:

(an)
∞
n=0 is holonomic as sequence
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◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
2an+3+nan+2−3(n+2)an+1− (n+1)(n+2)an = 0, a0 = a1 = 1
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C Asymptotic Estimates

◮ ζ, φ, P, r, α, β, γ can be computed exactly and explicitly.

◮ c can be computed approximately to any desired accurracy.

◮ More terms of the asymptotic expansion can be computed.

Example.
INPUT:
2an+3+nan+2−3(n+2)an+1− (n+1)(n+2)an = 0, a0 = a1 = 1

OUTPUT:
c e

√
n−n

2 nn/2
(
1− 119

1152n
−1 + 7

24n
−1/2 + 1967381

39813120n
−2 +O(n−3/2)

)

with c ≈ 0.55069531490318374761598106274964784671382 . . .
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◮ =⇒ (x+ 1)(2x− 1)x5a(3)(x) + (. . . )a′′(x) + (. . . )a′(x) +
(4x4 + 4x3 − 7x2 − 2x− 1)a(x) = 0

◮ =⇒ (x− 1)(x+ 1)(2x− 1)x5b(3)(x) + (. . . )b′′(x) +
(. . . )b′(x) + 2(12x5 + 13x4 − 8x3 − 4x2 + 1)b(x) = 0
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◮ =⇒ (x− 1)(x+ 1)(2x− 1)x5b(3)(x) + (. . . )b′′(x) +
(. . . )b′(x) + 2(12x5 + 13x4 − 8x3 − 4x2 + 1)b(x) = 0

◮ =⇒ 2(n+ 3)(n+ 2)2bn − (n+ 3)(n2 − 6n− 20)bn+1 − (n+
10)(2n2 + 11n+ 16)bn+2 + (n− 1)(n2 + 11n+ 26)bn+3 +
(n+ 4)(5n+ 29)bn+4 − (n2 + 7n+ 8)bn+5 − (n+ 6)bn+6 = 0
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If (an)
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n∑

k=0

ak then (bn)
∞
n=0 is holonomic.

Remarks:

◮ This is not the algorithm of choice.

◮ With a less brutal algorithm one can find for every sum a
recurrence whose order is at most one more than the order of
the recurrence of the summand.

◮ There is also an algorithm due to Abramov and van Hoeij for
computing “closed form” solutions of holonomic sums in
terms of the summand, such as

n∑

k=0

(2k + 5

k + 2
Fk −

k + 4

k + 3
Fk+1

)

= Fn −
1

n+ 3
Fn+1 − 1.
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◮ (an + bn)
∞
n=0 is holonomic.

◮ (anbn)
∞
n=0 is holonomic.

◮ (an+1)
∞
n=0 is holonomic.

◮ (
∑n

k=0 ak)
∞
n=0 is holonomic.

◮ if u, v ∈ Q are positive, then (a⌊un+v⌋)
∞
n=0 is holonomic.

Recurrence equations for all these sequences can be computed from
given defining equations of (an)

∞
n=0 and (bn)

∞
n=0.
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...

This means all the c(i)(x) belong to the vector space V .

Therefore, c(x), c′(x), c′′(x), . . . , c(r)(x) must be linearly dependent
over K(x) as soon as r > dimV .

In other words, c(x) must be holonomic.
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algebra reasoning of the proof can be made explicit:

◮ Make an ansatz p0(x)c(x) + p1(x)c
′(x) + · · ·+ pr(x)c

(r)(x)
with undetermined coefficients pk(x).

◮ Use the defining equations of a(x) and b(x) to rewrite the
higher order derivatives in c(k)(x) = Dk

x

(
a(x)b(x)

)
in terms of

lower order ones.

◮ Compare coefficients of a(i)(x)b(j)(x) to zero.

◮ This gives a linear system over K(x) for the coefficients pk(x)
which will have a solution if r is big enough.

Packages like gfun (for Maple) or GeneratingFunctions.m (for Math-
ematica) do this for you.
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Closure properties: Why interesting?

Algorithms for “executing closure properties” are useful for proving
identities among holonomic sequences and power series.

Basic idea: A = B ⇐⇒ A−B = 0

Once we have a recurrence equation for A − B, we can prove by
induction that it is identically zero.

Let’s see two examples.

39



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

◮ P0(x) = 1

◮ P1(x) = x

◮ P2(x) =
1
2(3x

2 − 1)

◮ P3(x) =
1
2(5x

3 − 3x)

◮ P4(x) =
1
8(35x

4 − 30x2 + 3)

◮ P5(x) =
1
8(15x− 70x3 + 63x5)

◮ · · ·

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −
n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Legendre polynomials:

Pn+2(x) = −
n+ 1

n+ 2
Pn(x) +

2n+ 3

n+ 2
xPn+1(x)

P0(x) = 1

P1(x) = x

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

-1.0 -0.5 0.5 1.0

-1

1

2

3

◮ P
(1,−1)
0 (x) = 1

◮ P
(1,−1)
1 (x) = 1 + x

◮ P
(1,−1)
2 (x) = 3

2(x+ x2)

◮ P
(1,−1)
3 (x) = 1

2(−1− x+ 5x2 + 5x3)

◮ P
(1,−1)
4 (x) = 5

8(−3x− 3x2 + 7x3 + 7x4)

◮ P
(1,−1)
5 (x) = 3

8(1 + x− 14x2 − 14x3 + 21x4 + 21x5)

◮ · · ·
40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)

Jacobi polynomials:

P
(1,−1)
n+2 (x) = − n

n+ 1
P (1,−1)
n (x) +

2n+ 3

n+ 2
xP

(1,−1)
n+1 (x)

P
(1,−1)
0 (x) = 1

P
(1,−1)
1 (x) = 1 + x

40



Holonomic Sequences and Power Series

n∑

k=0

2k + 1

k + 1
P

(1,−1)
k (x) =

1

1− x

(

2− Pn(x)− Pn+1(x)
)
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Therefore the identity holds for all n ∈ N

if and only if it holds for n = 0, 1, 2, . . . , 6.
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This is an identity between power series.
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This is an identity between power series.

Consider x and y as fixed parameters.
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This is an identity between power series.

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.
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This is an identity between power series.

Consider x and y as fixed parameters.

Then both sides are univariate power series in t.

Idea: Compute a recurrence for the series coefficients of LHS−RHS
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Then prove by induction that they are all zero.
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Then the power series is zero.
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n=0 lhsn t
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n+4 lhsn+2

+ 16xy
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n+4 lhsn .
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all n.

This completes the proof.
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exist polynomials p0, . . . , pr, not all zero, such that

p0(n)an + p1(n)an+1 + p2(n)an+2 + · · ·+ pr(n)an+r = 0.

◮ A formal power series a ∈ K[[x]] is called holonomic if there
exist polynomials p0, . . . , pr, not all zero, such that

p0(x)a(x)+ p1(x)a
′(x)+ p2(x)a

′′(x)+ · · ·+ pr(x)a
(r)(x) = 0.
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Examples.

◮ exp(x− y): 2 continuous and 0 discrete variables.

◮

(
n
k

)
: 0 continuous and 2 discrete variables.

◮ Pn(x) 1 continuous and 1 discrete variable.
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We now consider objects f(x1, . . . , xp, n1, . . . , nq) where

◮ x1, . . . , xp are “continuous” variables (p ∈ N fixed), and

◮ n1, . . . , nq are discrete variables (q ∈ N fixed).

We want to differentiate the xi and to shift the nj :

∂5

∂x5
∂3

∂y3
f(x, y, n+ 4, k + 23)

Operator notation:
D5

xD
3
yS

4
nS

23
k f
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Definition. An object f(x1, . . . , xp, n1, . . . , nq) is called D-finite, if

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

(
p0 + p1Dxk

+ p2D
2
xk

+ · · ·+ prD
r
xk

)
· f = 0.
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Definition. An object f(x1, . . . , xp, n1, . . . , nq) is called D-finite, if

◮ For every k = 1, . . . , p there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

(
p0 + p1Dxk

+ p2D
2
xk

+ · · ·+ prD
r
xk

)
· f = 0.

◮ For every k = 1, . . . , q there exist polynomials p0, . . . , pr in
the variables x1, . . . , xp, n1, . . . , nq, not all zero, such that

(
p0 + p1Snk

+ p2S
2
nk

+ · · ·+ prS
r
nk

)
· f = 0.
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Examples.

◮ f(x, y) = exp(x− y) is D-finite because

(
Dx − 1

)
· f = 0 and

(
Dy + 1

)
· f = 0.
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n
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·f = 0 and
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)
·f = 0.
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(
(1−k+n)Sn−(n+1)

)
·f = 0 and

(
(k+1)Sk+(k−n)

)
·f = 0.

◮ f(x, n) = Pn(x) is D-finite because

(
(x2 − 1)D2

x + 2xDx − n(n+ 1)
)
· f = 0 and

(
(n+ 2)S2

n − (2nx− 3x)Sn + (n+ 1)
)
· f = 0
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◮ f(n, k) = S1(n, k) [Stirling numbers] is not D-finite.
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Counterexamples.

◮ f(x, n) =
√
x+ n is not D-finite.

It satisfies a differential equation in x, but no recurrence in n.

◮ f(x, n) =
(
x
n

)
is not D-finite.

It satisfies a recurrence in n, but no differential equation in x.

◮ f(n, k) = S1(n, k) [Stirling numbers] is not D-finite.

It satisfies the recurrence

(
SnSk + nSn − 1

)
· f = 0,

but no “pure” recurrence in Sk or Sn.
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The solution is uniquely determined by

f(0, 0), f(1, 0), f(2, 0), f(1, 0), f(1, 1), f(2, 1).

51



The Case of Several Variables

Theorem. A D-finite object is uniquely determined by a system of
pure equations (one for each variable) and a finite number of initial
values.

Example.

◮ Consider the equations

(
(. . . )S2

n + (. . . )Sn + (. . . )
)
· f = 0

(
(. . . )S3

k + (. . . )S2
k + (. . . )Sk + (. . . )

)
· f = 0

The solution is uniquely determined by

f(0, 0), f(1, 0), f(2, 0), f(1, 0), f(1, 1), f(2, 1).

Simiarly for differential equations and for systems containing mixed
equations.
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D-finiteness requires for every variable a pure equation.

But we do not necessarily need to know them explicitly.

It is sufficient to have a system of equations which implies the
existence of a pure equation for every variable.

Example.

◮ f(x, n) = Pn(x) satisfies

(
(x2 − 1)Dx − (n+ 1)Sn + (n+ 1)x

)
· f = 0 and

(
(x2 − 1)D2

x + 2xDx − n(n+ 1)
)
· f = 0.
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The Case of Several Variables

D-finiteness requires for every variable a pure equation.

But we do not necessarily need to know them explicitly.

It is sufficient to have a system of equations which implies the
existence of a pure equation for every variable.

Example.

◮ f(x, n) = Pn(x) satisfies

(
(x2 − 1)Dx − (n+ 1)Sn + (n+ 1)x

)
· f = 0 and

(
(x2 − 1)D2

x + 2xDx − n(n+ 1)
)
· f = 0.

These equations imply

(
(n+ 2)S2

n − (2nx− 3x)Sn + (n+ 1)
)
· f = 0.
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A := K(x1, . . . , xp, n1, . . . , nq)〈Dx1
, . . . , Dxp , Sn1

, . . . , Snq〉

Multiplication is defined here so that it is compatible with applying
operators to a function.

For L1, L2 and f we want L1 · (L2 · f) = (L1L2) · f .
This makes the ring slightly noncommutative. We have

DxiDxj = DxjDxi , Dxixi = xiDxi + 1,

SniSnj = SnjSni , Snini = (ni + 1)Sni .
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Algebraic point of view:

Consider the operator algebra

A := K(x1, . . . , xp, n1, . . . , nq)〈Dx1
, . . . , Dxp , Sn1

, . . . , Snq〉

Multiplication is defined here so that it is compatible with applying
operators to a function.

The set a of all L ∈ A with L · f = 0 forms a left ideal in A.

It is called the annihilator of f .

53



The Case of Several Variables

Algebraic point of view:

Consider the operator algebra

A := K(x1, . . . , xp, n1, . . . , nq)〈Dx1
, . . . , Dxp , Sn1

, . . . , Snq〉

Multiplication is defined here so that it is compatible with applying
operators to a function.

By definition, f is D-finite iff for all i, j we have

a ∩K(x1, . . . , xp, n1, . . . , nq)〈Dxi〉 6= {0}
a ∩K(x1, . . . , xp, n1, . . . , nq)〈Snj 〉 6= {0}.
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The Case of Several Variables

Algebraic point of view:

Consider the operator algebra

A := K(x1, . . . , xp, n1, . . . , nq)〈Dx1
, . . . , Dxp , Sn1

, . . . , Snq〉

Multiplication is defined here so that it is compatible with applying
operators to a function.

By definition, f is D-finite iff for all i, j we have

a ∩K(x1, . . . , xp, n1, . . . , nq)〈Dxi〉 6= {0}
a ∩K(x1, . . . , xp, n1, . . . , nq)〈Snj 〉 6= {0}.

This is the case iff a has Hilbert-dimension 0.

53



The Case of Several Variables

Closure properties. Let f and g be D-finite. Then:
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The Case of Several Variables

Closure properties. Let f and g be D-finite. Then:

◮ f + g is D-finite.
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Closure properties. Let f and g be D-finite. Then:

◮ f + g is D-finite.

◮ fg is D-finite.
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◮ fg is D-finite.

◮ Dxf is D-finite for every continuous variable x.
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The Case of Several Variables

Closure properties. Let f and g be D-finite. Then:

◮ f + g is D-finite.

◮ fg is D-finite.

◮ Dxf is D-finite for every continuous variable x.

◮ Snf is D-finite for every discrete variable n.
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The Case of Several Variables

Closure properties. Let f and g be D-finite. Then:

◮ f + g is D-finite.

◮ fg is D-finite.

◮ Dxf is D-finite for every continuous variable x.

◮ Snf is D-finite for every discrete variable n.

◮ If h1, . . . , hp are algebraic functions in x1, . . . , xp, free of
n1, . . . , nq, then f(h1, . . . , hp, n1, . . . , nq) is D-finite.
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Closure properties. Let f and g be D-finite. Then:

◮ f + g is D-finite.

◮ fg is D-finite.

◮ Dxf is D-finite for every continuous variable x.

◮ Snf is D-finite for every discrete variable n.

◮ If h1, . . . , hp are algebraic functions in x1, . . . , xp, free of
n1, . . . , nq, then f(h1, . . . , hp, n1, . . . , nq) is D-finite.

◮ If h1, . . . , hq are integer-linear functions in n1, . . . , nq, free of
x1, . . . , xp, then f(x1, . . . , xp, h1, . . . , hq) is D-finite.
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The Case of Several Variables

◮ Zero-dimensional ideals of annihilating operators for any of
these can be computed from given zero-dimensional ideals of
annihilating operators for f and g.
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◮ Proofs, algorithms, and applications are the same as in the
univariate case.
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The Case of Several Variables

◮ Zero-dimensional ideals of annihilating operators for any of
these can be computed from given zero-dimensional ideals of
annihilating operators for f and g.

◮ Proofs, algorithms, and applications are the same as in the
univariate case.

◮ There are also ready-to-use implementations:
◮ For Maple: mgfun by Chyzak, distributed together with Maple.
◮ For Mathematica: HolonomicFunctions.m by Koutschan,

available from the RISC combinatorics software website.
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Example.
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◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)
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In[1]:= << HolonomicFunctions.m
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Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help
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The Case of Several Variables

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= Annihilator[n!xnExp[x]LegendreP[2n + 3, Sqrt[1 − x2]],
{Der[x], S[n]}]
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The Case of Several Variables

Example.

◮ f(x, n) = n!xn exp(x)P2n+3(
√
1− x2)

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.4 (10.11.2010) –> Type ?HolonomicFunctions for help

In[2]:= Annihilator[n!xnExp[x]LegendreP[2n + 3, Sqrt[1 − x2]],
{Der[x], S[n]}]

Out[2]=

{

(−9x2 − . . . )Dx + (4n2 + . . . )Sn + (13nx4 + . . . ),

(16n3 + · · · )S2
n + (64n4x3 + . . . )Sn + (16n5x2 + · · · )

}
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The Case of Several Variables

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!
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The Case of Several Variables

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
Sum[1/k!, {k, 0, n}], {S[n], S[k]}]
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The Case of Several Variables

Example.

◮ f(n, k) =
(
n
k

)
+
∑n

k=0
1
k!

In[3]:= Annihilator[Binomial[n, k] +
Sum[1/k!, {k, 0, n}], {S[n], S[k]}]

Out[3]=

{

(2k2 + . . . )S2
k + (n2 + · · · )Sk + (3kn+ · · · ),

(n2 + · · · )SnSk + (3kn+ · · · )Sn + (2kn+ · · · )Sk + (n2 + · · · ),
(4kn3 + · · · )S2

n + (n4 + · · · )Sn + (k2n2 + · · · )Sk − (n3 + · · · )
}
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The Case of Several Variables

What about generating functions?
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What about generating functions?
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f(x1, . . . , xp, n1, . . . , nq)

is D-finite in the variables x1, . . . , xp, n1, . . . , nq,
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The Case of Several Variables

What about generating functions?

If
f(x1, . . . , xp, n1, . . . , nq)

is D-finite in the variables x1, . . . , xp, n1, . . . , nq, is

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q

D-finite in the variables x1, . . . , xp, z1, . . . , zq?
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The Case of Several Variables

What about generating functions?

If
f(x1, . . . , xp, n1, . . . , nq)

is D-finite in the variables x1, . . . , xp, n1, . . . , nq, is

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q

D-finite in the variables x1, . . . , xp, z1, . . . , zq? Not necessarily!

And conversely? Also not!
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The Case of Several Variables

Definition: f(x1, . . . , xp, n1, . . . , nq) is called holonomic if its
generating function wrt. all discrete variables,

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q ,

is D-finite.
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The Case of Several Variables

Definition: f(x1, . . . , xp, n1, . . . , nq) is called holonomic if its
generating function wrt. all discrete variables,

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q ,

is D-finite.

◮ If there are only continuous variables (q = 0), then holonomic
and D-finite are the same.
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The Case of Several Variables

Definition: f(x1, . . . , xp, n1, . . . , nq) is called holonomic if its
generating function wrt. all discrete variables,

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q ,

is D-finite.

◮ If there are only continuous variables (q = 0), then holonomic
and D-finite are the same.

◮ If there is only one discrete variable and no continuous ones
(p = 0, q = 1), then holonomic and D-finite are the same.
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The Case of Several Variables

Definition: f(x1, . . . , xp, n1, . . . , nq) is called holonomic if its
generating function wrt. all discrete variables,

∞∑

n1,...,nq=0

f(x1, . . . , xp, n1, . . . , nq)z
n1

1 zn2

2 . . . z
nq
q ,

is D-finite.

◮ If there are only continuous variables (q = 0), then holonomic
and D-finite are the same.

◮ If there is only one discrete variable and no continuous ones
(p = 0, q = 1), then holonomic and D-finite are the same.

◮ In general, holonomic and D-finite are practically the same.
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The Case of Several Variables

D-finite
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The Case of Several Variables

D-finite holonomic
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The Case of Several Variables

D-finite holonomicFibonacci

Catalan Laguerre

Hermite Jacobi Legendre

Gegenbauer Bessel Lommel

Pell Struve Mathieu Perrin
Harmonic Apery Hankel Kelvin

Coulomb Elliptic integral
Heun Error function

Schröder

Delannoy
Lucas algebraic functions Motzkin

diagonals binomials modified Bessel

Chebyshev Feynman integrals

Charlier Meixner Pollak pFq

trigonometric functions

Scorer Airy
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D-finite holonomicFibonacci

Catalan Laguerre

Hermite Jacobi Legendre

Gegenbauer Bessel Lommel

Pell Struve Mathieu Perrin
Harmonic Apery Hankel Kelvin

Coulomb Elliptic integral
Heun Error function

Schröder

Delannoy
Lucas algebraic functions Motzkin

diagonals binomials modified Bessel

Chebyshev Feynman integrals

Charlier Meixner Pollak pFq

trigonometric functions

Scorer Airy

1

x+n
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The Case of Several Variables

D-finite holonomicFibonacci

Catalan Laguerre

Hermite Jacobi Legendre

Gegenbauer Bessel Lommel

Pell Struve Mathieu Perrin
Harmonic Apery Hankel Kelvin

Coulomb Elliptic integral
Heun Error function

Schröder

Delannoy
Lucas algebraic functions Motzkin

diagonals binomials modified Bessel

Chebyshev Feynman integrals

Charlier Meixner Pollak pFq

trigonometric functions

Scorer Airy

1

x+n
δn,k
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The Case of Several Variables

Theorem (Summation/Integration).
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The Case of Several Variables

Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.
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The Case of Several Variables

Theorem (Summation/Integration).

◮ If f is holonomic, then so is

∫ ∞

−∞
f(t, x2, . . . , xp, n1, . . . , nq)dt,

provided that this integral exists.

◮ If f is holonomic, then so is

∞∑

k=−∞
f(x1, . . . , xp, k, n2, . . . , nq),

provided that this sum exists.
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The Case of Several Variables

Note the difference between indefinite and definite summation:
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Indefinite:

g(n,m) =
n∑

k=0

f(k,m).

Definite:
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f(k,m).
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f(k,m).

61



The Case of Several Variables

Note the difference between indefinite and definite summation:

Indefinite:

g(n,m) =
n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

Definite:

g(m) =
∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.
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The Case of Several Variables

Note the difference between indefinite and definite summation:

Indefinite:

g(n,m) =
n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(m) =
∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.
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The Case of Several Variables

Note the difference between indefinite and definite summation:

Indefinite:

g(n,m) =
n∑

k=0

f(k,m).

Sum and summand have the
same number of variables.

w
�

easy

Definite:

g(m) =
∞∑

k=−∞
f(k,m).

The sum has one variable less
than the summand.

w
�

hard
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The Case of Several Variables

Examples.
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The Case of Several Variables

Examples.

◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(
(n+ 2)S2

n − (10n+ 15)Sn + (9n+ 9)
)
f = 0.
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◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(
(n+ 2)S2

n − (10n+ 15)Sn + (9n+ 9)
)
f = 0.

◮ f(x) =
∫∞
0 t2
√
t+ 1 exp(−xt2)dt satisfies

(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f = 0.
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Examples.

◮ f(n) =
∑n

k=0 4
k
(
n
k

)2
satisfies

(
(n+ 2)S2

n − (10n+ 15)Sn + (9n+ 9)
)
f = 0.

◮ f(x) =
∫∞
0 t2
√
t+ 1 exp(−xt2)dt satisfies

(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f = 0.

◮ f(x, t) =
∑∞

n=0 Pn(t)x
n satisfies

(
(x2 − 2tx+ 1)Dt − x

)
f = 0 and

(
(x2 − 2tx+ 1)Dx + (x− t)

)
f = 0.
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t+ 1 exp(−xt2)dt satisfies

(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f = 0.

◮ f(

↓

this is the generating
function of Pn(t)

x, t) =
∑∞

n=0 Pn(t)x
n satisfies

(
(x2 − 2tx+ 1)Dt − x

)
f = 0 and

(
(x2 − 2tx+ 1)Dx + (x− t)

)
f = 0.
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The Case of Several Variables

Examples.

◮ f(n) =
∫ 1
0

∫ 1
0

w−1−ǫ/2(1−z)ǫ/2z−ǫ/2

(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(
(8ǫn7 + · · · )S3

n − (24ǫn7 + · · · )S2
n

− (24ǫn7 + · · · )Sn + (8ǫn7 + · · · )
)
f = 0.
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(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(
(8ǫn7 + · · · )S3

n − (24ǫn7 + · · · )S2
n

− (24ǫn7 + · · · )Sn + (8ǫn7 + · · · )
)
f = 0.

◮ f(t, n) =

∮
1√

1− 2zt+ z2
z−n−1dz satisfies

(
(t2 − 1)Dt − (n+ 1)Sn + t(n+ 1)

)
f = 0 and

(
(1− t2)D2

t − 2tDt + n(n+ 1)
)
f = 0.
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The Case of Several Variables

Examples.

◮ f(n) =
∫ 1
0

∫ 1
0

w−1−ǫ/2(1−z)ǫ/2z−ǫ/2

(z+w−wz)1−ǫ (1−wn+1−(1−w)n+1)dw dz

satisfies

(
(8ǫn7 + · · · )S3

n − (24ǫn7 + · · · )S2
n

− (24ǫn7 + · · · )Sn + (8ǫn7 + · · · )
)
f = 0.

◮ f(

↓

this is the coefficient of zn in
the series expansion of
1/
√
1− 2zt+ z2 (“ungfun”)

t, n) =

∮
1√

1− 2zt+ z2
z−n−1dz satisfies

(
(t2 − 1)Dt − (n+ 1)Sn + t(n+ 1)

)
f = 0 and

(
(1− t2)D2

t − 2tDt + n(n+ 1)
)
f = 0.
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The Case of Several Variables

How does this work?
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The Case of Several Variables

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.
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The Case of Several Variables

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)
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want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

Then integrating both sides gives
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The Case of Several Variables

How does this work?

Basic principle: Assume we have f(x, 0) = f(x, 1) = 0 and we
want to find an equation for F (x) =

∫ 1
0 f(x, y)dy.

Suppose f satisfies an equation of the form

a(x)f + b(x)Dxf + c(x)D2
xf = Dy

(
h(x, y)f

)

Then integrating both sides gives

a(x)F (x) + b(x)DxF (x) + c(x)D2
xF (x) = 0

63



The Case of Several Variables

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).
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The Case of Several Variables

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

(
2t(t+ 1)Dt + (4t3x+ 4t2x− 5t− 4)

)
f = 0,

(
Dx + t2

)
f = 0.
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)
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)
f = 0.
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The Case of Several Variables

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

(
2t(t+ 1)Dt + (4t3x+ 4t2x− 5t− 4)

)
f = 0,

(
Dx + t2

)
f = 0.

=⇒
(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f

= Dt

(
−2(4t5x− 4t3x− 9t3 − t2 + 8t)f

)
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The Case of Several Variables

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2).

(
2t(t+ 1)Dt + (4t3x+ 4t2x− 5t− 4)

)
f = 0,

(
Dx + t2

)
f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷
(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f

= Dt

(
−2(4t5x− 4t3x− 9t3 − t2 + 8t)f

)
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The Case of Several Variables

Example.

◮ f(t, x) = t2
√
t+ 1 exp(−xt2). F (x) =

∫∞
0 f(x, t)dt

(
2t(t+ 1)Dt + (4t3x+ 4t2x− 5t− 4)

)
f = 0,

(
Dx + t2

)
f = 0.

=⇒
“Telescoper”: free of t

︷ ︸︸ ︷
(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
f

= Dt

(

︸ ︷︷ ︸

“Certificate”

−2(4t5x− 4t3x− 9t3 − t2 + 8t)f
)

=⇒
(
16x2D3

x + (16x2 + 96x)D2
x + (72x+ 99)Dx + 48

)
F = 0
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The Case of Several Variables

How to construct a creative telescoping relation?

There are algorithms for this task.

◮ Algorithms based on Gröbner basis technology

◮ Algorithms based on linear algebra

◮ Chyzak’s algorithm (generalizing Zeilberger’s algorithm)

◮ Takayama’s algorithm

Depending on the problem at hand, any of these algorithms may
be much more efficient than the others.

65



Summary and Outlook

66



Summary and Outlook

67



Summary and Outlook

◮ We want to solve problems in discrete mathematics using
computer algebra.

67



Summary and Outlook

◮ We want to solve problems in discrete mathematics using
computer algebra.

◮ More precisely: We want to prove, discover, or simplify
statements about infinite sequences.

67



Summary and Outlook

◮ We want to solve problems in discrete mathematics using
computer algebra.

◮ More precisely: We want to prove, discover, or simplify
statements about infinite sequences.

◮ The concrete tetrahedron:
◮ Symbolic sums
◮ Recurrence equations
◮ Generating functions
◮ Asymptotic estimates

67
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◮ We want to solve problems in discrete mathematics using
computer algebra.

◮ More precisely: We want to prove, discover, or simplify
statements about infinite sequences.

◮ The concrete tetrahedron:
◮ Symbolic sums
◮ Recurrence equations
◮ Generating functions
◮ Asymptotic estimates

◮ Classes of infinite sequences:
◮ Polynomial sequences
◮ C-finite sequences
◮ Hypergeometric terms
◮ Algebraic generating functions
◮ Holonomic sequences
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Topics of ongoing research:

◮ Find more efficient
algorithms

◮ Find algorithms for larger
classes

◮ Produce practical
implementations

◮ Apply the techniques to
problems to other people’s
problems, e.g., in
combinatorics, partition
theory, numerical analysis
(Pillwein), particle physics
(Schneider), . . .

Ideally, any piece of research on one of these sides will also stimulate
interesting developments on the other.
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Topics of ongoing research:

Most of the present research focusses on the multivariate case.

Algorithms for the univariate case can already be considered folklore.

Rule of thumb:

◮ If you can solve a problem with computer algebra for
univariate sequences, I will probably claim that there is no
reason to solve it by other means.

◮ If you can solve a problem only with computer algebra for
multivariate sequences, I will probably urge you to write an
article about it.
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Further listening:

◮ Peter Paule’s slot on January 25 in this lecture series

◮ The course “Analytic Combinatorics” taught by Veronika
Pillwein
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