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Sparse Recovery in Inverse Problems
Ronny Ramlau and Gerd Teschke

Abstract. Within this chapter we review some recent results on sparse recovery algorithms
in the context of inverse and ill-posed problems. The review centers in particular on those
inverse problems in which we can assume that the solution has a sparse series expansion with
respect to a preassigned basis or frame. The presented approaches to approximate solutions
of inverse problems are limited to iterative strategies that essentially rely on the minimization
of Tikhonov-like variational problems, where the sparsity constraint is integrated through `p
norms. In addition to algorithmic and computational aspects, we also discuss in greater detail
regularization properties that are required for cases in which the operator is ill-posed and no
exact data are given. Such scenarios reflect realistic situations and manifest therefore its great
suitability for “real-world” applications.

The material reviewed here originates from very recent work of the authors of this chap-
ter. The focus is on iterated soft-shrinkage and projected steepest descent for nonlinear in-
verse problems and nonlinear approximation technologies for linear inverse problems. For
all proposed algorithms we provide regularization results, convergence rates (if possible), and
numerical examples.
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1 Introduction to Classical Inverse Problems

In many applications in the natural sciences, medicine or imaging one has to determine
the cause x of a measured effect y. A classical example is Computerized Tomography
(CT), a medical application, where a patient is screened using x - rays. The observed
damping of the rays is then used to reconstruct the density distribution of the body. In
order to achieve such a reconstruction, the measured data and the searched for quan-
tity have to be linked by a mathematical model, which we will denote by F (or A, if
the model is linear). In an abstract setting, the determination of of the cause x can be
stated as follows: Solve an operator equation

F (x) = y , (1.1)

F : X → Y , where X,Y are Banach (Hilbert) spaces. For the CT problem, the oper-
ator describing the connection between the measurements and the density distribution
(in 2 dimensions) is given by the Radon transform,

y(s, ω) = (Ax)(s, ω) =
∫
R

x(sω + tω⊥) dt , s ∈ R, ω ∈ S1.

As in practice the observed data stems from measurements, one never has the exact
data y available, but rather a noisy variant yδ. In the following we might assume that
at least a bound δ for the noise is available (e.g. if the accuracy of the measurement
device is known):

‖y − yδ‖ ≤ δ .

In connection with Inverse Problems, the following questions arise:

(i) Does there exist a solution of equation (1.1) for given exact y?

(ii) Is the solution unique?

(iii) If the solution is determined from noisy data, how accurate is it?

(iv) How to solve (1.1)?

1.1 Preliminaries

In order to give a first idea on the problems that may be encountered for ill-posed prob-
lems, we will now consider a linear operator equation in finite dimensions. Assume
A ∈ Rn,n, and we want to solve the matrix equation Ax = y from noisy data yδ. If
we assume thatA is invertible onR(A) and also yδ ∈ R(A) (which is already a severe
restriction), then we can define

x† := A−1y

xδ := A−1yδ .
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With x− xδ = A−1(y − yδ) the distance between x, x† can be estimated as:

‖x− xδ‖ ≤ ‖A−1‖ ‖y − yδ‖
≤ ‖A−1‖δ .

(1.2)

If we additionally assume that A is symmetric and positive definite with ‖A‖ ≤ 1,
then A has an eigensystem (λi, xi) with eigenvalues 0 < λi ≤ 1 and associated
eigenvectors xi. Moreover we have

‖A−1‖ =
1

λmin
⇒ ‖x− x†‖ ≤ δ

λmin

Therefore, the reconstruction quality is of the same orderO(δ) as the data error, magni-
fied only by the norm of the inverse operator. However, it turns out thatO(δ) estimates
are only possible in a finite dimensional setting: Indeed, if we define the operator

Ax =
∞∑
i=1

λi〈x, xi〉xi

with orthonormal basis xi and λi → 0, then it is easily to see that the right hand side
of estimate (1.2) explodes. In fact, for general inverse problems with dim R(A) the
best possible convergence rate is given by

‖x− xδ‖ = O(δs) , s < 1. (1.3)

The above considerations were based on the assumption yδ ∈ R(A). As we will see
in the following example, this is a severe restriction that will not hold in practice:
Let us consider the integral equation

y(s) =
∫ s

0
x(t)dt 0 ≤ s ≤ 1.

It follows immediately y ∈ C1[0, 1] and

x(s) = y′(s), y(0) = 0 .

For noisy measurements this condition will not hold, as the noise will not only alter
the initial value but also the smoothness of yδ, as the data noise is usually not differen-
tiable. The same also holds for Computerized Tomography: It can be shown [Natterer]
that the exact CT data belongs to the Sobolev space H1/2(R × S1), but for the noisy
data we only have yδ ∈ L2.

Now let us define well-posed and ill-posed problems.

Definition 1.1. Let A : X → Y linear operator and X,Y topological spaces. Then the
problem (A,X, Y ) is well-posed if condition (i)-(iii) are fulfilled at the same time,
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(i) Ax = y has a solution for each y ∈ Y
(ii) the solution is unique

(iii) the solution depends continuously on the data, i.e.

yn → y, yn = F (xn),=⇒ xn → x and F (x) = y .

If one of the conditions is violated, then the problem is ill posed.

Roughly speaking, well-posed problems allow for an error estimate as in (1.2),
whereas the best possible rate for ill posed problems is as in (1.3).

Let us denote by L(X,Y ) the set of all linear and continuous operatorsA : X → Y .
An important class of operators that lead to ill-posed problems are compact operators.

Definition 1.2. An operator A ∈ L(X,Y ) is compact, if it maps bounded sets to rela-
tive compact sets, i.e., R(B) is compact for bounded sets B. Or equivalently, for any
bounded sequence {xn}n∈N, the sequence yn = Axn has a convergent subsequence.

Integral operators are an important class of examples for compact operators.

Definition 1.3. Let G ∈ Rn be a bounded set and k : G × G → G. We define the
integral operator K by

(Kx)(s) =
∫
G
k(s, t)x(t)dt .

Proposition 1.4. Let k ∈ C(G,G) and K be an integral operator considered between
any of the spaces L2(G) and C(G). Then K is compact. If k ∈ L2(G,G), then the
integral operator K : L2(G)→ L2(G) is compact.

Another example for compact operators are Sobolev embedding operators. For
bounded G and a real number s > 0, let us consider the map

is : Hs(G)→ L2(G) , which is defined by isx = x .

Here Hs denotes the standard Sobolev space. Then we have

Proposition 1.5. The Sobolev embedding operator is is compact.

Proposition 1.6. Compact operators with dimR(K) = ∞ are not continuously in-
vertible, i.e. they are ill-posed.

Now let us assume that a given operator A : Hs → Hs+t, s ≥ 0, t > 0, is continu-
ously invertible. As pointed out above, the measured data will not belong to Hs+t but
rather to L2. Therefore, we have to consider the operator equation between Hs and
L2, i.e. the equation y = is(Ax). As a combination of a continuous and a compact
operator, is(A) is also compact and therefore not continuously invertible - regardless
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of the invertibility of A.

A key ingredient for the stable inversion of compact operators is the spectral de-
composition:

Proposition 1.7. Let K : X → X, X a Hilbert space and assume that K is compact
and self-adjoint (i.e, 〈Kx, y 〉 = 〈x,Ky 〉 ∀x, y ∈ X). By (λj , uj) denote the set
of eigenvalues λj and associated eigenvectors uj with Kuj = λjuj . Then λj →
0 (if dimR(K) =∞) and the functions uj form an orthonormal basis of R(K) with

Kx =
∞∑
i=1

λi〈x, ui 〉ui .

The eigenvalue decomposition can be generalized to compact operators that are not
self-adjoint. Let K : X → Y be given. The adjoint operator K∗ : Y → X is formally
defined by the equation

〈Kx, y 〉 = 〈x,K∗y 〉 ∀x, y .

We can then define the operator K∗K : X → X and find

〈K∗Kx, y 〉 = 〈Kx,Ky 〉 = 〈x,K∗Ky 〉 ,
〈K∗Kx, x 〉 = 〈Kx,Kx 〉 = ‖Kx‖2 ,

i.e., K∗K is selfadjoint and positive semi-definite, which also guarantees that all
eigenvalues λi of K∗K are nonnegative. Therefore we have

K∗Kx =
∑
i

λi〈x, ui 〉ui .

Defining

σi = +
√
λi

Kui = σivi ,

we find that the functions vi also form an orthonormal system for X:

〈 vi, vj 〉 =
1

σiσj
〈Kui,Kuj 〉

=
1

σiσj
〈K∗Kui, uj 〉

=
σi
σj
〈ui, uj 〉 = δij =

{
1 i = j

0 i 6= j
,
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and get

Kx = K(
∑
i

〈x, ui 〉ui) =
∑
i

〈x, ui 〉Kui =
∑
i

σi〈x, ui 〉vi ,

K∗y =
∑
i

σi〈 y, vi 〉ui .

The above decomposition ofK is called the singular value decomposition and {σi, xi, yi}
is the singular system of K. The generalized inverse of K is defined as follows:

Definition 1.8. The generalized inverse K† of K is defined as

D(K†) = R(K)⊕R(K)⊥

K†y := x†

x† = arg min
x
‖y −Kx‖ .

If the minimizer x† of the functional is not unique then the one with minimal norm is
taken.

Proposition 1.9. The generalized solution x† has the following properties

(i) x† is the unique solution of K∗Kx = K∗y,

(ii) Kx† = PR(K)y, where PR(K) denotes the orthogonal projection on the range of
K,

(iii) x† can be decomposed w.r.t. the singular system as

x† =
∑
i

1
σi
〈y, vi〉ui , (1.4)

(iv) the generalized inverse is continuous if and only if R(K) is closed.

A direct consequence of the above given representation of x† is the so-called Picard
condition:

y ∈ R(K)⇔
∑
i

|〈 y, vi 〉|2

σ2
i

<∞ .

The condition states that the moments of the right hand side y (w.r.t. to the function
system {vi}) have to tend to zero fast enough in order to compensate the growth of
1/σi.

What happens if we apply noisy data to formula (1.4)? Assume y ∈ R(K), y =
Kx†, and yδl = y + δvl. Then for all l

‖y − yδl ‖ ≤ δ ,
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but with
xδ =

∑
i

1
σi
〈yδl , vi〉ui

we obtain

‖x− xδ‖2 =
∑
i

δ2

σ2
i

|〈 vl, vi 〉|2 =
δ2

σ2
l

→∞ as l→∞ ,

which shows that the reconstruction error can be arbitrarily large even if the noisy data
is close to the true data.

1.2 Regularization Theory

In order to get a reasonable reconstruction, we have to introduce different methods
that ensure a good and stable reconstructions. These methods are often defined via
functions of operators.

Definition 1.10. Let f : R† → R. For compact operators, we define

f(K)x :=
∑
i

f(σi)〈x, ui 〉vi .

Of course, this definition is only well-defined for functions f for which the sum
converges. We can now define regularization methods.

Definition 1.11. A regularization of an operator K† is a family of operators {Rα}α>0,

Rα : Y → X

with the following properties: there exists a map α = α(δ, yδ) such that for all y ∈
D(K†) and all yδ ∈ Y with ‖y − yδ‖ ≤ δ,

lim
δ→0

Rα(δ,yδ)y
δ = x†

and
lim
δ→0

α(δ) = 0 .

The parameter α is called regularization parameter.

In the classical setting, regularizing operatorsRα are defined via filter functions Fα:

Rαy
δ :=

∑
i∈N

σ−1
i Fα(σi)〈 yδ, vi 〉ui .

The requirements of Definition 1.11 have some immediate consequences on the admis-
sible filter functions. In particular, D(Rα) = Y enforces |σ−1

i Fα(σi)| ≤ C for all i,
and the pointwise convergence of Rα to K† requires limα→0 Fα(t) = 1. Well-known
regularization methods are:
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(i) Truncated singular value decomposition:

Rαy
δ :=

N∑
i

σ−1
i 〈 y

δ, vi 〉ui

In this case, the filter function is given by

Fα(σ) :=
{

1 σ ≥ α
0 σ < α

.

(ii) Truncated Landweber iteration: For β ∈ (0, 2
‖K‖ 2 ) and m ∈ N, set

F1/m(λ) = 1− (1− βλ2)m .

Here, the regularization parameter α = 1/n only admits discrete values.

(iii) Tikhonov regularization: Here, the filter function is given by

Fα(σ) =
σ2

σ2 + α
.

The regularized solutions of Landweber’s and Tikhonov’s method can also be charac-
terized as follows:

Proposition 1.12. The regularized solution due to Landweber, xδ1/m, is also given by
the m-th iterate of the Landweber iteration given by

xn+1 = xn +K∗(yδ −Kxn) , with x0 = 0 .

The regularization parameter is the stopping index of the iteration.

Proposition 1.13. The regularized solution due to Tikhonov,

xδα :=
∑
i

σ2
i

σ2
i + α

· σ−1
i 〈 y

δ, vi 〉ui ,

is also the unique minimizer of the Tikhonov functional

Jα(x) = ‖yδ −Kx‖2 + α‖x‖2 , (1.5)

which is minimized by the unique solution of the equation

(K∗K + αI)x = K∗yδ .

Tikhonov’s variational formulation (1.5) is important as it allows generalizations
towards nonlinear operators as well as to sparse reconstructions. As mentioned above,
regularization methods also require proper parameter choice rules.
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Proposition 1.14. The Tikhonov regularization combined with one of the parameter
choice rules

a) α(δ)→ 0 and δ2

α(δ) → 0

b) α∗(δ, yδ) s.t. ‖yδ −Kxδα∗‖ = τδ for fixed τ > 1 (discrepancy principle)

is a regularization method.

Proposition 1.15. Let τ > 1. If the Landweber iteration is stopped afterm∗ iterations,
where m∗ is the first index with

‖yδ −Kfm∗‖ ≤ τδ < ‖yδ −Kfm∗−1‖ (discrepancy principle) ,

then the iteration is a regularization method with R 1
m∗
yδ = fm∗.

The last two propositions show that the regularized solutions for Tikhonov’s or
Landweber’s method converge towards the true solution provided a proper parameter
choice rule was applied. However, no result on the speed of convergence is provided.
Due to Bakhushinsky one rather has

Proposition 1.16. Let xδα = Rαy
δ, Rα be a regularization method. Then the conver-

gence of xδα → x† can be arbitrary slow.

To overcome this drawback, we have to assume a certain regularity of the solution.
Indeed, convergence rates can be achieved provided the solution fulfills a so-called
source-conditions. Here we limit ourselves to the Hölder-type source conditions,

x† = (K∗K)
ν
2 w, i.e. x† ∈ R(K∗K)

ν
2 ⊆ D(K) = X, ν > 0 .

Definition 1.17. A regularization method is called order optimal if for a given param-
eter choice rule the estimate

‖x† − xδα(δ)‖ = 0(δ
ν
ν+1 )

holds for all x† = (K∗K)
ν
2 w and ‖yδ − y‖ ≤ δ.

It turns out that for x† = (K∗K)
ν
2 w this is actual the best possible convergence

rate, no method can do better. Also, we have δ
ν
ν+1 > δ for δ < 1, i.e., we always loose

some information in the reconstruction procedure.

Proposition 1.18. Tikhonov regularization and Landweber iteration together with the
discrepancy principle are order optimal.


