
The Role of Symbolic Computation

in Mathematics

Franz Winkler

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Linz, Austria

invited lecture at EACA 2012, Alcalá, June 13–15, 2012
DK lecture, October 19, 2012

Abstract

Symbolic Computation (Mathematics Subject Classification 2000,
68W30) is often treated as just another subject in the wide field of
special topics within mathematics; on the same level as mesh
generation (65L50) or quasi-Frobenius rings (16L60). Here we
want to argue that actually Symbolic Computation is not so much
a topic in mathematics, but a relatively novel approach to
mathematical epistemology; a different and, as we believe, fruitful
way of looking at mathematics and the acquisition of knowledge in
mathematics.

Outline

1. What is Symbolic Computation ?

2. Examples of Symbolic Computation

3. SC as a holistic approach to math

4. SC as a new epistemological approach to math

5. SC is changing math & science

Conclusion

1. What is Symbolic Computation ?

Wikipedia:

Symbolic computation

Symbolic computation or algebraic computation, relates to the
use of machines, such as computers, to manipulate mathematical
equations and expressions in symbolic form, as opposed to
manipulating the approximations of specific numerical quantities
represented by those symbols. Such a system might be used for
symbolic integration or differentiation, substitution of one
expression into another, simplification of an expression, etc.

Symbolic computation is also sometimes referred to as symbolic

manipulation, symbolic processing, symbolic mathematics, or
symbolic algebra, but these terms also refer to non-computational
manipulation.

Software applications that perform symbolic calculations are called
computer algebra systems.

See also

◮ Automated theorem prover

◮ Computer-assisted proof

◮ Proof checker

◮ Model checker

◮ Symbolic-numeric computation

◮ Symbolic simulation

◮ Symbolic execution

References

◮ Symbolic Computation (An Editorial), Bruno Buchberger,
Journal of Symbolic Computation (1985) 1, pp. 1–6.

◮ Making Computer Algebra More Symbolic (Invited), Stephen
M. Watt, pp. 43–49, Proc. Transgressive Computing 2006: A
conference in honor of Jean Della Dora, (TC 2006), April
24-26 2006, Granada Spain.

In our view, Symbolic Computation is the field in which we

develop, analyze, and apply

mathematical algorithms, with the following characteristics:
math. expressions are first class objects both in input and in
output, solutions are given exactly, objects are taken from any area
of mathematics.

Typical (but in no way exclusive) content areas are:

computer algebra
computational logic

symbolic geometric methods

2. Examples of Symbolic Computation

2.1. Solution of algebraic equations

Before the advent of SC we had methods for determining solutions
to algebraic equations. But they were either inefficient or
incomplete.

Since the advent of SC we have witnessed great progress in

◮ greatest common divisors of polynomials

◮ resultant methods

◮ Gröbner bases for systems of multivariate polynomials

Resultant methods

resultants have a long history in elimination theory, the theory of
polynomial ideals and their solutions

f1(x , y , z) = 2xy + yz − 3z2

f2(x , y , z) = x2 − xy + y2 − 1
f3(x , y , z) = yz + x2 − 2z2

solutions, e.g. (1, 1, 1), are solutions of resultants,
but not vice versa: no common solution (. . . , . . . , 1/

√
3)

resy (resx(f1, f3), resx(f2, f3)) = (3z2 − 1) · z4 · (z − 1)·
(z + 1) · (127z4 − 91z2 + 16) · (457z4 − 175z2 + 16)

resultants are in elimination ideals, but do not generate them

Gröbner bases

Buchberger (1965) introduced GB into SC and mathematics

Gröbner basis for f1, f2, f3 w.r.t. lex(x > y > z):

g1 = 78x − 2921z5 + 3744z3 − 901z
g2 = 104y2 − 2667z6 + 3562z4 − 895z2 − 104
g3 = 52yz − 2667z6 + 3562z4 − 947z2

g4 = z(z + 1)(z − 1)(127z4 − 91z2 + 16)

properties of the Gröbner basis:

◮ generates the elimination ideals

◮ partial solutions are extendable: −1 −→ (−1,−1,−1)

◮ 8 = # solutions = # irreducible terms = dimension of the
coordinate ring

solving systems of polynomial/algebraic equations
n = number of variables, d = maximal degree

6

-

d

n

Euclid
n = 1

d = 1 Gauss

in general

Gröbner bases

2.2. Equational theorem proving and rewriting

◮ consider first-order axioms which contain only “=”as
predicate symbol, and are universally quantified

◮ the corresponding equational theory consists of all
universally quantified statements derivable from these axioms

Examples:

◮ groups, rings, modules, ...

◮ abstract data types

Problem: can we automatically decide provability/validity of
statements in equational theories?

Example Group Theory:

(G1) 1 · x = x
(G2) x−1 · x = 1
(G3) (x · y) · z = x · (y · z)

Question:
is ((x · y)−1 · x) · x = (x−1 · y)−1 a theorem in group theory?

Example Data Type Queue:

(Q1) app(x , newq) = x
(Q2) app(x , add(y , z)) = add(app(x , y), z)
(Q3) app(app(x , y), z) = app(x , app(y , z))

Question: is

app(x , app(add(y , z),w)) =
app(add(app(app(x , newq), y), z),w)

a theorem in the equational theory of queues?

2.3. Other developments

◮ factorization theory

◮ integration theory

◮ matrix normal forms and linear algebra

◮ recurrence relations

◮ unification theory

◮ automated theorem proving in predicate logic

◮

3. SC as a holistic approach to math

The biological theory of evolution knows many instances of similar
solutions having been developed for similar problems; examples are
the wings of insects, birds, and bats, or the different realizations of
light sensitive organs such as eyes.

The same phenomenon can be observed in the development of the
sciences, and also in mathematics.
Often symbolic methods allow us to realize that the same
algorihmic idea applies to problems from different parts of
mathematics, or
we need to combine several seemingly distant mathematical areas
in order to create symbolic algorithms.

3.1. Completion algorithms

Many algorithmic methods in different fields of mathematics, e.g.
linear algebra, commutative algebra, or logic, can be seen as
constructing canonical systems for deciding membership problems.
Important examples are

◮ Gauss’ elimination method for linear systems,

◮ Euclid’s algorithm for computing GCDs,

◮ Buchberger’s algorithm for constructing Gröbner bases,

◮ the Knuth-Bendix procedure for equational theories.

Here we explain the basic concept of a canonical system and
investigate the close connections between these algorithms.

Canonical reduction systems are supposed to solve the following
kind of problem:

• we are given a mathematical structure S
and a congruence relation ∼= on S, (i.e. ∼=⊆ S2)
given by a finite set of generators G (i.e. ∼= =∼=G)

• for any given s, t ∈ S, we want to decide whether s ∼=G t

• this should be achieved by a general algorithm depending only
on S, and not on the particular congruence ∼=G or its set of
generators G

We introduce a reduction relation

−→G ⊆ S × S

with the properties

• ∼=G = ←→∗
G , i.e. the symmetric reflexive transitive closure of

−→G is equal to the congruence generated by G

• −→G is terminating or Noetherian, i.e. every reduction chain
is finite

if in addition to being Noetherian the reduction relation is also
Church-Rosser, then we can solve our problem

the reduction relation −→G is Church-Rosser iff
connectednes w.r.t. “←→G”, i.e.

a←→∗
G b ,

implies the existence of a common successor, i.e.

@
@

@
@@R

�
�

�
��	

∃c : a b

∗ ∗

G G

c

in particular this means that two irreducible elements a, b are
congruent if and only if they are syntactically equal.

If −→G is Noetherian and Church-Rosser, we can now decide
whether a ∼=G b:

◮ reduce a and b to (any) irreducible a′ and b′ s.t.

a −→∗
G a′ b′ ←−∗

G b

(because of Noetherianity reduction chains are finite)

◮ check whether a′ = b′;
if so a ∼=G b, otherwise not

But of course in general our set of generators G will not have this
nice Church-Rosser property.
The goal now is to transform G into an equivalent set of
generators Ĝ , having the Church-Rosser property.

Gauss Elimination

the setting:

◮ vector space V = Kn over field K

◮ generating elements B for a subvectorspace
W = span(B)

◮ equivalence relation v ∼=W w ⇐⇒ v − w ∈W

the problem:

◮ for v ∈ V

◮ decide: “v ∼=W 0”, i.e. “v ∈ span(B) = W ” ?

define a reduction relation −→B :
for vector b = (0, . . . , 0, bi , . . . , bn) with bi 6= 0:

c = (c1, . . . , ci 6= 0, . . . , cn) −→b c − ci

bi

· b

and
c −→B d ⇐⇒ ∃b ∈ B : c −→b d

clearly −→B has the following properties:

◮ −→B is terminating

◮ if c −→B d then c − d ∈ span(B) = W

but in general −→B is not Church-Rosser

completion process: Gauss elimination can be seen as completing
the reduction relation −→B ;
if a unit vector can be reduced by 2 different generators bi and bj ,
we add the difference of the 2 reduction results to the basis B

this process terminates and yields a set of generators B̂ s.t.

◮ ←→∗
B = ∼=W = ←→∗

B̂

◮ −→
B̂

is both Noetherian and CR

So we can decide the membership problem for W by reduction
w.r.t. B̂

if in the end we interreduce the elements in B̂, we basically get the
Hermite matrix associated to B

Example:

B → b1 = (1, 0, 0)
b2 = (1, 1, 1)
−−− −−−−−
b3 = (0, 1, 1) → B̂

now B̂ spans the same vector space W , and we can use the
reduction w.r.t.B̂ to decide membership in W :

B : (1, 2, 2) −→b1
(0, 2, 2) irreducible

−→b2
(0, 1, 1) irreducible

B̂ : (1, 2, 2) −→b1
(0, 2, 2) −→b3

(0, 0, 0)
−→b2

(0, 1, 1) −→b3
(0, 0, 0)

So (1, 2, 2) ∈W .

Euclid’s algorithm for GCDs

the setting:

◮ K [x], the ring of polynomials over a field K

◮ F = {f1(x), f2(x)} ⊂ K [x]
generating an ideal I = 〈F 〉 in K [x]

◮ equivalence relation g ≡I h ⇐⇒ g − h ∈ I

the problem:

◮ for g ∈ K [x]

◮ decide: “g ≡i 0”, i.e. “g ∈ 〈F 〉 = I” ?

define a reduction relation −→F :
for polynomial f (x) = fnx

n + · · · f1x + f0 with fn 6= 0:

c(x) = cmxm + · · ·+ ci
︸︷︷︸

6=0

x i + · · ·+ c0

−→f

c(x) − ci

fn
x i−nf (x), if i ≥ n

and
c −→F d ⇐⇒ ∃f ∈ F : c −→f d

clearly −→F has the following properties:

◮ −→F is terminating

◮ if c −→F d then c − d ∈ 〈F 〉 = I

but in general −→F is not Church-Rosser

completion process: computation of remainder sequence can be
seen as completing the reduction relation −→F ;
if a term can be reduced by 2 different generators fi and fj , we add
the difference of the 2 reduction results to the basis F

this process terminates and yields a set of generators F̂ s.t.

◮ ←→∗
F = ≡I = ←→∗

F̂

◮ −→
F̂

is both Noetherian and CR

So we can decide the membership problem for I by reduction w.r.t.
F̂

if in the end we interreduce the elements in F̂ , we simply get only
the gcd in the generating set F̂

Example:

F → f1 = x5 + x4 + x3 − x2 − x − 1
f2 = x4 + x2 + 1
−−− −−−−−
f3 = x4 − x2 − 2x − 1 = f1 − x · f2
f4 = x2 + x + 1 = 1

2(f2 − f3)
f5 = 0 = f3 − (x2 − x − 1)f4

→ F̂

now F̂ generates the same ideal I , and we can use the reduction
w.r.t.F̂ to decide membership in I :

x5 − x2 −→f1 −x4 − x3 + x + 1 −→f2 −x3 + x2 + x + 2
−→f4 2x2 + 2x + 2 −→f4 0

x5 − x2 −→f2 −x3 − x2 − x −→f4 0

So x5 − x2 ∈ I .

Gröbner Bases algorithm for polynomial ideals

the setting:

◮ K [x1, . . . , xn], the ring of multivariate polynomials over a field
K

◮ F = {f1, . . . , fm} ⊂ K [x1, . . . , xn]
generating an ideal I = 〈F 〉 in K [x1, . . . , xn]

◮ equivalence relation g ≡I h ⇐⇒ g − h ∈ I

the problem:

◮ for g ∈ K [x1, . . . , xn]

◮ decide: “g ≡I 0”, i.e. “g ∈ 〈F 〉 = I” ?

define a reduction relation −→F :
consider an admissible ordering < on the terms;
le(f) := exponent (vector) of the leading term of f ;
for g = · · ·+ gex

e=(e1,...,en) + · · · with ge 6= 0 and
e − le(f) ∈ Nn let

g −→f g − ge

lc(f)
xe−le(f)f (x)

and
g −→F h ⇐⇒ ∃f ∈ F : g −→f h

clearly −→F has the following properties:

◮ −→F is terminating

◮ if g −→F h then g − h ∈ 〈F 〉 = I

but in general −→F is not Church-Rosser

completion process: we complete the reduction relation −→F ;
we investigate the “smallest” situations in which a term can be
reduced in essentially 2 different ways, and we add the difference of
the 2 reduction results to the basis F

this process terminates and yields a set of generators F̂ s.t.

◮ ←→∗
F = ≡I = ←→∗

F̂

◮ −→
F̂

is both Noetherian and CR

So we can decide the membership problem for I by reduction w.r.t.
F̂

If in the end we interreduce the elements in F̂ , we get a minimal
Gröbner basis for the ideal I .

Example:

F → f1 = x2y2 + y − 1
f2 = x2y + x
−−− −−−−−
f3 = −xy + y − 1 = f1 − y · f2
f4 = y − 1 = f2 + (x + 1)f3
f5 = −x = f3 + (x − 1)f4

→ F̂

now F̂ generates the same ideal I , and we can use the reduction
w.r.t.F̂ to decide membership in I :

x2y2 −→f1 −y + 1 −→f4 0
x2y2 −→f2 −xy −→f5 0

So x2y2 ∈ I .

Knuth-Bendix algorithm for equational theories

the setting:

◮ a term algebra T (Σ,V) over a signature Σ
and variables V

◮ E = {si = ti | i ∈ I} a set of equations over T generating an
equational theory =E

◮ equivalence relation s ≡E t ⇐⇒ s = t ∈=E

the problem:

◮ for s, t ∈ T (Σ,V)

◮ decide: “s =E t” ?

turn equations E into rewrite rules R and
define a reduction relation −→R :
if there is a substitution σ such that σ(si) = u, then any term
containing u as a subterm can be reduced to the corresponding
term, where u is replaced by σ(ti):

u −→R v ⇐⇒ ∃p, i , σ : u|p = σ(si), and

v = u[p ← σ(ti)] .

then −→R has the following properties:

◮ −→R is terminating (if, e.g., the rules are ordered w.r.t. a
reduction ordering <)

◮ ←→∗
R = =E

but in general −→R is not Church-Rosser

completion process:
we investigate “smallest” situations in which a term can be
reduced in essentially 2 different ways, and if the results can be
compared w.r.t. <, we add a new rule to R

if this process terminates and yields a set of rules R̂ then

◮ ←→∗
R = =E = ←→∗

R̂

◮ −→
R̂

is both Noetherian and CR

So we can decide equality modulo E by reduction w.r.t. R̂

in the end we can interreduce the elements in R̂ and so get a
minimal set of rewrite rules for =E

Example:
for the case of group theory the Knuth-Bendix procedure
terminates and yields the following minimal rewrite rule system:

1 · x = x (1) 1 · x −→ x ,
x−1 · x = 1 (2) x−1 · x −→ 1,

(x · y) · z = x · (y · z) (3) (x · y) · z −→ x · (y · z),
(4) x−1 · (x · y) −→ y ,
(5) x · 1 −→ x ,
(6) 1−1 −→ 1,
(7) (x−1)−1 −→ x ,
(8) x · x−1 −→ 1,
(9) x · (x−1 · y) −→ y ,
(10) (x · y)−1 −→ y−1 · x−1.

So the question in 2.2, whether

((x · y)−1 · x) = (x−1 · y)−1 ,

can be answered positively.

Example:
Similarly we get the canonical rewrite rule system for the data type
Queue:

(Q1) app(x , newq) −→ x
(Q2) app(x , add(y , z)) −→ add(app(x , y), z)
(Q3) app(app(x , y), z) −→ app(x , app(y , z))
(Q4) app(x , app(newq, y)) −→ app(x , y)
(Q5) app(x , app(add(y , z),w)) −→

app(add(app(x , y), z),w)

So the question in 2.2, whether

app(x , app(add(y , z),w)) =
app(add(app(app(x , newq), y), z),w) ,

can be answered positively.

3.2. Rational solutions of algebraic ODEs

an algebraic ODE is defined polynomially, e.g.

F (x , y , y ′) = y ′(x)2 + 3y ′(x) − 2y(x) − 3x = 0

Combining theories of

◮ differential equations

◮ differential algebra

◮ algebraic geometry

we can determine (all) rational solutions to algebraic ODEs

Ref.: L.X.C. Ngô and FW, JSC 45 (2010) and 46 (2011)
L.X.C. Ngô, J.R. Sendra, FW, Cont.Math. 572 (2012)

For computing the rational general solution we parametrize the
solution surface

S : z2 + 3z − 2y − 3x = 0 ,






t

s
+

2s + t2

s2
︸ ︷︷ ︸

χ1

,
1

s
− 2s + t2

s2
︸ ︷︷ ︸

χ2

,
t

s
︸︷︷︸

χ3







From this parametrization of the solution surface we derive the
associated system

s ′ = st,
t ′ = s + t2

having the irreducible invariant algebraic curves

G1(s, t) = s, G2(s, t) = t2 + 2s, G3(s, t) = s2 + ct2 + 2cs

G3 can be parametrized as

(s(x), t(x) =
(
− 2c

1 + cx2
, − 2cx

1 + cx2

)

now we normalize

c = χ1(s(x), t(x)) − x

y = χ2(s(x − c), t(x − c))

getting the general rational solution

y(x) =
1

2c2
(c2x2 + 2cx + 3c + 1)

and after a change of parameter

y(x) =
1

2
(x2 + 2cx + c2 + 3c)

solution curves (x , 1
2 (x + c)2 + 3

2c , x + c), c = −3, . . . , 3

on the solution surface S : y ′2 + 3y ′ − 2y − 3x = 0

If the separant 2y ′ + 3 (derivative w.r.t. y ′) vanishes we get the
singular solution y(x) = −3

2x − 9
8

4. SC as a new epistemological

What does it mean to “know” a mathematical object?

◮ if we have an existential proof guaranteeing its existence?

◮ if we have a constructive proof?

◮ if we have an efficient symbolic algorithm for determining it?

Example syzygy problem:

given: f1, . . . , fs ∈ K [x1, . . . , xn], where K is a field

determine: all solutions z1, . . . , zs ∈ K [x1, . . . , xn] of

f1z1 + · · ·+ fszs = 0

Solutions are called syzygies of f1, . . . , fs .
They generalize the concept of “linear dependence” from linear
algebra.

The syzygies (z1, . . . , zs) form a submodule Syz(fi) of
K [x1, . . . , xn]

s over K [x1, . . . , xn]

can be generalized to a system of equations

existential theorem:

Theorem: (D. Hilbert 1) The module Syz(fi) has a finite basis; so
there are syzygies

z (1) = (z
(1)
1 , . . . , z

(1)
s) ,

...

z (k) = (z
(k)
1 , . . . , z

(k)
s) ,

s.t. every syzygy z can be written as

z = a1z
(1) + · · · + akz

(k)

for some polynomials a1, . . . , ak .
(also for system of equations)

1cf. D.Hilbert, Über die Theorie der algebraischen Formen, Math. Annalen
36, 473–534 (1890); Kap. I, p.208

constructive proof:

from the school of Emmy Noether:

Theorem: (Grete Hermann 2)
Let q be the maximal degree of any fi .
Then the module Syz(fi) has a finite basis, the elements of which
all satisfy the double exponential degree bound

n−1∑

r=1

q2r

.

(also for system of equations)

2cf. G.Hermann, Die Frage der endlich vielen Schritte in der Theorie der

Polynomideale, Math. Annalen 95, 736–788 (1926); Satz 2

symbolic algorithm: 3

• let F = (f1, . . . , fs)
T ;

determine a Gröbner basis G = (g1, . . . , gt)
T for the ideal

〈F 〉, and transformation matrices A,B s.t. G = A · F and
F = B · G

• then from reductions of the S-polynomials of G to 0 we get a
basis for Syz(G), which we can write as the rows of a matrix
R

• then the rows of Q form a basis for Syz(F):

Q =





Is − B · A
· · · · · ·
R · A





3cf. F.Winkler, Polynomial Algorithms in Computer Algebra,
Springer-Verlag Wien New York (1996), Chap. 8

Example: Consider the linear equation

(z1, z2, z3) ·





xz − xy2 − 4x2 − 1
4

y2z + 2x + 1
2

x2z + y2 + 1
2x





︸ ︷︷ ︸

F

= 0 ,

where the coefficients are in Q[x , y , z].
Basis for Syz(F):

(y2z + 2x +
1

2
, −xz + xy2 + 4x2 +

1

4
, 0)

(x2z + y2 +
1

2
x , 0, −xz + xy2 + 4x2 +

1

4
)

(y4 +
1

2
xy2 − 2x3 − 1

2
x2, −x3y2 − xy2 − 4x4 − 3

4
x2,

xy4 + 4x2y2 +
1

4
y2 + 2x2 +

1

2
x)

(0, x2z + y2 +
1

2
x , −y2z − 2x − 1

2
)

5. SC is changing math & science

SC is now routinely used in

◮ mathematical research

◮ science and engineering

◮ education

European SCIEnce project
(Symbolic Computation Infrastructure for Europe)

◮ The Centre for Interdisciplinary Research in Computational
Algebra, St.Andrews, Scotland, coordinator

◮ RISC, Linz, Austria
◮ CNRS, Paris, France
◮ Univ. Kassel, Kassel, Germany
◮ KANT, Berlin, Germany
◮ TU Eindhoven, Eindhoven, Netherlands
◮ e-Austria, Timisoara, Romania
◮ Maplesoft, Waterloo, Canada
◮ Heriot-Watt Univ., Edinburgh, Scotland

European SCIEnce project
(Symbolic Computation Infrastructure for Europe)

visitors at RISC (2006–2011):

scientific area number of visitors

mathematics 65
informatics 28

physics 6
engineering 5

104

Conclusion

Symbolic Computation ...

◮ has created a lot of interesting mathematics

◮ helps to reunify mathematics

◮ changes our understanding of mathematics

◮ makes mathematics more useful to other scientific fields

Thank you for your attention!

	1. What is Symbolic Computation ?
	2. Examples of Symbolic Computation
	3. SC as a holistic approach to math
	4. SC as a new epistemological approach to math
	5. SC is changing math & science
	Conclusion

