Let $M=4 x-4 Y^{2}+13 x Y^{2}+4 Y^{3}+4 x Y^{4} \in \mathbb{Q}(x)[Y]$ and let y be such that $M(y)=0$.
Task 1 Compute $a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Q}(x)$ such that $\frac{d}{d x} y=a_{0}+a_{1} y+a_{0} y^{2}+a_{3} y^{3}$.
Task 2 Compute a polynomial $M^{\prime} \in \mathbb{Q}(x)[Y]$ such that $M^{\prime}\left(y^{2}+x y-1\right)=0$.
Task 3 Compute a polynomial $M^{\prime \prime} \in \mathbb{Q}(x)[Y]$ with $M^{\prime \prime}\left(y \circ \sqrt{1-x^{2}}\right)=0$.
Task 4 Compute the first few terms of the four series expansions of y.
Task 5 Compute the singular points of y.
Task 6 Determine the asymptotic behaviour of the coefficient sequence $\left(a_{n}\right)_{n=0}^{\infty}$ in the series expansion $\sum_{n=0}^{\infty} a_{n} x^{n}$ of the branch of y going through the place $(0,1)$.

You are welcome to do all the requested calculations using a computer algebra system, and to submit a transcript of your session as solution.

