

Recent developments in Krylov Subspace Methods for Scientific Computations

V. Simoncini

Dipartimento di Matematica, Bologna valeria.simoncini@unibo.it

The Problem

$$Ax = b$$
 or $AX = B$, $B = [b_1, \dots, b_s]$

$$A \in \mathbb{C}^{n \times n}$$
, B full column rank, $s \ll n$

- A large and sparse
- A large and structured: blocks, banded, \dots
- A functional: $A = CS^{-1}D$, preconditioned, integral, ...
-

The Problem

$$Ax = b$$
 or $AX = B$, $B = [b_1, \dots, b_s]$

$$A \in \mathbb{C}^{n \times n}$$
, B full column rank, $s \ll n$

- A large and sparse
- A large and structured: blocks, banded, \dots
- A functional: $A = CS^{-1}D$, preconditioned, integral, ...

•

The solution approach. Generate sequence of approximate solutions:

$$\{\mathbf{x}_0, x_1, x_2, \ldots\}, \qquad x_k \to_{k \to \infty} x$$

Occurrence of the problem

Very broad range of applications in Engineering and Scientific Computing

Original application context:

- Discretization of 2D and 3D PDEs (linear steady state, nonlinear, evolutive, etc.)
- Eigenvalue problems
- Approximation of matrix functions
- Workhorses of more advanced techniques
- ...

Relevant Bibliographic Pointer

Iterative methods for sparse linear systems

Yousef Saad

SIAM, Society for Industrial and Applied Mathematics, 2003, 2nd edition.

V. SIMONCINI AND D. B. SZYLD

Recent developments in Krylov Subspace Methods for linear systems

Numerical Linear Algebra with Appl., v. 14, n.1 (2007), pp.1-59.

"Projection" methods (or, reduction methods) • Approximation vector space K_m . At each iteration m $\{u_m\}$ such that $u_m \in K_m$

 K_m : dimension^a m, with the "expansion" property:

 $K_m \subseteq K_{m+1}$

• Computation of iterate. Galerkin condition:

residual
$$r_m := f - Au_m \perp K_m$$

 \Rightarrow This condition uniquely defines $u_m \in K_m$

^aAt most

Optimality property of Galerkin projection method

A symmetric and positive definite. Let u^* be the true solution. Galerkin property:

residual
$$r_m := f - Au_m \perp K_m$$

is equivalent to:

$$u_m$$
 solution to $\min_{u \in K_m} \|u^\star - u\|_A$

where $\|\cdot\|_A$ is the energy norm, namely $\|x\|_A^2 := \langle x, Ax \rangle$

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error:

If $K_m = \operatorname{span}\{f, Af, \dots, A^{m-1}f\}$, then

$$\|u^{\star} - u_m\|_A \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m \|u^{\star} - u_0\|_A$$

where $\kappa = rac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

(Conjugate Gradients, Hestenes & Stiefel, '52)

Convergence and spectral properties

- In exact arithmetic (i.e., in theory), finite termination property
- A-priori bound for energy norm of the error:

If $K_m = \operatorname{span}\{f, Af, \dots, A^{m-1}f\}$, then

$$\|u^{\star} - u_m\|_A \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^m \|u^{\star} - u_0\|_A$$

where $\kappa = rac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

(Conjugate Gradients, Hestenes & Stiefel, '52)

Consequences:

- Convergence: The closer κ to 1 the faster
- Convergence depends on spectral properties, not directly on problem size!

A well established code

Classical Conjugate Gradient:

Given x_0 . Set $r_0 = b - Ax_0$, $p_0 = r_0$ for i = 0, 1, ... $\alpha_i = \frac{r_i^* r_i}{p_i^* A p_i}$ $x_{i+1} = x_i + p_i \alpha_i$ $r_{i+1} = r_i - A p_i \alpha_i$ $\beta_{i+1} = \frac{r_{i+1}^* A p_i}{p_i^* A p_i}$ $p_{i+1} = r_i + p_i \beta_{i+1}$

end

The Block Conjugate Gradient

$$R_{0} = B - AX_{0}, P_{0} = R_{0} \in \mathbb{C}^{n \times s}$$

for $k = 0, 1, ...$
 $\boldsymbol{\alpha}_{k} = (P_{k}^{*}AP_{k})^{-1}(R_{k}^{*}R_{k}) \in \mathbb{C}^{s \times s}$
 $X_{k+1} = X_{k} + P_{k}\boldsymbol{\alpha}_{k}$
 $R_{k+1} = R_{k} - AP_{k}\boldsymbol{\alpha}_{k}$
 $\boldsymbol{\beta}_{k+1} = (P_{k}^{*}AP_{k})^{-1}(R_{k+1}^{*}AP_{k}) \in \mathbb{C}^{s \times s}$
 $P_{k+1} = R_{k} + P_{k}\boldsymbol{\beta}_{k+1}$

end

A more general picture. Nonsymmetric problems

- A normal, $AA^* = A^*A$
- A (highly) non-normal, $||AA^* A^*A|| \gg 0$
- A "Hermitian" in disguise:

- A normal, $AA^* = A^*A$
- A (highly) non-normal, $||AA^* A^*A|| \gg 0$
- A "Hermitian" in disguise:
 - $\star \ A = M + \sigma I, \ \sigma \in \mathbb{C}, \ M \in \mathbb{R}^{n \times n} \text{ symmetric}$

- A normal, $AA^* = A^*A$
- A (highly) non-normal, $||AA^* A^*A|| \gg 0$
- A "Hermitian" in disguise:
 - * $A=M+\sigma I,\;\sigma\in\mathbb{C},\,M\in\mathbb{R}^{n\times n}$ symmetric
 - * $A=M+\sigma H, \ \sigma \in \mathbb{C}, \ M, H \in \mathbb{R}^{n \times n}$ symmetric

- A normal, $AA^* = A^*A$
- A (highly) non-normal, $||AA^* A^*A|| \gg 0$
- A "Hermitian" in disguise:
 - * $A = M + \sigma I, \ \sigma \in \mathbb{C}, \ M \in \mathbb{R}^{n \times n}$ symmetric

 - \star There exists nonsing. Herm. $H\in \mathbb{C}^{n\times n}$ such that $HA=A^{*}H$, e.g. M,C Hermitian

$$A = \begin{bmatrix} M & B \\ -B^* & C \end{bmatrix}, \quad H = \begin{bmatrix} I \\ & -I \end{bmatrix},$$

- A normal, $AA^* = A^*A$
- A (highly) non-normal, $||AA^* A^*A|| \gg 0$
- A "Hermitian" in disguise:
 - * $A = M + \sigma I, \ \sigma \in \mathbb{C}, \ M \in \mathbb{R}^{n \times n}$ symmetric

 - \star There exists nonsing. Herm. $H\in \mathbb{C}^{n\times n}$ such that $HA=A^{*}H$, e.g. M,C Hermitian

$$A = \begin{bmatrix} M & B \\ -B^* & C \end{bmatrix}, \quad H = \begin{bmatrix} I & \\ & -I \end{bmatrix},$$

* $Ax = b \quad \Leftrightarrow \quad A^*Ax = A^*b$ (not recommended in general...)

Outline

- What is the problem with A non-Hermitian ?
- How to handle "Symmetry in disguise"
- Non-normal (non-Hermitian) case
 - * Long-term recurrences and their problems
 - \star Coping with them \Rightarrow Restarted, truncated, flexible
 - \star Making it without \Rightarrow short-term recurrences
- Tricks for all trades

What goes "wrong" with A non-Hermitian. I $\{x_k\}$, with $x_k \in x_0 + K_k(A, r_0) = \operatorname{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}$ Let $V_k = [v_1, \dots, v_k]$ be a (orthogonal) basis of $K_k(A, r_0)$. Then $x_k = x_0 + V_k y_k, \qquad y_k \in \mathbb{C}^k$

A condition is required to specify y_k .

What goes "wrong" with A non-Hermitian. I $\{x_k\}$, with $x_k \in x_0 + K_k(A, r_0) = \operatorname{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}$ Let $V_k = [v_1, \dots, v_k]$ be a (orthogonal) basis of $K_k(A, r_0)$. Then $x_k = x_0 + V_k y_k, \qquad y_k \in \mathbb{C}^k$

A condition is required to specify y_k . For instance:

$$r_k := b - Ax_k = r_0 - AV_k y_k \perp K_k(A, r_0) \qquad V_k^* r_k = 0$$

so that

 $0 = V_k^* r_k = V_k^* r_0 - V_k^* A V_k y_k \quad \Leftrightarrow \quad y_k \ s.t. \ (V_k^* A V_k) y_k = V_k^* r_0$

What goes "wrong" with A non-Hermitian. I $\{x_k\}$, with $x_k \in x_0 + K_k(A, r_0) = \operatorname{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}$ Let $V_k = [v_1, \dots, v_k]$ be a (orthogonal) basis of $K_k(A, r_0)$. Then $x_k = x_0 + V_k y_k, \qquad y_k \in \mathbb{C}^k$

A condition is required to specify y_k . For instance:

$$r_k := b - Ax_k = r_0 - AV_k y_k \perp K_k(A, r_0) \qquad V_k^* r_k = 0$$

so that

$$0 = V_k^* r_k = V_k^* r_0 - V_k^* A V_k y_k \quad \Leftrightarrow \quad y_k \ s.t. \ (V_k^* A V_k) y_k = V_k^* r_0$$

Hence

$$x_k = x_0 + V_k (V_k^* A V_k)^{-1} V_k^* r_0 \quad \text{with} \quad V_k^* r_0 = e_1 ||r_0||$$

And: $V_k^*AV_k$ upper Hessenberg (Gram-Schmidt procedure to build V_k)

What goes "wrong" with A non-Hermitian. II If A were Hpd $\Rightarrow V_k^*AV_k$ also Hpd \Rightarrow tridiagonal $V_k^*AV_k = L_kL_k^*$ L_k bidiagonal $x_k = x_0 + V_kL_k^{-*}L_k^{-1}e_1 ||r_0||$ $= x_0 + V_{k-1}L_{k-1}^{-*}L_{k-1}^{-1}e_1 ||r_0|| + p_k\alpha_k$ $= x_{k-1} + p_k\alpha_k$

with $p_k \in \operatorname{span}\{v_{k-1}, v_k\}$

(development underlying Conjugate Gradient)

What goes "wrong" with A non-Hermitian. II If A were Hpd $\Rightarrow V_k^* A V_k$ also Hpd \Rightarrow tridiagonal $V_k^* A V_k = L_k L_k^*$ L_k bidiagonal $x_k = x_0 + V_k L_k^{-*} L_k^{-1} e_1 ||r_0||$ $= x_0 + V_{k-1} L_{k-1}^{-*} L_{k-1}^{-1} e_1 ||r_0|| + p_k \alpha_k$ $= x_{k-1} + p_k \alpha_k$

with $p_k \in \operatorname{span}\{v_{k-1}, v_k\}$

(development underlying Conjugate Gradient)

A non-Hermitian $\Rightarrow V_k^* A V_k$ only upper Hessenberg $p_k \in \operatorname{span}\{v_1, \dots, v_k\}$

What goes "wrong" with \boldsymbol{A} non-Hermitian. III

 $p_k \in \operatorname{span}\{v_1, \ldots, v_k\}$, with $\{v_1, \ldots, v_k\}$ orthogonal basis

Alternatives

- Give up orthogonal basis, $V_k^*V_k = I_k$
- Give up optimality condition, e.g. $r_k \perp K_k(A, r_0)$
- Resume symmetry

Symmetry in disguise. Shifted systems.

Case 1: $A = M + \sigma I, \quad M \in \mathbb{R}^{n \times n}, \sigma \in \mathbb{C}$

Trick: replace * (conj. transp.) with \top (transp.)

 $A = A^{\top}$ complex symmetric

Apply CG with \top

Given x_0 . Set $r_0 = b - Ax_0$, $p_0 = r_0$ for i = 0, 1, ... $\alpha_i = \frac{r_i^\top r_i}{p_i^\top A p_i}$ $x_{i+1} = x_i + p_i \alpha_i$ $r_{i+1} = r_i - Ap_i \alpha_i$ $\beta_{i+1} = \frac{r_{i+1}^\top A p_i}{p_i^\top A p_i}$ $p_{i+1} = r_i + p_i \beta_{i+1}$ end

24

...and Complex Symmetric Matrices

 $A = M + \sigma I$: Apply CG with \top

Properties:

- V_k real: $K_k(A, r_0) = K_k(A + \sigma I, r_0)$
- \top does not define an inner product!

•
$$V_k^{\top}AV_k = V_k^{\top}MV_k + \sigma I$$

If $\Im(\sigma) \neq 0$ then $V_k^{\top} A V_k$ is nonsingular \Rightarrow No breakdown

The same code applies in case of any A complex symmetric $(A = A^{\top})$

H-symmetry

A is H-Hermitian if there exists $H \in \mathbb{C}^{n \times n}$ Hermitian, nonsingular s.t.

 $HA = A^*H$

(*H*-symmetric if $HA = A^{\top}H$ with *H* is symmetric)

H-symmetry

A is H-Hermitian if there exists $H \in \mathbb{C}^{n \times n}$ Hermitian, nonsingular s.t.

 $HA = A^*H$

(*H*-symmetric if $HA = A^{\top}H$ with *H* is symmetric)

If H is Hpd (and HA is also Hpd), use CG in the H-inner product: Given x_0 . Set $r_0 = b - Ax_0$, $p_0 = r_0$ for i = 0, 1, ... $\alpha_i = \frac{r_i^* H r_i}{p_i^* H A p_i}$ $x_{i+1} = x_i + p_i \alpha_i$ $r_{i+1} = r_i - Ap_i \alpha_i$ $\beta_{i+1} = \frac{r_{i+1}^* H A p_i}{p_i^* H A p_i}$ $p_{i+1} = r_i + p_i \beta_{i+1}$ end

(*H* not Hpd \Rightarrow see later)

First Summary

Symmetry in disguise:

- Shifted matrices, $A = M + \sigma I$, M real symmetric
- Complex symmetric matrices
- *H*-symmetric or *H*-Hermitian matrices

Long-term recurrences

$$K_k(A, r_0) = \text{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}, V_k \text{ orth. basis}$$

1. Arnoldi process : $v_{k+1} \leftarrow Av_k - \sum_{j=1}^k v_j h_{j,k}$, that is

 $AV_k = V_k H_k + h_{k+1,k} v_{k+1} e_k^* = V_{k+1} \underline{H}_k \qquad (H_k = V_k^* A V_k)$

2. $x_k = x_0 + V_k y_k$

Long-term recurrences

$$K_k(A, r_0) = \text{span}\{r_0, Ar_0, \dots, A^{k-1}r_0\}, V_k \text{ orth. basis}$$

1. Arnoldi process : $v_{k+1} \leftarrow Av_k - \sum_{j=1}^k v_j h_{j,k}$, that is

$$AV_k = V_k H_k + h_{k+1,k} v_{k+1} e_k^* = V_{k+1} \underline{H}_k \qquad (H_k = V_k^* A V_k)$$

 $2. \ x_k = x_0 + V_k y_k$

• GMRES. Particular Petrov-Galerkin condition:

$$r_k \perp AK_k \Rightarrow y_k \text{ s.t. } \min_y \|r_0 - AV_k y\|$$

• FOM. Galerkin condition: $(H_k \text{ nonsingular})$

$$r_k \perp K_k \Rightarrow y_k$$
 s.t. $H_k y = e_1 \|r_0\|$

GMRES

$$AV_k = V_{k+1}\underline{H}_k, \qquad r_0 = V_{k+1}e_1\beta_0$$

Crucial property:

$$\min_{y} \|r_0 - AV_k y\| =$$

$$= \min_{y} \|V_{k+1}(e_1\beta_0 - \underline{H}_k y)\|$$

$$= \min_{y} \|e_1\beta_0 - \underline{H}_k y\|$$

Least squares problem expands at each iteration.

QR decomposition of \underline{H}_k only updated, not recomputed from scratch.

Block GMRES

 $R_0 = B - AX_0, \qquad K_k(A, R_0) = \operatorname{span}\{R_0, AR_0, \dots, A^{k-1}R_0\},$ $\mathcal{U}_k \text{ orth. basis, } \mathcal{U}_k = [U_1, U_2, \dots, U_k] \in \mathbb{C}^{n \times ks}$

Block Arnoldi process (s MxV + Gram-Schmidt) $\Rightarrow A\mathcal{U}_{k} = \mathcal{U}_{k}\mathcal{H}_{k} + U_{k+1}\chi_{k+1,k}E_{k}^{*} = \mathcal{U}_{k+1}\underline{\mathcal{H}}_{k} \qquad (\mathcal{H}_{k} = \mathcal{U}_{k}^{*}A\mathcal{U}_{k})$

$$\min_{Y} \|R_0 - A\mathcal{U}_k Y\| = \min_{Y} \|E_1 \rho - \underline{\mathcal{H}}_k Y\| \quad R_0 = U_1 \rho$$
$$\underline{\mathcal{H}}_k = \begin{bmatrix} \Box & \Box & \cdots & \Box \\ \Box & \Box & \cdots & \Box \\ O & \Box & \cdots & \Box \\ O & O & \ddots & \Box \\ O & O & O & \Box \end{bmatrix}$$

Coping with long-term recurrences

Restarted, Truncated, Flexible variants.

Coping with long-term recurrences

Restarted, Truncated, Flexible variants.

Restarted: Choose m_{\max} .

Set $x = x_0$, $r_0 = b - Ax_0$

for i = 1, 2, ...

 $z \leftarrow \mathsf{GMRES}(A, r_0, m_{\max})$ (or other method)

 $x \leftarrow x + z, \quad r_0 = b - Ax$

Check Convergence

Pros and Cons

Pros:

- Shorter dependencies
- Lower and fixed memory requirements
Pros and Cons

Pros:

- Shorter dependencies
- Lower and fixed memory requirements

Cons:

• All optimality properties are lost

$$K_{m_{\max}}(A, r_0^{(0)}) + K_{m_{\max}}(A, r_0^{(1)}) + \dots K_{m_{\max}}(A, r_0^{(k)}) + \dots$$

• Additional parameter. What value for m_{\max} ??

Explanation $K_{m_{\max}}(A, r_0^{(0)}) + K_{m_{\max}}(A, r_0^{(1)}) + \dots K_{m_{\max}}(A, r_0^{(k)}) + \dots$ GMRES: $r_0^{(k)} \in \text{range}(V_{m_{\max}+1}^{(k-1)})$. Almost stagnation: $\rightarrow r_0^{(k)} \propto v_1^{(k-1)}$

$$\begin{split} & \text{Explanation} \\ & K_{m_{\max}}(A, r_0^{(0)}) + K_{m_{\max}}(A, r_0^{(1)}) + \ldots K_{m_{\max}}(A, r_0^{(k)}) + \ldots \\ & \text{GMRES: } r_0^{(k)} \in \text{range}(V_{m_{\max}+1}^{(k-1)}). \text{ Almost stagnation: } \rightarrow r_0^{(k)} \propto v_1^{(k-1)} \\ & \text{FOM: } r_0^{(k)} \propto v_{m_{\max}+1}^{(k-1)} \quad \text{Subspace keeps growing} \end{split}$$

Truncating

Only local orthogonalization (k-term recurrence, H_m banded)

Truncating

A good strategy for P-CG with A symmetric and P inexact precond

$$w = P^{-1}Av + \epsilon \mathbf{1}, \quad \epsilon = 10^{-5}$$

Changing K_k . Flexible methods

Original problem

 $AP^{-1}\hat{x} = b$ $x = P^{-1}\hat{x}$, P preconditioner

 $\mathcal{K}_k(AP^{-1}, r_0) = \operatorname{span}\{r_0, AP^{-1}r_0, \dots, (AP^{-1})^{k-1}r_0\}$

at each iteration *i*: $z_i = P^{-1}v_i$

Changing K_k . Flexible methods

Original problem

 $AP^{-1}\hat{x} = b$ $x = P^{-1}\hat{x}$, P preconditioner

 $\mathcal{K}_k(AP^{-1}, r_0) = \operatorname{span}\{r_0, AP^{-1}r_0, \dots, (AP^{-1})^{k-1}r_0\}$

at each iteration *i*: $z_i = P^{-1}v_i$

Flexible variant:

Iteration *i*:
$$z_i = P^{-1}v_i \implies z_i = P_i^{-1}v_i$$

 $\widetilde{x}_m \in \operatorname{span}\{r_0, z_1, z_2, \dots, z_{m-1}\} \neq \mathcal{K}_k(AP^{-1}, r_0)$

Flexible and Truncated method. An example

 $z = P^{-1}v \quad \Leftrightarrow z \approx A^{-1}v$

 $span\{r_0, z_1, z_2, \dots, z_{m-1}\}$

Second Summary

Long-term recurrences:

- Optimal methods (e.g. GMRES), single and multiple right-hand sides
- Restarted, truncated, flexible (and combinations thereof)

Making it without: short-term recurrences for A non-Hermitian Change optimality condition: Non-Hermitian Lanczos

 $r_k \perp K_k(A^{\top}, \tilde{r}_0), \qquad \tilde{r}_0 \text{ freely chosen}$

Range $(V_k) = K_k(A, r_0)$, Range $(W_k) = K_k(A^{\top}, \tilde{r}_0)$ and s.t. $W_k^{\top} V_k$ diagonal

$$AV_{k} = V_{k}T_{k} + v_{k+1}t_{k+1,k}e_{k}^{\top}, \quad A^{\top}W_{k} = W_{k}T_{k}^{\top} + w_{k+1}t_{k,k+1}e_{k}^{\top},$$

Bi-orthogonal recurrence, T_k tridiagonal \Rightarrow 3-term recurrence

Making it without: short-term recurrences for A non-Hermitian Change optimality condition: Non-Hermitian Lanczos

 $r_k \perp K_k(A^{\top}, \tilde{r}_0), \qquad \tilde{r}_0 \text{ freely chosen}$

Range $(V_k) = K_k(A, r_0)$, Range $(W_k) = K_k(A^{\top}, \tilde{r}_0)$ and s.t. $W_k^{\top} V_k$ diagonal

$$AV_{k} = V_{k}T_{k} + v_{k+1}t_{k+1,k}e_{k}^{\top}, \quad A^{\top}W_{k} = W_{k}T_{k}^{\top} + w_{k+1}t_{k,k+1}e_{k}^{\top},$$

Bi-orthogonal recurrence, T_k tridiagonal \Rightarrow 3-term recurrence

- * Requires A^{\top}
- * Robustness problems
- \Rightarrow Special case: Simplified Lanczos

Simplified Lanczos

The typical problem

 $AH^{-1}x = b$, A, H symmetric, Range $(V_k) = K_k(AH^{-1}, r_0)$, Range $(W_k) = K_k(H^{-1}A, \tilde{r}_0)$ and s.t. $W_k^{\top}V_k$ diagonal

Simplified Lanczos

The typical problem

 $AH^{-1}x = b, \quad A, H \text{ symmetric},$ Range $(V_k) = K_k(AH^{-1}, r_0),$ Range $(W_k) = K_k(H^{-1}A, \tilde{r}_0)$ and s.t. $W_k^\top V_k$ diagonal $\star \quad \text{If } \tilde{r}_0 = H^{-1}r_0 \text{ then } W_k = H^{-1}V_k$

$\Rightarrow W_k$ obtained for free

- Short-term recurrence (cost similar to that of CG)
- Used for A, H indefinite (e.g. Saddle point problems)

An example: $AP^{-1}x = b$

$$A = \begin{bmatrix} M & B^{\top} \\ B & -C \end{bmatrix} \text{ symmetric } P = \begin{bmatrix} \widetilde{M} & B^{\top} \\ B & -\widetilde{C} \end{bmatrix} \text{ symmetric }$$

P: Constraint Preconditioner - used in (cheaper!) factored form

An example: $AP^{-1}x = b$

$$A = \begin{bmatrix} M & B^{\top} \\ B & -C \end{bmatrix} \text{ symmetric } P = \begin{bmatrix} \widetilde{M} & B^{\top} \\ B & -\widetilde{C} \end{bmatrix} \text{ symmetric }$$

P: Constraint Preconditioner - used in (cheaper!) factored form

Apply Simplified Lanczos-type method: Quasi Minimal Residual

$$||b - Ax_k|| = ||V_{k+1}(e_1 ||r_0|| - \underline{T}_k y)||$$

$$\min_{y} \|e_1\| \|r_0\| - \underline{T}_k y\|$$

 V_{k+1} not orthogonal

Short-term recurrences

Local optimality conditions:

Polynomial methods, like CG:

• BiCGStab(ℓ): ℓ iterations of GMRES at every step

• IDR(s):
$$r_k \in \mathcal{G}_k$$
, where $\mathcal{G}_{k+1} \subset \mathcal{G}_k$

$$\mathcal{G}_{k+1} = (\mu_{k+1}I - A)(\mathcal{G}_k \cap \widetilde{R}_0^{\perp}), \quad \widetilde{R}_0 \in \mathbb{C}^{n \times s}, \ \mathcal{G}_0 = \mathbb{C}.$$

Tricks for all trades

- Stopping criterion
- Operator inexactness

Tricks for all trades

- Stopping criterion
- Operator inexactness

Stopping criterion:

- Problem dependent
- Matrix dependent

Stopping criterion within Rayleigh Quotient Iteration

Problem: Compute smallest eigenvalue(s) of ARayleigh Quotient iteration: Given y_0 , compute $\theta_0 = y_0^* A y_0$, $s_0 = A y_0 - y_0 \theta_0$ for k = 0, 1, 2, ...Solve $(A - \theta_k I)t = y_k$ Set $y_{k+1} = t/||t||$. $\theta_{k+1} = y_{k+1}^* A y_{k+1}$

Set
$$y_{k+1} = t/||t||$$
, $\theta_{k+1} = y_{k+1}^T A y_{k+1}$

$$s_{k+1} = Ay_{k+1} - y_{k+1}\theta_{k+1}$$

$$\theta_k \to \lambda$$
, $y_k \to x$ with (λ, x) eigenpair of A

An Example: A 2D Laplace operator

Generic kth RQI iteration. System to be solved: $(A - \theta_k I)t = y_k$

Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Stopping criterion: Problem dependence

Choice of tolerance:

- Direct method accurate up to machine precision (likely)
- Iterative method accurate up to what is wanted (hopefully)

Algebraic problem: Discretization of PDEs

error $\rightarrow O(h)$

 \boldsymbol{h} discretization parameter...

Stopping criterion: Problem dependence

Choice of criterion and norm:

$$||b - Ax_k||_2$$
 vs. $||b - Ax_k||_*$

Stopping criterion: Problem dependence Choice of criterion and norm: $\|b - Ax_k\|_2$ vs. $\|b - Ax_k\|_*$ For instance, CG optimal: $(\|x\|_A^2 = x^*Ax)$ $\min_{x_k \in x_0 + K_k(A, r_0)} \|b - Ax_k\|_{A^{-1}} = \min_{x_k \in x_0 + K_k(A, r_0)} \|x - x_k\|_A$

Available: Cheap, reliable estimates of $||x - x_k||_A$

Stopping criterion: Problem dependence Choice of criterion and norm: $||b - Ax_k||_2$ vs. $||b - Ax_k||_*$ For instance, CG optimal: $(||x||_A^2 = x^*Ax)$ $\min_{x_k \in x_0 + K_k(A, r_0)} \|b - Ax_k\|_{A^{-1}} = \min_{x_k \in x_0 + K_k(A, r_0)} \|x - x_k\|_A$ Available: Cheap, reliable estimates of $||x - x_k||_A$ For instance, matrix G associated with FE error measure:

$$\min_{x_k} \|b - Ax_k\|_G$$

Matrix dependence

 \boldsymbol{A} may be very ill-conditioned

(here x_0

 \Rightarrow small residual does not necessarily imply small error

Well-known fact, but often not used

$$\frac{\|b - Ax_k\|}{\|b\|} \quad \text{vs} \quad \frac{\|b - Ax_k\|}{\|b\| + \|A\|_{\star} \|x_k\|} = 0)$$

Matrix dependence

Inner-outer methods. e.g. Solve

$$BM^{-1}B^{\top}x = b$$

Each multiplication with $A=BM^{-1}B^\top$ requires solving a system with M

$$\begin{split} \tilde{u} &= B^\top v \\ u &= Av \quad \Leftrightarrow \quad \tilde{\tilde{u}} \text{ solves } M\tilde{\tilde{u}} = \tilde{u} \\ u &= B\tilde{\tilde{u}} \end{split}$$

How accurately should one solve with M?

Matrix dependence

Inner-outer methods. e.g. Solve

$$BM^{-1}B^{\top}x = b$$

Each multiplication with $A=BM^{-1}B^\top$ requires solving a system with M

$$\begin{split} \tilde{u} &= B^\top v \\ u &= Av \quad \Leftrightarrow \quad \tilde{\tilde{u}} \text{ solves } M \tilde{\tilde{u}} = \tilde{u} \\ u &= B \tilde{\tilde{u}} \end{split}$$

How accurately should one solve with M?

Note: True residual $r_k = b - BM^{-1}B^{\top}x_k$ not available!

How accurately should one solve with M?

Typically: Inner tolerance < Outer tolerance

But: if optimal Krylov method is used to solve $BM^{-1}B^{\top}x = b$ then:

Inner tolerance = $c \cdot \frac{\text{Outer tolerance}}{\text{current outer residual}}$

The inexact key relation

$$A_{\epsilon_j}v = Av + f_j$$
 $||f_j|| = O(\epsilon_j), \quad j = 1, 2, ...$

$$AV_m = V_{m+1}\underline{H}_m + \underbrace{F_m}_{[f_1, f_2, \dots, f_m]} F_m$$
 error matrix

How large is F_m allowed to be?

Claim: the perturbation induced by ϵ_j may be far less devastating for $x_m \to x$ than $|\epsilon_j|$ would predict

$$Ax_m = AV_m y_m = V_{m+1}\underline{H}_m y_m + F_m y_m$$

 $||F_m y_m||$ small then $V_{m+1}\underline{H}_m y_m \approx A x_m$

A dynamic setting

$$Ax_m = AV_m y_m = V_{m+1}\underline{H}_m y_m + F_m y_m$$

$$F_m y_m = [f_1, f_2, \dots, f_m] \begin{bmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_m \end{bmatrix} = \sum_{i=1}^m f_i \eta_i$$

 \diamond The terms $f_i\eta_i$ need to be small:

$$||f_i\eta_i|| < \frac{1}{m}\epsilon \quad \forall i \quad \Rightarrow \quad ||F_my|| < \epsilon$$

 \diamond If $|\eta_i|$ small \Rightarrow $||f_i||$ is allowed to be large

 \star In several problems it can be shown that

 $|\eta_i| \le \gamma_m \|r_{i-1}\|$

Relaxing the accuracy in linear systems

$$A \cdot v_i$$
 not performed exactly $\Rightarrow (A + E_i)v_i = Av_i + f_i$
 $b - Ax_m = V_{m+1}(e_1\beta - \underline{H}_m y_m) - F_m y_m$
E.g., for GMRES: If $||E_i|| \leq \frac{\gamma}{m} \frac{1}{\|\tilde{r}_{i-1}\|} \epsilon$ $i = 1, \dots, m$ $(\gamma = \gamma(A))$, then
 $||F_m y_m|| \leq \sum_{i=1}^m ||E_i|| |\eta_i| \leq \epsilon$ so that
 $||(b - Ax_m) - V_{m+1}(e_1\beta - \underline{H}_m y_m)|| \leq \epsilon$
Note: $||b - Ax_m|| \leq \epsilon$ final attainable residual norm

Relaxed iteration

- Less and less accurate solution of inner system and still converge
- General procedure for any inexact/expensive ${\cal A}$
- Save up to 30% computational time

Conclusions

- Computational issues for Krylov solvers well understood
- Other tricks can be used (but not usually in black-box routines)
- Many ideas have wider applicability
- Theory is still under development

http://www.dm.unibo.it/~ simoncin
valeria.simoncini@unibo.it