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The Problem

Ar=b or AX=DB, B=][b,...,b

A e C""™ B full column rank, s < n

e A large and sparse

e A large and structured: blocks, banded, ...

e A functional: A = CS~!D, preconditioned, integral, ...




The Problem

Ar=b or AX=DB, B=][b,...,b

A e C""™ B full column rank, s < n

e A large and sparse

e A large and structured: blocks, banded, ...

e A functional: A = CS~!D, preconditioned, integral, ...

The solution approach. Generate sequence of approximate solutions:

{Qfg,ﬂfl,xg,...}, Tk —7k—ooo L




Occurrence of the problem

Very broad range of applications in Engineering and Scientific

Computing

Original application context:

e Discretization of 2D and 3D PDEs

(linear steady state, nonlinear, evolutive, etc.)
Eigenvalue problems
Approximation of matrix functions

Workhorses of more advanced techniques




Relevant Bibliographic Pointer

Iterative methods for sparse linear systems
Yousef Saad

SIAM, Society for Industrial and Applied Mathematics, 2003, 2nd

edition.

V. SIMONCINI AND D. B. SzyLD

Recent developments in Krylov Subspace Methods for linear systems

Numerical Linear Algebra with Appl., v. 14, n.1 (2007), pp.1-59.




“Projection” methods (or, reduction methods)

e Approximation vector space K,,. At each iteration m

{Up, } such that u,, € K,,

K,,: dimension® m, with the “expansion” property:

Km g Km—i—l

e Computation of iterate. Galerkin condition:
residual 7, :=f—Au,, L1 K,

= This condition uniquely defines u,, € K,,

2 At most




Optimality property of Galerkin projection method

A symmetric and positive definite. Let u* be the true solution.
Galerkin property:

residual r,, = f—Au,, L K,

Is equivalent to:

Uy, solution to  min ||[u* — ul|a
ueK,,

where || - || 4 is the energy norm, namely ||z := (z, Az)




Convergence and spectral properties

e In exact arithmetic (i.e., in theory), finite termination property

e A-priori bound for energy norm of the error:
If K,, =span{f, Af,..., A" 1f} then
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(Conjugate Gradients, Hestenes & Stiefel, '52)
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Convergence and spectral properties

e In exact arithmetic (i.e., in theory), finite termination property

e A-priori bound for energy norm of the error:
If K,, =span{f, Af,..., A" 1f} then
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where k = T (A

(Conjugate Gradients, Hestenes & Stiefel, '52)

Consequences:
e Convergence: The closer x to 1 the faster

e Convergence depends on spectral properties, not directly on
problem size!




A well established code

Classical Conjugate Gradient:
Given zg. Set rg = b — Axg, Po = To

fore =0,1,...

*

o =
v piAp;

Tit1l = Tf + POy

riv1 =1 — Apia;

G _ rindn
i1 p; Api

Pit1 = Ti + DiBit1

end




The Block Conjugate Gradient

Ry=21HB —AXO, Py =Ry € Crxs
for k=0,1,...
Qp = (P];kAPk)_l(RZRk) c Cs*s

Xi+1 = Xk + Pray,

Rii1 = R — APy,

Bii1 = (PLAP,) ™ (R, APy) € C¥°
Pyi1 = Ry + Pufrq

11



A more general picture. Nonsymmetric problems

e A normal, AA* = A*A

e A (highly) non-normal, ||AA* — A*A|| > 0

e A "Hermitian” in disguise:
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A more general picture

e A normal, AA* = A*A

e A (highly) non-normal, [[AA* — A*A|| >0

e A "Hermitian” in disguise:
* A=M+o0l, 0 € C, M € R"" symmetric
x A=M+0cH, 0 € C, M,H € R" "™ symmetric

* There exists nonsing. Herm. H € C"*"™ such that HA = A*H,
e.g. M,C Hermitian
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A more general picture

e A normal, AA* = A*A
e A (highly) non-normal, [[AA* — A*A|| >0

e A "Hermitian” in disguise:
* A=M+o0l, 0 € C, M € R"" symmetric
x A=M+0cH, 0 € C, M,H € R" "™ symmetric

* There exists nonsing. Herm. H € C"*"™ such that HA = A*H,
e.g. M,C Hermitian

M B
A: H:
C

x* Ar =b <&  A*Ax = A*b (not recommended in general...)




Outline

What is the problem with A non-Hermitian 7
How to handle “Symmetry in disguise”

Non-normal (non-Hermitian) case

* Long-term recurrences and their problems

* Coping with them =- Restarted, truncated, flexible

* Making it without =- short-term recurrences

Tricks for all trades




What goes “wrong” with A non-Hermitian. |

{xr}, with zp € g+ Ki(A,ro) = span{rg, Arg, . .. ,Ak_lro}

Let Vi, = [v1,...,vx] be a (orthogonal) basis of Kx(A,rg). Then

x = xo + Vi, y, € CF

A condition is required to specify ;.
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{x1}, with x € 29+ Ki(A, 1) = span{rg, Arg, ..., A" 11}

Let Vi, = [v1,...,vx] be a (orthogonal) basis of Kx(A,rg). Then

x = xo + Vi, y, € CF

A condition is required to specify y;. For instance:
rp:=b—Axpy=1r9g— AVieyr L  Ki(A, o) Viir, =0
so that
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What goes “wrong” with A non-Hermitian. |

{x1}, with x € 29+ Ki(A, 1) = span{rg, Arg, ..., A" 11}

Let Vi, = [v1,...,vx] be a (orthogonal) basis of Kx(A,rg). Then

Ty = To + Viyk, y, € CF

A condition is required to specify y;. For instance:
rp:=b—Axpy=1r9g— AVieyr L  Ki(A, o) Viir, =0
so that
0=Vire=Vro =V AViyr <  yi st. (Vi AVi)yr = Vi'ro
Hence

T = Tg + Vk(Vk*AVk)_le*ro with  V'rg = eq||ro]|

And: V,* AV}, upper Hessenberg (Gram-Schmidt procedure to build V})




What goes “wrong” with A non-Hermitian. Il

If A were Hpd = V;*AVj also Hpd = tridiagonal
Vi AV = L Ly, Ly, bidiagonal

zo + Vil *L; ‘er||rol|

To + Vk—lL;;le;;_llfle?“oH + PrO

Tk—1 + PO

with pi € span{vk_l,vk}

(development underlying Conjugate Gradient)




What goes “wrong” with A non-Hermitian. Il

If A were Hpd = V;"AVj also Hpd = tridiagonal
Vi AV = L Ly, Ly, bidiagonal

zo + Vil *L; ‘er||rol|

To + Vk—lL;;le;;_llfle?“oH + PrO

Tk—1 + PO

with pi € span{vk_l,vk}

(development underlying Conjugate Gradient)

A non-Hermitian = V7 AV}, only upper Hessenberg

pr € span{uy, ..., vx}




What goes “wrong” with A non-Hermitian. IlI

pr € span{vy,...,vx}, with {v1,..., v} orthogonal basis

Alternatives

e Give up orthogonal basis, V'V = I}

e Give up optimality condition, e.g. 7 L Ky (A, rg)

e Resume symmetry




Symmetry in disguise. Shifted systems.
Case 1: A=M+ol, MeR"™ gecC

Trick: replace * (conj. transp.) with T (transp.)

A=A" complex symmetric

Apply CG with T
Given xg. Set rg = b — Axg, po = 70

fori=0,1,...

Pi+1 = Ti + pifit1

end




...and Complex Symmetric Matrices

A=M+ol: Apply CG with T

Properties:
o V. real: Ki(A,r9) = Kp(A+ol,ro)

e [ does not define an inner product!

e V' AV, =V, MV}, + oI

If S(o) # 0 then V,' AV} is nonsingular = No breakdown

The same code applies in case of any A complex symmetric (A= A")




H-symmetry

A is H-Hermitian if there exists H € C™*™ Hermitian, nonsingular s.t.

HA=A"H

(H-symmetric if HA = AT H with H is symmetric)




H-symmetry
A is H-Hermitian if there exists H € C™*™ Hermitian, nonsingular s.t.

HA=A"H

(H-symmetric if HA = AT H with H is symmetric)
If H is Hpd (and H A is also Hpd), use CG in the H-inner product:

Given xg. Set rg = b — Axq, po = ro

fore. =0,1,...
s — r;kHri
vt pfHAp;

Titl = T + PiQy;

rit1 =1 — Apioy

i+l pr HAp,

Pi+1 =1 +piBi+1
end

(H not Hpd = see later)




First Summary

Symmetry in disguise:

e Shifted matrices, A = M + oI, M real symmetric
e Complex symmetric matrices

e [H-symmetric or H-Hermitian matrices




Long-term recurrences

K (A, 1) = span{rg, Arg, ..., A" 1ry}, Vi orth. basis

k
1. Arnoldi process : vi11 < Avi — Z%‘hj,b that is
j=1

AV, = Vil Hy, + hpy1 gvky1er, = Vg1 Hy, (Hy = V7 AVL)

2. v = xo + Viyr




Long-term recurrences
K (A, 1) = span{rg, Arg, ..., A" 1ry}, Vi orth. basis

k
1. Arnoldi process : vi11 < Avi — Zvjhj,k, that is
j=1

AV, = Vil Hy, + hpy1 gvky1er, = Vg1 Hy, (Hr = V;AVL)
2. T = x0 + kak

e GMRES. Particular Petrov-Galerkin condition:

r. L AK, = Yr S.t. myin ||’I“0 — AkaH

e FOM. Galerkin condition: (H} nonsingular)

rr L Kp = yps.t. Hyy = eq||ro|




GMRES
AV = Vi Hy, ro = Vi+1€150

Crucial property:

myin |lro — AViy|

min [Vir1(e180 — Hpy)|

myin H€150 — ﬂkyH

Least squares problem expands at each iteration.

QR decomposition of A, only updated, not recomputed from scratch.




Block GMRES
RO :B—AXO, Kk(AyRO) :Span{RO,ARO,.,,’Ak_1R0}7
Uy, orth. basis, Uy = [Uy,Us, ..., U] € C¥Fs

Block Arnoldi process (s MxV + Gram-Schmidt)
= AUy = UpHi + Ui xp+1,6E; = U121y, (Hr = Uy AUy)

m}}n |Ry — AULY || = m}in | Eip—H, Y| Ro=Up

]
]
L]
]




Block GMRES

A € RO400x6400. FD discretiz. of L(u) = —Au + %uw in [—1,1]°
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Coping with long-term recurrences

Restarted, Truncated, Flexible variants.




Coping with long-term recurrences

Restarted, Truncated, Flexible variants.

Restarted: Choose My ax.
Set x = xg, 79 = b — Axg
fori=1,2,...
z <— GMRES(A, 7, Mmax) (or other method)

r—x+z, r9o=0b—Ax

Check Convergence




Pros and Cons

Pros:

e Shorter dependencies

e Lower and fixed memory requirements




Pros and Cons
Pros:
e Shorter dependencies

e Lower and fixed memory requirements

Cons:

e All optimality properties are lost

(A,r") + Ko,

K

mmax max

(A i)+

Ko (A8 4

e Additional parameter. What value for m 5?7




A problem with the restarting parameter?

2
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GMRES(15)

GMRES(20)
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A problem with the restarting parameter?

©
>
el
%]
o
S
o
2
8
0
S
“
0
S
A
o
=

10

2

or with the method?
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Explanation

K

mmax

(A, + K (A Y+

‘ Mmax

(A, r(()o)) + K

mmax

GMRES: r(()k> € range(V(k_l) ). Almost stagnation: — ’r(()k> x v%k_l)

Mmax+1




Explanation

Ko (Ar + K (A + o K (A5 4+

° Mmax

(k—1)

GMRES: r(()k) € range(V<k_1) ). Almost stagnation: — rék> X Uy

Mmax+1

FOM: rék) x oY Subspace keeps growing

Mmax+1




Truncating

Only local orthogonalization (k-term recurrence, H,, banded)




Truncating

Only local orthogonalization (k-term recurrence, H,, banded)
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a reasonable strategy




Truncating

...but not always good
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Truncating

A good strategy for P-CG with A symmetric and P inexact precond
w=P 'Av+el, e=107"°
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Changing K. Flexible methods
Original problem

P preconditioner

Kr(AP™1, ro) = span{rg, AP 1rg, ..., (AP_l)k_lro}

at each iteration i: 2z = P71y,




Changing K. Flexible methods
Original problem

P preconditioner

ICk<AP_1,T0> = span{'rO,AP_lfrg, Ceey (AP_l)k_IT()}

at each iteration i: 2z, = P~ lo,

Flexible variant:

lteration 7: 2 = P,

?L'lm & span{ro,zl,ZQ, ce ,Zm_l} # Kk(AP_l,To)




Flexible and Truncated method. An example

=P ozxAN span{ro, 21,22, -+, 2Zm—1r




Flexible and Truncated method. An example

Z = P_LU & IR A_l?J span{ro,z1,22,...,2m—1}

A from L(u) = —Au + 1000zu, n = 900
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Flexible and Truncated method. A second example

Z = P_l’U & IR A_l’U Span{TQ,Zl,ZQ,.. -,Zm—l}

L(u) = —1000Au 4 24 +07) gy, — 264447y, n = 40000
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Second Summary

Long-term recurrences:

e Optimal methods (e.g. GMRES), single and multiple right-hand
sides

e Restarted, truncated, flexible (and combinations thereof)




Making it without: short-term recurrences for A non-Hermitian

Change optimality condition: Non-Hermitian Lanczos

re L Kk(AT, 7o), To freely chosen

Range(Vi)= Ki(A,19),  Range(Wy)= Ki(A",7) and s.t.
W, Vi, diagonal

AVi = ViTy + vigateriner, A Wi =WiT, +wipiitiriies

Bi-orthogonal recurrence, T} tridiagonal = 3-term recurrence




Making it without: short-term recurrences for A non-Hermitian

Change optimality condition: Non-Hermitian Lanczos

re L Kp(A', 7o), T freely chosen

Range(Vi)= Ki(A,19),  Range(Wy)= Ki(A",7) and s.t.
W, Vi, diagonal

AVi = ViTy + vigateriner, A Wi =WiT, +wipiitiriies

Bi-orthogonal recurrence, T} tridiagonal = 3-term recurrence
x Requires A"
*x Robustness problems

= Special case: Simplified Lanczos




Simplified Lanczos

The typical problem
AH 'z =b, A, H symmetric,

Range(Vi)= Ky (AH1,rq), Range(Wj)= K,(H 1A, 7y) and s.t.

W, Vi diagonal




Simplified Lanczos

The typical problem
AH 'z =b, A, H symmetric,

Range(Vi)= Ky (AH ', rq), Range(Wj)= K,(H 1A, 7y) and s.t.

W, Vv diagonal

* |f7:0:H_1T0then Wk:H_lvk
= W}, obtained for free

e Short-term recurrence (cost similar to that of CG)

e Used for A, H indefinite (e.g. Saddle point problems)




An example: AP 'z =10

M
A= symmetric P = symmetric
B

P: Constraint Preconditioner - used in (cheaper!) factored form




An example: AP 'z =10

M . M .
A= symmetric P = symmetric
B -C B

P: Constraint Preconditioner - used in (cheaper!) factored form

Apply Simplified Lanczos-type method: Quasi Minimal Residual

16 = Azpl] = |Vt (ex [[roll = Tyy) |

win ex [1rol| = Ty

Vi11 not orthogonal




An example: Stokes problem

Lid Driven Cavity problem from 1riss. Default params. A of size 49666

]
3
S
0
)
-
Y
(e}
£
—
o
c

-10

0 50 100 150 200 250
number of matrix-vector products

CPU Time: GMRES = 51.66 secs, QMRs = 6.26 secs
(my own GMRES code)
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Short-term recurrences

Local optimality conditions:

Polynomial methods, like CG:
e BiCGStab(/): ¢ iterations of GMRES at every step

e IDR(s): rx € Gi, where G111 C Gy

Grt1 = (prp1l — A)(Gr N RF), Ro € C"*®, Gy =C.




An Example: L(u) = —Au+ 50(x + y)(ug + uy)

10°
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CPU Time: GMRES = 3.65 secs, IDR(4) = 0.22 secs, BiCGStab(4) = 0.32 secs

(Matlab version of GMRES)




MHIJ'
1‘”\ 'r‘l“ 1"" | IDR(3O)
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number of matrix-vector products

CPU Time: GMRES = 24 secs, IDR(30) = 2.58 secs, BiCGStab(30) = 20 secs

(Matlab version of GMRES)




Tricks for all trades

e Stopping criterion

e Operator inexactness




Tricks for all trades
e Stopping criterion

e Operator inexactness

Stopping criterion:

e Problem dependent

e Matrix dependent




Stopping criterion within Rayleigh Quotient lteration

Problem: Compute smallest eigenvalue(s) of A




Stopping criterion within Rayleigh Quotient lteration

Problem: Compute smallest eigenvalue(s) of A
Rayleigh Quotient iteration:
Given yg, compute 0y = y5Ayo, s0 = Ayo — Yobo
for k=0,1,2,...
Solve (A — 0, 1)t = yx

Set yp1 = t/It]l, Or+1 = Yiy1 AUkt

Sk+1 = AYkyr1 — Yrk+10k41

0 — A\, yr — x with (A, x) eigenpair of A




An Example: A 2D Laplace operator

1

K eigenproblem residual

10

system residual

200 400 600 800 1000 1200
number of iterations

Generic kth RQI iteration. System to be solved: (A — 0y 1)t = y;




Stopping criterion: Problem dependence

Choice of tolerance:

e Direct method accurate up to machine precision (likely)

e |terative method accurate up to what is wanted (hopefully)




Stopping criterion: Problem dependence

Choice of tolerance:

e Direct method accurate up to machine precision (likely)
e |terative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs

error  — O(h)

h discretization parameter...




Stopping criterion: Problem dependence

Choice of criterion and norm:

1o — Az |2 o= Azl




Stopping criterion: Problem dependence

Choice of criterion and norm:

1o — Az |2 o= Azl

For instance, CG optimal: (||z||% = z* Axz)

min 16— Axg||la—1 = min |z — 2|l A
mkEHZO—I—Kk(A,To) xkECUo—FKk(A,T())

Available: Cheap, reliable estimates of ||z — x| a




Stopping criterion: Problem dependence

Choice of criterion and norm:

16— Az |2 - o= Azl

For instance, CG optimal: (||z||% = z* Ax)

min 16— Axg||a—1 = min |z — k|| A
xrE€xo+Ki(A,ro) xr€xo+Ki(A,ro)

Available: Cheap, reliable estimates of ||z — x| 4

For instance, matrix G associated with FE error measure:

min ||b — Azl
T




Matrix dependence

A may be very ill-conditioned
= small residual does not necessarily imply small error

Well-known fact, but often not used

Ib— Azl o |b— Az
1] 161l + Al [z |

(here ¢y = 0)



Matrix dependence

Inner-outer methods. e.g. Solve
BM ™ 'B'z=1b

Each multiplication with A = BM ~'B' requires solving a system
with M

— BT

v
u solves Mu = u

u = Bu

How accurately should one solve with M?




Matrix dependence

Inner-outer methods. e.g. Solve
BM ™ 'B'z=1b

Each multiplication with A = BM ~'B' requires solving a system
with M

— BT

v
u solves Mu = u

u = Bu

How accurately should one solve with M?

Note: True residual 7. = b — BM B " x. not available!




How accurately should one solve with M7

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve BM ~'B 'z = b then:

Outer tolerance
current outer residual

Inner tolerance = ¢ -




The inexact key relation

Aer:AU+fj Hf]H :O(Ej), j:1,2,

AV =V H,, + F,, F,, error matrix
N~
[f17f27"'7fm]

How large is F),, allowed to be?

Claim: the perturbation induced by €; may be far less devastating for
T, — « than |e;| would predict

| Fonym||  small then Vi1 H,  ym =~ Axp,




A dynamic setting

Amm — Amem — m—i—lﬂmym + mem

m

Bt = [f1 fore oo Sl | | =3 i
: 1=1

¢ The terms f;7m; need to be small:

1 .
Ifimll < —e Vi = [|[Fnyll <e
m

o If |m;| small = || fi|| is allowed to be large

% In several problems it can be shown that 7:| < v |rio1]]




Relaxing the accuracy in linear systems

A - v; not performed exactly = (A + E;)v; = Av; + f;

b— Axm — m—l—l(elﬁ — ﬂmym) _ mem

E.g. for GMRES: If |m) < "

m ||7;—1]|

e i=1,....,m (vy=7(A)), then

m
IFmymll <D 1IEilllnil <e  so that
=1

(b —Azp,) — Vinpi(e18 — H,ym)|| < €

Note: |6 — Az, || < e final attainable residual norm




Q
T
3
=]
c
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©
S

Tm = ||b — Az, |

An example

60
number of iterations

~

Tm = |ler||Toll = HpYmll,  Om = ||rm — Tm ||



Relaxed iteration

e Less and less accurate solution of inner system and still converge

e General procedure for any inexact/expensive A

e Save up to 30% computational time




Conclusions

Computational issues for Krylov solvers well understood

Other tricks can be used (but not usually in black-box routines)

Many ideas have wider applicability

Theory is still under development

http://www.dm.unibo.it/~ simoncin

valeria.simoncini@unibo.it




