FUNDAMENTALS of Numerical Analysis and Symbolic Computation

- Exercises on Discontinous Galerkin Methods -

WS 2012/2013

NAME:

MATRIKELNUMMER:

Exercise 1: Show that the gradient ∇u of the weak solution $u \in V_0 := H_0^1(\Omega)$ of the variational problem (1) belongs not only to $[L_2(\Omega)]^d$ but also to $H(\operatorname{div}) := \{v \in [L_2(\Omega)]^d : \operatorname{div}(v) \in L_2(\Omega)\}$, and, moreover, $\operatorname{div}(\nabla u) = -f$!

Exercise 2: Show the DG-identities (3), i.e.

$$\sum_{\delta \in \mathcal{T}_h} \left(\nabla u \cdot n, v \right)_{\partial \delta} = \sum_{\delta \in \mathcal{T}_h} \left(\{ \nabla u \}, v \cdot n \right)_{\partial \delta} = \sum_{e \in \overline{\mathcal{E}}_h} \left(\{ \nabla u \}, [v] \right)_e$$

for a weak solution $u \in H_0^1(\Omega) \cap H^s(\mathcal{T}_h)$ of the variational problem (1) and for all $v \in H^s(\mathcal{T}_h)$ with some s > 3/2 !

Exercise 3: Prove the consistency theorem: Let s > 3/2. Then the following statements are valid:

- 1. Assume that the weak solution u of (1), i.e. the solution of $(1)_{VF}$ (\exists ! due to Lax & Milgram), belongs to $H^{s}(\mathcal{T}_{h})$. Then u satisfies the DG variational formulation (5).
- 2. Conversely, if $u \in H_0^1(\Omega) \cap H^s(\mathcal{T}_h)$ satisfies the DG variational formulation (5), then u is also the solution of our variational problem $(1)_{VF}$.

Exercise 4: Show that the Dirichlet boundary condition u = 0 on Γ is incorporated in (5) resp. (6) ! Derive the DG variational formulation (5) resp. the DG scheme (6) for the case of inhomogeneous Dirichlet boundary conditions u = g on Γ and piecewise constant coefficients $a|_{\delta} = a_{\delta} = const > 0$ for all $\delta \in \mathcal{T}_h$!.

Remark: All references (number) refer to formula markers from the lectures, see also lecture notes !