
Algorithms for D-finite Functions

Manuel Kauers

Institute for Algebra
Johannes Kepler University

1



Definition.

1 A function f(x) is called D-finite if there exist polynomials
c0(x), . . . , cr(x), not all zero, such that

c0(x)f(x) + c1(x)f
′(x) + · · ·+ cr(x)f(r)(x) = 0.

2 A sequence (fn)
∞
n=0 is called D-finite if there exist polynomials

c0(n), . . . , cr(n), not all zero, such that

c0(n)fn + c1(n)fn+1 + · · ·+ cr(n)fn+r = 0.
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A similar definition.

3 A number α ∈ C is called algebraic if there exist integers
c0, . . . , cr, not all zero, such that

c0 + c1α+ · · ·+ crαr = 0.
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What happens when you ask Maple to find the roots of the
polynomial x5 + 5x− 3?

> solve(x^5 + 5*x - 3);

RootOf( Z^5 + 5* Z - 3, index = 1),

RootOf( Z^5 + 5* Z - 3, index = 2),

RootOf( Z^5 + 5* Z - 3, index = 3),

RootOf( Z^5 + 5* Z - 3, index = 4),

RootOf( Z^5 + 5* Z - 3, index = 5)

The best way to represent an algebraic number is the polynomial
of which it is a root.
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The best way to represent a D-finite function or sequence is the
differential equation or recurrence of which it is a solution.

While a polynomial has finitely many roots, a differential equation
or recurrence has infinitly many solutions.

But these solutions form a vector space of finite dimension. Thus a
finite number of initial values uniquely identifies a solution.

Such initial values may be viewed as the analog of the “index” in
Maple’s representation of algebraic numbers.
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1, 2, 3, 4, 5, 6, ?, ?, ?, ?, ?, ?
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1, 2, 3, 4, 5, 6, π, e,
√
2, ζ(3), log(2), i
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︸ ︷︷ ︸↓ interpolate
1
3(x

3 − x) + 1
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an+2 − 5an+1 + 6an = 0
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1, 3, 9, 21, 41, 71, 113, 169, 241, 331, 441, 573︸ ︷︷ ︸↓ interpolate
1
3(x

3 − x) + 1

1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099︸ ︷︷ ︸↓ “interpolate”

an+2 − 5an+1 + 6an = 0
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Polynomial interpolation.

Given: a0, a1, a2, a3
Find: c0, c1, c2, c3 such that for i = 0, 1, 2, 3 we have

ai = c0 + c1i+ c2i
2 + c3i

3.

Naive algorithm: solve the linear system
1 0 0 0

1 1 1 1

1 2 4 8

1 3 9 27



c0
c1
c2
c3

 =


a0
a1
a2
a3


Better algorithm: Newton interpolation / Chinese Remaindering
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C-finite interpolation.

Given: a0, a1, a2, a3, a4, a5
Find: c0, c1, c2 such that for i = 0, 1, 2 we have

c0ai + c1ai+1 + c2ai+2 = 0.

Naive algorithm: solve the linear system

a0 a1 a2
a1 a2 a3
a2 a3 a4

c0c1
c2

 =

00
0


Better algorithm: Berlekamp-Massey
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D-finite interpolation (shift case).

Given: a0, a1, a2, a3, a4
Find: c0,0, c0,1, c1,0, c1,1 such that for i = 0, 1, 2, 3 we have

(c0,0 + c0,1i)ai + (c1,0 + c1,1i)ai+1 = 0.

Naive algorithm: solve the linear system
a0 0 a1 0

a1 a1 a2 a2
a2 2a2 a3 2a3
a3 3a3 a4 3a4



c0,0
c0,1
c1,0
c1,1

 =


0

0

0

0


Better algorithm: Hermite-Pade approximation
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D-finite interpolation (differential case).

Given: a = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + O(x5)

Find: c0,0, c0,1, c1,0, c1,1 such that we have

(c0,0 + c0,1x)a(x) + (c1,0 + c1,1x)a
′(x) = O(x4)

Naive algorithm: solve the linear system
a0 0 a1 0

a1 a0 2a2 a1
a2 a1 3a3 2a2
a3 a2 4a4 3a3



c0,0
c0,1
c1,0
c1,1

 =


0

0

0

0


Better algorithm: Hermite-Pade approximation
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Note:

• There is a solution whenever the system is underdetermined.

• We do not expect any solutions for an overdetermined system.

• However, true equations must always be among the solutions.

• If there is no solution, then there is no equation.

There are three parameters:

• N. . . the number of terms available

• r. . . the order of the equation we are looking for

• d. . . the degree of the polynomial coefficients

We obtain an overdetermined linear system when

N ≥ (r+ 1)(d+ 2).
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degree d

order r

N = (r+ 1)(d+ 2)
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How can we guarantee that a recurrence valid for n = 0, . . . ,N
continues to hold for n > N?
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How can we guarantee that a recurrence valid for n = 0, . . . ,N
continues to hold for n > N?

In general, not at all.

14



How can we guarantee that a recurrence valid for n = 0, . . . ,N
continues to hold for n > N?

But we can always check for plausibility, in several ways:

• The larger N− (r+ 1)(d+ 2) is, the more “unlikely” is it to
get a fake solution.

• Correct equations tend to have shorter coefficients than fake
solutions, especially at the “borders”.

• Check if a recurrence guessed for an integer sequence keeps
producing integers.

• Check if an equation has “nice” algebraic or arithmetic
properties (p-curvature, fuchianity, left factors, etc.)
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order

5
10

15
20

25
30

35

degree

100
200

300
400

500
600

700

no. decimal digits

0

100

200

300

400

500

600

700

800

900
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How can we guarantee that a recurrence valid for n = 0, . . . ,N
continues to hold for n > N?

Sometimes a guessed equation can be proven a posteriori.

• Example 0: f(1) = 0, f(2) = 21, f(3) = 136,
(4n2−3)f(n+1)f(n−1) = (4n2−19)f(n)2+108n4−106n2+19

⇒ f(n) = 2n4 − 3n2 + 1

• Example 1: Bostan-Kauers proof that the Gessel generating
function is algebraic

• Example 2: Koutschan-Kauers-Zeilberger proof of the qTSPP
conjecture

In all these cases we know something else besides a finite number
of initial terms.
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In all these cases we know something else besides a finite number
of initial terms.
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For large examples, use Chinese remaindering.

Note: Typically most of the time goes into the generation of data.
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mod 18446743996400140305

1
572
501078
482751038
488303018470
508030462896342
538342947200181516
577872700751863164786
626269539439832591585670
683747166059532789022503974
750891137766578908948547719108
828574239110066799710989013499906
917922161227435669613159505496167676
1020305786902803494300781157935897370994
1137349436457510809432713625160726367507752
1270950083593386412514076385663692835592624538
1423305224864143608714201292395133297701805781190
1596948462297569128977333850067339597076143671599174
1794792632904434637733970210381237780751510573869448852
2020180802489170482240983522063850062062442831945706521058
2276945782485544050533812527718165404950592083788502956340820
2569479102540115376645251870565003988881863480038457458782141154
2902810618842364889597322272319209506348628861212359296519475054072
3282700182438691772975058795783593011309905942618892620293755122368058
3715743048172062529360018635260711989385204368216065659347534964951252700
4209490984413166198261377911514155398534710324664616679859112197846089803442
4772591355328127430474957618292856647615622728863983481852879063453175036918296
5414946799226735396487772284399384094187295802815528517902477743285342591140390106
6147898526693497080512367175752015012650504770410916128004351556264912659799990362840
6984436719325653614295187895597444365751156212619242853559702808070447537041069819223754
7939442033414781318489816587188801592028197638758047326403099508998248259473161675904953376
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minimal order non-minimal order

degree very high better
integer lengths better very long

Algorithm:

1 Choose a prime p

2 Construct two medium-order medium-degree equations mod p

3 Combine them to a low-order (high-degree) equation mod p

4 Chinese remaindering and rational reconstruction

5 Continue with further primes until the equation stabilizes
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an : 1, 5, 73, 1445, 33001, 819005, 21460825, 584307365,
16367912425, 468690849005, 13657436403073, . . .

↓
(n+ 2)3 an+2−(2n+ 3)(17n2+ 51n+ 39) an+1+(n+ 1)3 an = 0↓{
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√
2)n

n3/2
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√
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262144 n−3 + · · ·
)
,
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√
2)n
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1− 48−15

√
2

64 n−1 + 2057−1200
√
2

4096 n−2 − 87024−62917
√
2

262144 n−3 + · · ·
)}

↓
an ∼

√
3
4
+ 17

16
√

2

π3/2

(17+ 12
√
2)n

n3/2
(n→∞)
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• Every linear recurrence of order r with polynomial coefficients,

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0,

admits a fundamental system of solutions of the form

Γ(n)p/qφn exp(s(n1/q))nαa(n−1/q, log(n))

• Every linear differential equation of order r with polynomial
coefficients,

p0(x)f(x) + p1(x)f
′(x) + · · ·+ pr(x)f(r)(x) = 0,

admits a fundamental system of solutions of the form

exp(s(x−1/q)) xα a(x1/q, log(x))
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Officially, these series are just “formal solutions”, but inofficially
they can be viewed as “asymptotic solutions” for n→∞ and
x→ 0, respectively.

Example: Let (an)
∞
n=0 be defined by a0 = 1, a1 = 5 and

(n+ 2)3 an+2−(2n+ 3)(17n2+ 51n+ 39)an+1+(n+ 1)3 an = 0.
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n=0 be defined by a0 = 1, a1 = 5 and

(n+ 2)3 an+2−(2n+ 3)(17n2+ 51n+ 39)an+1+(n+ 1)3 an = 0.

The recurrence has the series solutions

s1(n) =
(17+12

√
2)n

n3/2

(
1− 48−15

√
2

64 n−1 + 2057−1200
√
2

4096 n−2 − O(n−3)
)
,

s2(n) =
(17−12

√
2)n

n3/2

(
1− 48+15

√
2

64 n−1 + 2057+1200
√
2

4096 n−2 − O(n−3)
)
.

We expect the asymptotic behaviour an

lim
n→∞ c1s1(n) + c2s2(n)

an
= 1

↓

∼ c1s1(n) + c2s2(n) for
n→∞, for some constants c1, c2.
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• This works nicely if one solution dominates all the others, e.g.,
when all the hypergeometric parts are equal and for the
exponential parts φn1 , . . . , φ

n
r we have |φ1| > |φ2|, . . . , |φr|.

• If we have |φ1| = · · · = |φi| > |φi|, . . . , |φr| for some i > 1,
then we usually have φj = ω

jφ1 for some ith root of unity ω.
In this case, consider (ain)

∞
n=0, . . . , (ain+i−1)

∞
n=0 separately.

• It is also annoying to have several solutions with the same φ
but a different α. In this case, instead of one constant c1, we
estimate several ci simultaneously.

an ∼ c1 s1(n) + c2 s2(n) (n→∞)

a1000 ≈ c1 s̄1(1000) + c2 s̄2(1000)
a1200 ≈ c1 s̄1(1200) + c2 s̄2(1200)

}
solve for c1, c2
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In the differential case, there is always a basis of generalizes series
solutions of the form

exp
(
s1x

−1/q + s2x
−2/q + · · ·+ sq−1x−(q−1)/q

)
× xα

×
((
c0 + c1x

1/q + c2x
2/q + c3x

3/q + · · ·
)

+
(
c0,1 + c1,1x

1/q + c2,1x
2/q + c3,1x

3/q + · · ·
)

log(x)

+ · · ·

+
(
c0,d + c1,dx

1/q + c2,dx
2/q + c3,dx

3/q + · · ·
)

log(x)d
)

To each such solution there corresponds an analytic function
solution, defined in some small open sector rooted at the origin.
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When there is even a basis of formal power series solutions, then
each such solution corresponds to an analytic function solution
defined in a neighborhood of the origin.

By specifying a suitable number of initial values, we can identify
any particular function in the solution space.

Example:

(x−1)(x−2)y ′′(x) + (x+3)(x+4)y ′(x) − (x−5)(x−6)y(x) = 0,

y(0) = 1, y ′(0) = −1.

What is the value y(3− i)?

In general, the values outside the disk of convergence depend on a
path from 0 to the evaluation point.
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• There is an algorithm which efficiently computes the value of
y, y ′, . . . , y(r) to any desired accuracy within the disk of
convergence.

• Using this algorithm repeatedly, one can walk along any given
path that avoids singularity to any given nonsingular point z
in the complex plane.

• You will lose accuracy on the way, but you can tell how much
accuracy is needed in the beginning to achieve a desired
accuracy at the end.

• This is called effective analytic continuation. Ask Marc
Mezzarobba or Joris van der Hoeven for details, references, or
implementations.
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p0(x)f(x) + p1(x)f
′(x) + · · ·+ pr(x)f(r)(x) = 0

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

p0(q
n)an + p1(q

n)an+1 + · · ·+ pr(qn)an+r = 0

(
p0 + p1∂+ · · ·+ pr∂r

)
·
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p0(x)f(x) + p1(x)f
′(x) + · · ·+ pr(x)f(r)(x) = 0

p0(n)an + p1(n)an+1 + · · ·+ pr(n)an+r = 0

p0(q
n)an + p1(q

n)an+1 + · · ·+ pr(qn)an+r = 0

(
p0 + p1∂+ · · ·+ pr∂r

)
· f(t) = 0
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Want: view polynomials L ∈ Q(x)[∂] as with rational function
coefficients as operators acting on functions.

· : A↑
operator
algebra

×

function
space↓
F→ F

Examples:

• differential operators: x · (t 7→ f(t)) := (t 7→ t f(t))
∂ · (t 7→ f(t)) := (t 7→ f ′(t))

• recurrence operators: x · (an)∞n=0 := (nan)
∞
n=0

∂ · (an)∞n=0 := (an+1)
∞
n=0

• q-recurrence operators: x · (an)∞n=0 := (qnan)
∞
n=0

∂ · (an)∞n=0 := (an+1)
∞
n=0
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Want: Action should be compatible with polynomial arithmetic

(L+M) · f = (L · f) + (M · f)
L · (f+ g) = (L · f) + (L · g)
(LM) · f = L · (M · f)

1 · f = f

Problem: This does not happen automatically.

Example: For differential operators, we have

(x∂) · f = x · f ′ = (t 7→ t f ′(t))

(∂x) · f = ∂ · (t 7→ tf(t)) = (t 7→ f(t) + t f ′(t))

We need to change multiplication so as to fit to the action.
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Definition

• Let R be a ring

• Let σ : R→ R be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

• Let δ : R→ R be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

• Let A = R[∂] be the set of all univariate polynomials in ∂ with
coefficients in R.

• Let + be the usual polynomial addition.

• Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂+ δ(a) for all a ∈ R.

• Then A together with this + and · is called an Ore Algebra.
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Examples: A = Q(x)[∂]

• differential operators: σ = id, δ = d
dx

∂x = x∂+ 1

• recurrence operators: σ(p(x)) = p(x+ 1), δ = 0

∂x = (x+ 1)∂

• q-recurrence operators: σ(p(x)) = p(qx), δ = 0

∂x = qx∂
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Let A = R[∂] be an Ore algebra acting on a function space F.
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Let A = R[∂] be an Ore algebra acting on a function space F.

• The annihilator of f ∈ F is defined as

ann(f) :=
{
a ∈ A : a · f = 0

}
⊆ A.

Its elements are called annihilating operators for f.

This is a left-ideal of A.

• The solution space of a ∈ A is defined as

V(a) :=
{
f ∈ F : a · f = 0

}
⊆ F.

Its elements are called solutions of a.

This is a C-submodule of F, where C = { c ∈ A : c∂ = ∂c }.
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Let A = R[∂] be an Ore algebra acting on a function space F.

• f ∈ F is called D-finite (w.r.t. the action of A on F) if

ann(f) 6= {0}.

• When R is a field, then this is the case if and only if

dimR R[∂↑
|

“D” -

]/ ann(f) <∞︸ ︷︷ ︸↑
“finite”

• Note also:
R[∂]/ ann(f) ∼= R[∂] · f ⊆ F

as left-R-modules.
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This generalizes to the case of several variables.

In this case, A = R[∂1, . . . , ∂m] acts on a function space F.

For each ∂i there is a separate σi and δi describing its
commutation with elements of R.

We have ∂i∂j = ∂j∂i for all i, j.

Typically, F contains functions in m variables and ∂i acts
nontrivially on the ith variable and does nothing with the others.

Example 1: Q(x, y, z)[∂x, ∂y, ∂z] acts naturally on the space F of
meromorphic functions in three variables.

Example 2: Q(x)[∂1, ∂2] can act on the space F of univariate
meromorphic functions via ∂1 · f = f ′, ∂2 · f = (t 7→ f(t+ 1)).
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Let A = R[∂1, . . . , ∂m] be an Ore algebra acting on F.

• The annihilator of f ∈ F is defined as

ann(f) :=
{
a ∈ A : a · f = 0

}
⊆ A.

This is a left-ideal of A.

• It remains true that

R[∂1, . . . , ∂m]/ ann(f) ∼= R[∂1, . . . , ∂m] · f ⊆ F

as left-R-modules.

• If R is a field, then f is called D-finite if

dimR R[∂1, . . . , ∂m]/ ann(f) <∞
• This is the case if and only if ann(f) ∩ R[∂i] 6= {0} for all i.
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Example:

For f(x, y) =
√
x+ y2−3x2+y and A = Q(x, y)[Dx, Dy] we have

ann(f) =
〈
(9x2 + y+ 12xy2)Dy + (2x+ 6x2y)Dx − (1+ 12xy),

(x+ 3x2y+ y2 + 3xy3)D2y + (y− 3x2)Dy − 1
〉
.

This function is D-finite because

ann(f) ∩Q(x, y)[Dy]

= 〈(x+ 3x2y+ y2 + 3xy3)D2y + (y− 3x2)Dy − 1〉 6= {0}

ann(f) ∩Q(x, y)[Dx]

= 〈2(x+ y2)(9x2 + y+ 12xy2)D2x − (27x2 − y+ 48xy2 + 24y4)Dx

+ (18x+ 12y2)〉 6= {0}.
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Example:

For f(n, k) = 2k +
(
n
k

)
and A = Q(n, k)[Sn, Sk] we have

ann(f) =
〈

+ Sk + Sn,

+ Sk + S2k
〉
.

This function is D-finite because

ann(f) ∩Q(n, k)[Sk]

= 〈 + Sk + S2k〉 6= {0}

ann(f) ∩Q(n, k)[Sn]

= 〈−1− n+ (3− k+ 2n)Sn + (−2+ k− n)S2n〉 6= {0}.

42



Example:

For f(n, k) = 2k +
(
n
k

)
and A = Q(n, k)[Sn, Sk] we have

ann(f) =
〈

+ Sk + Sn,

+ Sk + S2k
〉
.

This function is D-finite because

ann(f) ∩Q(n, k)[Sk]

= 〈 + Sk + S2k〉 6= {0}

ann(f) ∩Q(n, k)[Sn]

= 〈−1− n+ (3− k+ 2n)Sn + (−2+ k− n)S2n〉 6= {0}.

42



Outline

• Introduction
• One variable

◦ Examples
◦ Algebraic Setup
◦ Closure Properties
◦ Evaluation
◦ Closed Forms

• Several Variables

◦ Examples
◦ Algebraic Setup
◦ Gröbner Bases
◦ Initial Values
◦ Creative Telescoping

• Software
• References

• Guessing

• Asymptotics

• Ore Algebras

• Closure Properties

• Creative Telescoping

43



Outline

• Introduction
• One variable

◦ Examples
◦ Algebraic Setup
◦ Closure Properties
◦ Evaluation
◦ Closed Forms

• Several Variables

◦ Examples
◦ Algebraic Setup
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Recall:

• Q(
√
2) = {p(

√
2) : p ∈ Q[X] } ⊆ C

• This is a Q-vector space of dimension 2.

• Any three elements are Q-linearly dependent.

• In particular, for any z ∈ Q(
√
2) there exist a, b, c ∈ Q, not

all zero, such that a+ bz+ cz2 = 0.

• Q(
√
2) ∼= Q[X]/〈X2 − 2〉 ∼= Q+QX

• More generally, when α ∈ C is algebraic of degree d, then so
is every element of Q(α).
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• Q(
√
2) ∼= Q[X]/〈X2 − 2〉 ∼= Q+QX

 (a, b, c) = (14, 4,−1).
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 14+ 4(2+ 3
√
2) − (2+ 3

√
2)2 = 0

• More generally, when α ∈ C is algebraic of degree d, then so
is every element of Q(α).
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Analogously:

• Q(x)[Dx] ·

Airy function↓

Ai = {L ·Ai : L ∈ Q(x)[Dx] }

• This is a Q(x)-vector space of dimension 2.

• Any three elements are Q-linearly dependent.

• In particular, for every f ∈ Q(x)[Dx] ·Ai there exist
a, b, c ∈ Q(x), not all zero, such that af+ bf ′ + cf ′′ = 0.

• Q(x)[Dx] ·Ai ∼= Q(x)[Dx]/〈D2x − x〉 ∼= Q(x) +Q(x)Dx

• More generally, when f is D-finite of order r, then so is every
element of Q(x)[Dx] · f.
• Note: When R is a field, then R[∂] is a left-Euclidean domain,

i.e., there is a notion of left-division with remainder.
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 (a, b, c) = (−4x3 + 9x2 + 12x+ 8, 9− 8x, 4x2 − 9x− 6)
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 (−4x3 + 9x2 + 12x+ 8)
(
2xAi(x) + 3Ai ′(x)

)
+ (9− 8x)

(
2xAi(x) + 3Ai ′(x)

) ′
+ (4x2 − 9x− 6)

(
2xAi(x) + Ai ′(x)

) ′′
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Recall:

• When α and β are algebraic, then so are α+ β and αβ.

•
√
2+
√
3 ∈ Q(

√
2,
√
3) = {p(

√
2,
√
3) : p ∈ Q[X, Y]} ⊆ C.

• This is a vector space of dimension 4.

• Any five elements of it must be linearly dependent.

• In particular, there must be a, b, c, d, e ∈ Q such that

Analogously:

• When f and g are D-finite, then so are f+ g and fg.

• f+ g ∈ Q(x)[∂] · f+Q(x)[∂] · g
= Q(x)f+ · · ·+Q(x)∂r−1f︸ ︷︷ ︸

∼= Q(x)[∂]/〈L〉

+ Q(x)g+ · · ·+Q(x)∂s−1g︸ ︷︷ ︸
∼= Q(x)[∂]/〈M〉

• This is a Q(x)-vector space of dimension at most r+ s.

• Any r+ s+ 1 many elements must be linearly dependent.

• In particular, there must be a Q(x)-linear relation among
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Example. f(n) = n!, g(n) = 2n, h(n) = f(n) + g(n).
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ah(n) + bh(n+ 1) + c h(n+ 2) = 0
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Example. f(n) = n!, g(n) = 2n, h(n) = f(n) + g(n).
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)
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)
+ c

(
(n+ 2)(n+ 1)f(n) + 4g(n)

)
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Example. f(n) = n!, g(n) = 2n, h(n) = f(n) + g(n).
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 (a, b, c) = (2n(1+ n), 2− 3n− n2, n− 1)
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Example. f(n) = n!, g(n) = 2n, h(n) = f(n) + g(n).

2n(n+ 1)h(n) − (n2 + 3n− 2)h(n+ 1) + (n− 1)h(n+ 2) = 0
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Example. f(n) = n!, g(n) = 2n, h(n) = f(n) + g(n).(
2n(n+ 1) − (n2 + 3n− 2)Sn + (n− 1)S2n

)
· h = 0
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Closure properties.

If f, g are D-finite, then so are ∂ · f, f+ g, and fg.

Furthermore, if f is D-finite with respect to Q(x)[Dx], then

•
∫
f is D-finite

• f ◦ g is D-finite for every algebraic(!) function g

• if f(x) =
∑∞
n=0 anx

n, then (an)
∞
n=0 is D-finite w.r.t. Q(n)[Sn].

If (an)
∞
n=0 is D-finite with respect to Q(n)[Sn], then

•
(∑n

k=0 ak
)∞
n=0

is D-finite

• (aun+v)
∞
n=0 is D-finite for every fixed u, v ∈ N.

• f(x) =
∑∞
n=0 anx

n is D-finite w.r.t. Q(x)[Dx].
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∞∑
n=0

Hn(x)Hn(y)
1

n!
tn

?
=

1√
1− 4t2

exp
(4t(xy− t(x2 + y2))

1− 4t2

)

?
= 0
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∞∑
n=0

Hn(x)Hn(y)
1

n!
tn

?
=

1√
1− 4t2

exp
(4t(xy− t(x2 + y2))

1− 4t2

)

?
= 0

Hermite polynomials:

H0(x) = 1

H1(x) = 2x

H2(x) = 4x
2 − 2

H3(x) = 8x
3 − 12x

H4(x) = 16x
4 − 48x2 + 12

H5(x) = 32x
5 − 160x3 + 120x

...
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∞∑
n=0

Hn(x)Hn(y)
1

n!
tn

?
=

1√
1− 4t2

exp
(4t(xy− t(x2 + y2))

1− 4t2

)

?
= 0

Hermite polynomials:

H0(x) = 1

H1(x) = 2x

Hn+2(x) = 2xHn+1(x) − 2(n+ 1)Hn(x)
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∞∑
n=0

Hn(x)Hn(y)
1

n!
tn

?
=

1√
1− 4t2

exp
(4t(xy− t(x2 + y2))

1− 4t2

)

?
= 0

This is an identity between power series.

Consider x and y as fixed parameters.
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If we write lhs(t) =
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n=0 ant

n, then

an+4 =
4xy

n+ 4
an+3 +

4(2n− 2x2 − 2y2 + 5)

n+ 4
an+2

+
16xy

n+ 4
an+1 −

16(n+ 1)

n+ 4
an.

By a0 = a1 = a2 = a3 = 0, it follows that an = 0 for all n.
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Closure properties are also available in the case of several variables.

Recall that f is called D-finite w.r.t. an Ore algebra K[∂1, . . . , ∂m] if

dimK K[∂1, . . . , ∂m]/ ann(f) <∞.
The theory of Gröbner bases works also for Ore algebras.

In particular, a vector space basis
of K[∂1, . . . , ∂m]/ ann(f) is given
by the terms ∂e11 · · ·∂

em
m which are

not the leading term of any ele-
ment of ann(f).
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Let F be a Gröbner basis of ann(f) ⊆ K[∂x, ∂y].

Let G be a Gröbner basis of ann(g) ⊆ K[∂x, ∂y].

Then ann(f+ g) contains (at least) the operators L ∈ K[∂x, ∂y]
with L · f = 0 and L · g = 0.

To find such operators

• Make an ansatz L =
∑

(u,v) au,v∂
u
x∂
v
y

• Compute NF(L, F) and NF(L,G).

• Equate their coefficients to zero and solve the resulting linear
system for the undetermined coefficients au,v.

For the support of the ansatz, proceed FGLM-like.
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Closure properties discussed before:

• f(x) D-finite ⇒ F(x) =
∫x
0 f(t)dt D-finite

• (an)
∞
n=0 D-finite ⇒ (∑n

k=0 ak
)∞
n=0

D-finite

Somewhat more subtle closure properties:

• f(x, t) D-finite ⇒ F(x) =
∫1
0 f(x, t)dt D-finite

• f(x, t) D-finite ⇒ F(x) = f(x, 0) D-finite

• (an,k)
∞
n,k=0 [proper] D-finite ⇒ (∑n

k=0 an,k
)∞
n=0

D-finite.
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Creative telescoping: A technique to realize such closure properties.
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Creative telescoping: A technique to realize such closure properties.

Idea: Suppose we know L ∈ ann(f(x, y)) of the form

L = p0(x) + p1(x)Dx︸ ︷︷ ︸
“telescoper”

+ y
(
q0(x, y) + q1(x, y)Dx + q2(x, y)Dy︸ ︷︷ ︸

“certificate”

)
.

Then

L · f(x, y) = p0(x)f(x, y) + p1(x)fx(x, y) + y(· · ·) = 0

implies
(p0(x) + p1(x)Dx) · f(x, 0) = 0

(Note: This is only useful if (p0, p1) 6= (0, 0).)
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Creative telescoping: A technique to realize such closure properties.

Idea: Suppose we know L ∈ ann(f(x, k)) of the form

L = p0(x) + p1(x)Dx︸ ︷︷ ︸
“telescoper”

+(Sk−1)
(
q0(x, k) + q1(x, k)Dx + q2(x, k)Sk︸ ︷︷ ︸

“certificate”

)
.

Then

L · f(x, k) = p0(x)f(x, k) + p1(x)fx(x, k) = g(x, k+ 1) − g(x, k)

implies

(p0(x) + p1(x)Dx) ·
n∑
k=0

f(x, k) = g(x, n+ 1) − g(x, 0).
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Do such operators always exist?

Yes.∗

How do we find them?

• Elimination, Takayama’s algorithm, etc.

• Zeilberger’s algorithm, Chyzak’s algorithm, etc.

• Apagodu-Zeilberger ansatz

• Bostan-Chen-Chyzak-Li’s reduction based algorithms

∗ in the differential case; for other Ore algebras, we need a slightly stronger
condition than D-finiteness, “proper” D-finiteness.
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Example: f(x, y) =
1

1+ y− x2y4

c0(x)f(x, y) =

← degy ≤ 12

(1+ y− x2y4)4
1

1+ y− x2y4
(1+ y− x2y4)3

(1+ y− x2y4)3

c1(x)Dx f(x, y) =

← degy ≤ 12

(1+ y− x2y4)4
2xy4

(1+ y− x2y4)2
(1+ y− x2y4)2

(1+ y− x2y4)2

c2(x)D
2
x f(x, y) =

← degy ≤ 12

(1+ y− x2y4)4
2(3x2y8 + y5 + y4)

(1+ y− x2y4)3
(1+ y− x2y4)

(1+ y− x2y4)

c3(x)D
3
x f(x, y) =

← degy ≤ 12

(1+ y− x2y4)4
24(x3y12 + xy9 + xy8)

(1+ y− x2y4)4
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Example: f(x, y) =
1

1+ y− x2y4

Compare coefficients of the numerators with respect to y and solve
the resulting linear system

13 eqns

 ︸ ︷︷ ︸
14 vars


· · · · · ·

...
. . .

...
...

. . .
...

· · · · · ·





c0(x)
...

c3(x)
q0(x)

...
q9(x)


= 0

Every solution gives rise to a telescoper/certificate pair.
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More generally:

• For every rational function f = p
q , we can find a telescoper in

this way.

Even more generally:

• For every hyperexponential term exp(ab )
∏m
i=1 c

ei
i we can find

a telescoper in this way.

Summation case:

• For every proper hypergeom. term c pxqy
∏m
i=1 Γ(aix+a

′
iy+a

′′
i )
ei

we can find a telescoper in this way.

Most generally (so far):

• For every “proper D-finite function” we can find a telescoper
in this way.
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• In all these cases there are good a priori bounds for the order
of the telescopers.

• For hypergeometric and hyperexponential terms, there are also
good bounds for the degrees.

• For the hypergeometric case, we even have bounds for the
integer lengths in the coefficients.
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degree d

order r
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• There are also good for degree and integer lengths of
telescopers of nonminimal order.

• These formulas reflect the fact that larger order yields smaller
degree and height.

• The bounds are reasonably sharp and give a good idea about
the shape of the telescopers.

• What about the certificates?

• We can bound their size by a similar reasoning.

• It turns out that certificates are much larger than telescopers.
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Example: For f(x, y) = x−y
1+y−x2y2

we have

P = −x2(27 + 256x)(−21 − 12x + 1740x2 − 240x3 + 40x4)D3
x − 3x(−567 − 10072x + 11052x2 +

519680x3 − 51560x4 + 5120x5)D2
x − 24(−21 − 1149x − 868x2 + 17700x3 − 2940x4 +

80x5)Dx + 96(21 − 237x + 1355x2 − 395x3 + 10x4)

Q = (168 + 9864x − 640x2 − 98240x3 + 10880x4 − 320x5 + 252y2 − 55764xy2 + 67920x2y2 +

423120x3y2 − 48480x4y2 + 1440x5y2 + 1596y3 − 70932xy3 + 154640x2y3 + 397840x3y3 −

47840x4y3 + 1440x5y3 + 1386y4 − 24966xy4 + 68448x2y4 + 47160x3y4 + 287280x4y4 −

32400x5y4 +960x6y4 +126y5 −36xy5 +12480x2y5 −9072x3y5 +474480x4y5 −49920x5y5 +

5760x6y5 + 42y6 + 2382xy6 + 103884x2y6 − 232776x3y6 + 53600x4y6 + 2640x5y6 +

5600x6y6 + 126y7 + 2736xy7 + 72240x2y7 − 326256x3y7 − 102000x4y7 + 18720x5y7 −

63xy8 − 18x2y8 − 7200x3y8 + 26880x4y8 − 297240x5y8 + 32400x6y8 − 960x7y8 − 63xy9 −

18x2y9 − 6528x3y9 + 19296x4y9 − 253880x5y9 + 19760x6y9 − 640x7y9 + 252xy10 −

336x2y10 − 76776x3y10 − 35280x4y10 + 80640x5y10 − 16800x6y10 + 21x2y12 + 6x3y12 +

2400x4y12 − 8960x5y12 + 99080x6y12 − 10800x7y12 + 320x8y12)/((x − y)(−1 − y + xy4)2)

Note: For some applications the certificate is not needed.
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Can we compute telescopers without also computing certificates?
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Can we compute telescopers without also computing certificates?

Recall: indefinite integration of rational functions:∫
3t4 − 11t3 − 3t2 − 13t

(t− 1)3(t+ 1)2
dt

=
−7t3 − t2 − 17t+ 1

(t− 1)3(t+ 1)2
+

∫
3t− 1

(t− 1)(t+ 1)
dt

=
−7t3 − t2 − 17t+ 1

(t− 1)3(t+ 1)2
+ log(1− t) + 2 log(1+ t)

In other words:

3t4 − 11t3 − 3t2 − 13t

(t− 1)3(t+ 1)2
=
∂

∂t

(
· · ·
)
+

3t− 1

(t− 1)(t+ 1)
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Recall: indefinite integration of rational functions:∫
3t4 − 11t3 − 3t2 − 13t

(t− 1)3(t+ 1)2
dt
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+ log(1− t) + 2 log(1+ t)

In other words:

3t4 − 11t3 − 3t2 − 13t

(t− 1)3(t+ 1)2
=
∂

∂t

(
· · ·
)
+

degt(num) < degt(den)

3t− 1

no multiple roots

(t− 1)(t+ 1)
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Can we compute telescopers without also computing certificates?

Recall also: the creative telescoping problem for rational functions:

GIVEN f(x, t), FIND g(x, t) and c0(x), . . . , cr(x) such that

c0(x)f(x, t) + c1(x)
∂

∂x
f(x, t) + · · ·+ cr(x)

∂r

∂xr
f(x, t) =

∂

∂t
g(x, t)
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Can we compute telescopers without also computing certificates?

Bostan-Chen-Chyzak-Li’s algorithm:

c0(x) f(x, t) =
∂

∂t

(
· · ·
)
+
p0(x, t)

q(x, t)

c1(x)
∂

∂x
f(x, t) =

∂

∂t

(
· · ·
)
+
p1(x, t)

q(x, t)

c2(x)
∂2

∂x2
f(x, t) =

∂

∂t

(
· · ·
)
+
p2(x, t)

q(x, t)
...

+

 cr(x)

∂r

∂xr
f(x, t) =

∂

∂t

(
· · ·
)
+
pr(x, t)

q(x, t)

c0(x)f(x, t) + · · ·+ cr(x)
∂r

∂xr
f(x, t) =

∂

∂t

(
· · ·
)
+

!
= 0
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· · ·
)
+

!
= 0
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Can we compute telescopers without also computing certificates?

Bostan-Chen-Chyzak-Li’s algorithm:

c0(x) p0(x, t)

+ c1(x) p1(x, t)

+ c2(x) p2(x, t)

...

+ cr(x) pr(x, t)

!
= 0
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Can we compute telescopers without also computing certificates?

Bostan-Chen-Chyzak-Li’s algorithm:

c0(x)
(
p0,0(x) + p1,0(x)t+ · · · · · ·+ pd,0(x)td

)
+ c1(x)

(
p0,1(x) + p1,1(x)t+ · · · · · ·+ pd,1(x)td

)
+ c2(x)

(
p0,2(x) + p1,2(x)t+ · · · · · ·+ pd,2(x)td

)
...

+ cr(x)
(
p0,r(x) + p1,r(x)t+ · · · · · ·+ pd,r(x)td

)
!
= 0
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Can we compute telescopers without also computing certificates?

Bostan-Chen-Chyzak-Li’s algorithm:
p0,0(x) p0,1(x) · · · pd,r(x)

p1,0(x)
...

...
...

pd,0(x) · · · · · · pd,r(x)



c0(x)
c1(x)

...
cr(x)

 =


0
...
...
0



• Note: A nontrivial solution is guaranteed as soon as r > d

• Recall:
degt pi(x, t) ≤ d < degt q(x, t) < degt[[denom. of f(x, t)]]

• In general, we can’t do better.
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