SCSS 2016 Ochanomizu University, Tokyo, March 28–31, 2016 Symbolic Surprises: Unexpected Findings in Combinatorics, Number Theory, and Special Functions

Peter Paule

Johannes Kepler University Linz Research Institute for Symbolic Computation (RISC)

A Bit of History

SYMBOLIC COMPUTATION in Combinatorics, Number Theory, and Special Functions

Number Theorists played a pioneering role; e.g.: "Computers in Number Theory" (Oxford, 1969¹)

¹taken from John B. Cosgrove's home page

Volume 1, 1st edition 1968, Exercise 1.2.6.63: [50] Develop computer algebra programs for simplifying sums that involve binomial coefficients.

1st edition 1989; contains Gosper's algorithm (1978).

2nd edition 1994: What is the difference to the 1st edition?

Answer:

IX. The eighteenth Century. 174 中方式の算本い 开本あ seller. 法来が 山 ーという立つ うろろろ 合 高除 立方の Fig. 37. The Pascal triangle as given in Murai's Sampo Döshi-mon (1781).

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Web source: https://archive.org/stream/historyofjapanes00smitiala

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Telescoping (Gosper):

$$(-1)^k \binom{n}{k} = (-1)^k \binom{n-1}{k} - (-1)^{k-1} \binom{n-1}{k-1},$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Telescoping (Gosper):

$$(-1)^k \binom{n}{k} = (-1)^k \binom{n-1}{k} - (-1)^{k-1} \binom{n-1}{k-1} = g(k) - g(k-1),$$

$$\sum_{k=0}^{\ell} (-1)^k \binom{n}{k} = (-1)^{\ell} \binom{n-1}{\ell} - (-1)^{-1} \binom{n-1}{-1} = g(\ell) - g(-1)$$

$$= (-1)^{\ell} \binom{n-1}{\ell}.$$

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

Telescoping (Gosper):

$$(-1)^k \binom{n}{k} = (-1)^k \binom{n-1}{k} - (-1)^{k-1} \binom{n-1}{k-1} = g(k) - g(k-1),$$

$$\sum_{k=0}^{\ell} (-1)^k \binom{n}{k} = (-1)^{\ell} \binom{n-1}{\ell} - (-1)^{-1} \binom{n-1}{-1} = g(\ell) - g(-1)$$

$$= (-1)^{\ell} \binom{n-1}{\ell}.$$

We know that there are identities like

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

but $\binom{n}{k}$ does not telescope! \rightsquigarrow Creative Telescoping (Zeilberger):

Recall:
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Creative Telescoping (Zeilberger):

$$\binom{n+1}{k} - 2\binom{n}{k} = -\binom{n}{k} + \binom{n}{k-1} = g(k) - g(k-1)$$

where

$$g(k) = -\binom{n}{k}.$$

Recall:
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Creative Telescoping (Zeilberger):

$$\binom{n+1}{k} - 2\binom{n}{k} = -\binom{n}{k} + \binom{n}{k-1} = g(k) - g(k-1)$$
where

$$g(k) = -\binom{n}{k}.$$

$$\sum_{k=0}^{n+1} \left(\binom{n+1}{k} - 2\binom{n}{k} \right) = \sum_{k=0}^{n+1} \binom{n+1}{k} - 2\sum_{k=0}^{n+1} \binom{n}{k} = g(n+1) - g(-1) = 0.$$

Recall:
$$\sum_{k=0}^{n+1} \left(\binom{n+1}{k} - 2\binom{n}{k} \right) = \sum_{k=0}^{n+1} \binom{n+1}{k} - 2\sum_{k=0}^{n+1} \binom{n}{k} = g(n+1) - g(-1) = 0.$$

Consequently, for

$$S(n) := \sum_{k=0}^{n} \binom{n}{k}$$

one has:

$$S(n+1) - 2S(n) = 0, \quad n \ge 0.$$

Alternatively,

Recall:
$$\sum_{k=0}^{n+1} \left(\binom{n+1}{k} - 2\binom{n}{k} \right) = \sum_{k=0}^{n+1} \binom{n+1}{k} - 2\sum_{k=0}^{n+1} \binom{n}{k} = g(n+1) - g(-1) = 0.$$

Consequently, for

$$S(n) := \sum_{k=0}^{n} \binom{n}{k}$$

one has:

$$S(n+1) - 2S(n) = 0, \quad n \ge 0.$$

Alternatively,

$$S(n) = 2^n, \quad n \ge 0.$$

Zeilberger's algorithm solves Knuth's [50]-problem from 1968:

1st edition 1996

An algorithmic supplement to "Concrete Mathematics":

1st edition 2011

A conversation with Donald E. Knuth conducted by Edgar G. Daylight (Paris, June 18, 2014):

Knuth: Learning how to manipulate formulas fluently, and how to see patterns in formulas instead of patterns in numbers — that's what my book "Concrete Mathematics" is essentially about. A conversation with Donald E. Knuth conducted by Edgar G. Daylight (Paris, June 18, 2014) [contd.]:

Edgar: Which was also the topic of Manuel Kauers this morning?

Knuth: Right. In fact, he and Peter Paule in Austria recently published a beautiful book called "The Concrete Tetrahedron", which is sort of the sequel to "Concrete Mathematics".

CONTENTS OF THE "CONCRETE TETRAHEDRON"

1 Introductio	n
1.1 Selecti	on Sort and Quicksort 1
1.2 Recurr	ence Equations
1.3 Symbo	lic Sums
1.4 Genera	ting Functions
1.5 Asymp	totic Estimates
1.6 The Co	oncrete Tetrahedron 13
1.7 Proble	ms 15
2 Formal Pov	rer Series
2.1 Basic I	Facts and Definitions
2.2 Differe	ntiation and Division
2.3 Sequer	nces of Power Series
2.4 The Tr	ansfer Principle
2.5 Multiv	ariate Power Series
2.6 Trunca	ted Power Series
2.7 Proble	ms
2 Dalamanial	- 42
3 Polynomial	<u>s</u>
3.1 Polync	mials as Power Series
3.2 Polync	mials as Sequences
3.3 The Te	trahedron for Polynomials 48
3.4 Polync	mials as Solutions
3.5 Polync	mials as Coefficients
3.6 Applic	ations

4	C-F	Finite Sequences		
	4.1	Fibonacci Numbers	63	
	4.2	Recurrences with Constant Coefficients	66	
	4.3	Closure Properties	70	
	4.4	The Tetrahedron for C-finite Sequences	74	
	4.5	Systems of C-finite Recurrences	78	
	4.6	Applications	80	
	4.7	Problems	84	
-			07	
5	5 Hypergeometric Series			
	5.1	The Binomial Theorem	87	
	5.2	Basic Facts and Definitions	90	
	5.3	The Tetrahedron for Hypergeometric Sequences	94	
	5.4	Indefinite Summation	98	
	5.5	Definite Summation	103	
	5.6	Applications	107	
	5.7	Problems	110	
-				
6	Alge	ebraic Functions	Ш3	
	6.1	Catalan Numbers	113	

6	Alge	ebraic Functions 1	13
	6.1	Catalan Numbers 1	13
	6.2	Basic Facts and Definitions 1	16
	6.3	Puiseux Series and the Newton Polygon 1	19
	6.4	Closure Properties	23
	6.5	The Tetrahedron for Algebraic Functions	25
	6.6	Applications	30
	6.7	Problems	33
7	Hole	onomic Sequences and Power Series	37
	7.1	Harmonic Numbers 12	37
	7.2	Equations with Polynomial Coefficients 12	39
	7.3	Generalized Series Solutions 14	44
	7.4	Closed Form Solutions	48
	7.5	The Tetrahedron for Holonomic Functions	52
	7.6	Applications	57
	7.7	Problems	60

Further Concrete Surprises

Emil Artin¹: "... determine the number of possible products of n elements given in linear order. For example, the elements a_1, a_2, a_3, a_4 in that order yield the products $(a_1a_2)(a_3a_4)$, $a_1(a_2(a_3a_4)))$, etc.

¹Exercise 2, p.2, of "Algebra with Galois Theory", Courant LNS 15

Emil Artin¹: "... determine the number of possible products of n elements given in linear order. For example, the elements a_1, a_2, a_3, a_4 in that order yield the products $(a_1a_2)(a_3a_4)$, $a_1(a_2(a_3a_4)))$, etc.

Hint. Let c_{n-1} be the number of products of a_1, a_2, \ldots, a_n . Find a recursion formula for c_n and use the [Lagrange] generating function

$$F(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n + \dots$$
."

$$\begin{array}{l} c_0 = 1:(a_1);\\ c_1 = 1:(a_1a_2);\\ c_2 = 2:a_1(a_2a_3),(a_1a_2)a_3;\\ c_3 = 5:a_1(a_2(a_3a_4)),a_1((a_2a_3)a_4),(a_1a_2)(a_3a_4),\\ & (a_1(a_2a_3))a_4,((a_1a_2)a_3)a_4; \ {\rm etc.} \end{array}$$

 $^{1}\mathsf{Exercise}$ 2, p.2, of "Algebra with Galois Theory", Courant LNS 15

<< RISC `GeneratingFunctions `

Package GeneratingFunctions version 0.7 written by Christian Mallinger Copyright 1996-2009, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

<< RISC `GeneratingFunctions `

Package GeneratingFunctions version 0.7 written by Christian Mallinger Copyright 1996-2009, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

```
In[3]:=
```

```
GuessNext2Values[Li_] := Module[{rec},
rec = GuessRE[Li, c[k], {1, 2}, {0, 3}];
RE2L[rec[[1]], c[k], Length[Li] + 1]]
```

<< RISC `GeneratingFunctions`

Package GeneratingFunctions version 0.7 written by Christian Mallinger Copyright 1996-2009, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

In[3]:=

```
GuessNext2Values[Li_] := Module[{rec},
rec = GuessRE[Li, c[k], {1, 2}, {0, 3}];
RE2L[rec[[1]], c[k], Length[Li] + 1]]
```

In[5]:=

GuessNext2Values[{1, 2, 4, 8, 16}]

<< RISC `GeneratingFunctions`

Package GeneratingFunctions version 0.7 written by Christian Mallinger Copyright 1996-2009, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

In[3]:=

```
GuessNext2Values[Li_] := Module[{rec},
rec = GuessRE[Li, c[k], {1, 2}, {0, 3}];
RE2L[rec[[1]], c[k], Length[Li] + 1]]
```

In[5]:=

```
GuessNext2Values[{1, 2, 4, 8, 16}]
```

Out[5]=

```
\{1, 2, 4, 8, 16, 32, 64\}
```

What is the idea behind?

GuessRE[{1, 2, 4, 8, 16}, c[k]] $\{ \{ -2 c [k] + c [1 + k] = 0, c [0] = 1 \}, oqf \}$ GuessRE[{1, 3, 6, 10, 15, 21}, c[k]] $\{ \{ (-3 - k) c [k] + (1 + k) c [1 + k] = 0, c [0] = 1 \}, ogf \}$ GuessRE[{1, 1, 2, 6, 24, 120}, c[k]] $\{\{(-1-k) c[k] + c[1+k] = 0, c[0] = 1\}, oqf\}$

 $\{ \{ -c[k] - c[1+k] + c[2+k] == 0, c[0] == 1, c[1] == 1 \}, \}$

NOTE. The first 3 sequences are hypergeometric!

GuessRE[{1, 1, 2, 3, 5, 8}, c[k]]

NOTE. In general, there can be infinitely many recursive descriptions of given sequences!

EXAMPLE.
$$c(k) := \sum_{j=1}^{k} j = 1 + 2 + \dots + k.$$

From the recursive structure of the sum quantifier:

$$c(k)=c(k-1)+k, \ k\geq 1, \ \text{and} \ c(0)=1.$$

GuessRE[...] computed"

$$(k+1)c(k+1) - (k+3)c(k) = 0, k \ge 0, \text{ and } c(0) = 1.$$

Other recurrences are, for example:

$$\begin{array}{l} c(k+2)-2c(k+1)+c(k)=1, \ k\geq 0, \ \text{and} \ c(0)=1, c(1)=3, \\ c(k)=(k+1)(k+2)/2, \ k\geq 0; \ \text{etc.} \end{array}$$

A sequence $(c_k)_{k \ge 0}$ is called hypergeometric : \iff \exists rational function r(x) s.t. for all $k \ge 0$: $\frac{c_{k+1}}{c_k} = r(k)$.

Suppose we can write the rational function r(k) as:

$$\frac{c_{k+1}}{c_k} = \frac{(k+a_1) \dots (k+a_p)}{(k+b_1) \dots (k+b_q)} \frac{z}{k+1},$$

then:

$$C_k = C_0 \frac{(a_1)_k \dots (a_p)_k}{(b_1)_k \dots (b_q)_k} \frac{z^k}{k!}$$

NOTE. This provides a normal form representation for hypergeometric sequences!

```
Rising Factorials
```

```
In[6]:=
          (a_{k})_{k} := \text{Pochhammer}[a, k]
In[7]:=
          \{(a)_0, (a)_1, (a)_2, (a)_5\}
Out[7]=
          \{1, a, a (1+a), a (1+a) (2+a) (3+a) (4+a)\}
          Binomials
In[8]:=
          \binom{n}{k} := Binomial[n, k]
In[9]:=
          \begin{pmatrix} a \\ a \end{pmatrix}
Out[9]=
          \frac{1}{6}(-2+a)(-1+a)a
```

Back to Artin's Problem: IDENTIFY A RECURSIVE PATTERN

$$\begin{array}{l} c_0 = 1:(a_1);\\ c_1 = 1:(a_1a_2);\\ c_2 = 2:a_1(a_2a_3),(a_1a_2)a_3;\\ c_3 = 5:a_1(a_2(a_3a_4)),a_1((a_2a_3)a_4),(a_1a_2)(a_3a_4),\\ & (a_1(a_2a_3))a_4,((a_1a_2)a_3)a_4; \, {\rm etc.} \end{array}$$

For example,

$$c_3 = c_0 \, c_2 + c_1 \, c_1 + c_2 \, c_0.$$

Back to Artin's Problem: IDENTIFY A RECURSIVE PATTERN

$$\begin{array}{l} c_0 = 1:(a_1);\\ c_1 = 1:(a_1a_2);\\ c_2 = 2:a_1(a_2a_3),(a_1a_2)a_3;\\ c_3 = 5:a_1(a_2(a_3a_4)),a_1((a_2a_3)a_4),(a_1a_2)(a_3a_4),\\ & (a_1(a_2a_3))a_4,((a_1a_2)a_3)a_4; \, {\rm etc.} \end{array}$$

For example,

$$c_3 = c_0 c_2 + c_1 c_1 + c_2 c_0.$$

In general, for $n \ge 1$:

$$c_n = \sum_{k=0}^{n-1} c_k \, c_{n-1-k}.$$

NOTE.

Back to Artin's Problem: IDENTIFY A RECURSIVE PATTERN

$$\begin{array}{l} c_0 = 1:(a_1);\\ c_1 = 1:(a_1a_2);\\ c_2 = 2:a_1(a_2a_3),(a_1a_2)a_3;\\ c_3 = 5:a_1(a_2(a_3a_4)),a_1((a_2a_3)a_4),(a_1a_2)(a_3a_4),\\ & (a_1(a_2a_3))a_4,((a_1a_2)a_3)a_4; \, {\rm etc.} \end{array}$$

For example,

$$c_3 = c_0 \, c_2 + c_1 \, c_1 + c_2 \, c_0.$$

In general, for $n \ge 1$:

$$c_n = \sum_{k=0}^{n-1} c_k \, c_{n-1-k}.$$

NOTE. It was relatively easy to identify this recursive pattern; however, this recurrence is not linear!
In[10]:=

GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]

In[10]:=

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

```
\{\{-2 (1+2k) c[k] + (2+k) c[1+k] = 0, c[0] = 1\}, ogf\}
```

In[10]:=

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

$$\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$$

Consequently,

$$\frac{c_{k+1}}{c_k} = \frac{\left(k + \frac{1}{2}\right) (k+1)}{(k+2)} \frac{4}{k+1};$$

i.e., for $k \ge 0$:

$$C_{k} = C_{0} \frac{(a_{1})_{k} \dots (a_{p})_{k}}{(b_{1})_{k} \dots (b_{q})_{k}} \frac{z^{k}}{k!} = \frac{\left(\frac{1}{2}\right)_{k} (1)_{k}}{(2)_{k}} \frac{4^{k}}{k!}$$
$$= \frac{1}{k+1} \left(\frac{2k}{k}\right)$$

In[10]:=

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

$$\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$$

Consequently,

$$\frac{c_{k+1}}{c_k} = \frac{\left(k + \frac{1}{2}\right) (k+1)}{(k+2)} \frac{4}{k+1};$$

i.e., for $k \ge 0$:

$$c_{k} = c_{0} \frac{(a_{1})_{k} \dots (a_{p})_{k}}{(b_{1})_{k} \dots (b_{q})_{k}} \frac{z^{k}}{k!} = \frac{\left(\frac{1}{2}\right)_{k} (1)_{k}}{(2)_{k}} \frac{4^{k}}{k!}$$
$$= \frac{1}{k+1} \binom{2k}{k}$$

HOW TO **PROVE** THIS?

RECALL: For $n \ge 1$,

$$c_n = \sum_{k=0}^{n-1} c_k \, c_{n-1-k}.$$

Using a RISC implementation of Zeilberger's "fast" algorithm we prove that our conjectured expression

$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

indeed satisfies this recurrence:

RECALL: For $n \ge 1$,

$$c_n = \sum_{k=0}^{n-1} c_k \, c_{n-1-k}.$$

Using a RISC implementation of Zeilberger's "fast" algorithm we prove that our conjectured expression

$$c_n = \frac{1}{n+1} \binom{2n}{n}$$

indeed satisfies this recurrence: ln[11]:=

<< RISC`fastZeil`

Fast Zeilberger Package version 3.61 written by Peter Paule, Markus Schorn, and Axel Riese Copyright 1995-2015, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria Symbolic Surprises / Further Concrete Surprises

In[12]:=

$$Zb\left[\frac{1}{k+1}\binom{2k}{k}_{*}\frac{1}{n-k}\binom{2(n-1-k)}{n-1-k}_{*}, \{k, 0, n-1\}, n, 1\right]$$

In[12]:=

$$Zb\left[\frac{1}{k+1}\binom{2k}{k}_{*}\frac{1}{n-k}\binom{2(n-1-k)}{n-1-k}_{*}, \{k, 0, n-1\}, n, 1\right]$$

If -1 + n' is a natural number, then:

Out[12]=

$$\left\{ 4 \text{ n SUM}[n] + (-2 - n) \text{ SUM}[1 + n] = -\frac{2 \text{ Binomial}[2 + 2 (-1 + n), 1 + n]}{n}, -2 (1 + 2 n) \text{ SUM}[n] + (2 + n) \text{ SUM}[1 + n] = 0 \right\}$$

 \Rightarrow The homogeneous recurrence is nothing but the recurrence for the $c_n{:}\ {\rm RECALL}$

In[12]:=

$$Zb\left[\frac{1}{k+1}\binom{2\ k}{k}_{*},\frac{1}{n-k}\binom{2\ (n-1-k)}{n-1-k}_{*}, \{k, 0, n-1\}, n, 1\right]$$

If -1 + n' is a natural number, then:

Out[12]=

$$\left\{ 4 \text{ n SUM}[n] + (-2 - n) \text{ SUM}[1 + n] = -\frac{2 \text{ Binomial}[2 + 2 (-1 + n), 1 + n]}{n}, -2 (1 + 2 n) \text{ SUM}[n] + (2 + n) \text{ SUM}[1 + n] = 0 \right\}$$

 \Rightarrow The homogeneous recurrence is nothing but the recurrence for the $c_n :$ RECALL

In[10]:=

GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]

Out[10]=

 $\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$

In[12]:=

$$Zb\left[\frac{1}{k+1}\binom{2\ k}{k}_{*},\frac{1}{n-k}\binom{2\ (n-1-k)}{n-1-k}_{*}, \{k, 0, n-1\}, n, 1\right]$$

If -1 + n' is a natural number, then:

Out[12]=

$$\left\{ 4 \text{ n SUM}[n] + (-2 - n) \text{ SUM}[1 + n] = -\frac{2 \text{ Binomial}[2 + 2 (-1 + n), 1 + n]}{n}, -2 (1 + 2 n) \text{ SUM}[n] + (2 + n) \text{ SUM}[1 + n] = 0 \right\}$$

 \Rightarrow The homogeneous recurrence is nothing but the recurrence for the $c_n :$ RECALL

In[10]:=

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

 $\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$

NOTE. As a by-product, Zeilberger's algorithm delivers a certificate proof for the correctness of the output recurrence: In[18]:=

Prove[]

Computer Theorem

Theorem

Let

$$F(k, n) = -\frac{\binom{2 k}{k} \binom{2 (-k+n-1)}{-k+n-1}}{(k+1) (k-n)}$$

and

$$SUM(n) = \sum_{k=0}^{\infty} F(k, n)$$

Then

(n+2) SUM(1+n) - 2(2n+1) SUM(n) = 0.

Proof

Let Δ_k (".") denote the forward difference operator in k and define

$$R(k, n) = \frac{(k+1)(-2 k+2 n-1)(4 k^2-2 k (3 n+2))}{(n^2+n)(-k+n+1)}$$

Then the Theorem follows from summing the equation

$$(n+2) F(k, 1+n) - 2 (2 n+1) F(k, n) = \Delta_k(F(k, n) R(k, n))$$

over k from 0 to ∞ .

Surprise

Instead of Zeilberger's algorithm (1990) already Gosper's algorithm (1978) can solve our problem: h[19]:=

$$Gosper\left[\frac{1}{k+1} \binom{2k}{k}_{\star} \frac{1}{n-k} \binom{2(n-1-k)}{n-1-k}_{\star}, \{k, 0, n-1\}\right]$$

Surprise

Instead of Zeilberger's algorithm (1990) already Gosper's algorithm (1978) can solve our problem: In[19]=

$$Gosper\left[\frac{1}{k+1} \begin{pmatrix} 2 & k \\ k \end{pmatrix}_{*} \frac{1}{n-k} \begin{pmatrix} 2 & (n-1-k) \\ n-1-k \end{pmatrix}_{*}, \{k, 0, n-1\}\right]$$

If `-1 + n' is a natural number and $n+n^2 \neq 0\,,$ then:

Out[19]=

$$\left\{ Sum \left[-\frac{Binomial[2k, k] Binomial[2(-1-k+n), -1-k+n]}{(1+k)(k-n)}, \{k, 0, -1+n\} \right] = \frac{2(-1+2n) Binomial[2(-1+n), -1+n]}{n+n^2} \right\}$$

Surprise

Instead of Zeilberger's algorithm (1990) already Gosper's algorithm (1978) can solve our problem: In[19]=

Gosper
$$\left[\frac{1}{k+1} {\binom{2}{k}}_{*} \frac{1}{n-k} {\binom{2}{n-1-k}}_{*} , \{k, 0, n-1\}\right]$$

If -1 + n' is a natural number and $n + n^2 \neq 0$, then:

Out[19]=

$$\left[Sum \left[-\frac{Binomial[2k, k] Binomial[2(-1-k+n), -1-k+n]}{(1+k)(k-n)}, \{k, 0, -1+n\} \right] = \frac{2(-1+2n) Binomial[2(-1+n), -1+n]}{n+n^2} \right]$$

NOTE. The numbers c_n are the celebrated Catalan numbers; e.g., see Richard Stanley's book.

$\begin{array}{l} {\sf Surprise} \Rightarrow {\sf Algorithmic\ Theory\ of}\\ {\sf Contiguous\ Relations} \end{array}$

- In our "Gosper-surprise" Zeilberger's algorithm delivered the minimal possible (homogeneous) recurrence for the sum.
- This is not always the case! ("Zeilberger-surprise")

$Surprise \Rightarrow Algorithmic Theory of Contiguous Relations$

- In our "Gosper-surprise" Zeilberger's algorithm delivered the minimal possible (homogeneous) recurrence for the sum.
- This is not always the case! ("Zeilberger-surprise")

EXAMPLE (communicated by H. Prodinger). For $m \ge 0$,

$$S(m) := \sum_{k=1}^{2m+1} (-1)^k \binom{2m+1}{k}^2 \binom{2m+1}{k-1} = (-1)^{m+1} \frac{(3m+2)!}{2(m+1)!^2 m!}$$

But Zeilberger's algorithm does not deliver the minimal recurrence:

ln[44]:= $Zb\left[(-1)^{k}\binom{2m+1}{k}\right]^{2}\binom{2m+1}{k-1}, \{k, 1, 2m+1\}, m, 1$ Out[44]= { } In[45]:= $Zb\left[(-1)^{k}\binom{2m+1}{k}\right]^{2}\binom{2m+1}{k-1}, \{k, 1, 2m+1\}, m, 2$ If `2 m' is a natural number, then: Out[45]= $\left\{-9 (1 + m) (4 + 3 m) (5 + 3 m) (9 + 4 m) (5 + 6 m) (7 + 6 m) SUM[m] - \right\}$ 6 (2 + m) (7 + 4 m) (345 + 784 m + 665 m² + 252 m³ + 36 m⁴) SUM[1 + m] - $(2 + m) (3 + m)^{2} (3 + 2m) (5 + 2m) (5 + 4m) SUM [2 + m] = 0$

Now we apply what Zeilberger calls "Paule's creative symmetrizing":

Rewrite
$$S(m) = \sum_{k=1}^{2m+1} f(2m+1,k)$$
 as
= $\sum_{k=1}^{2m+1} \frac{f(2m+1,k) + f(2m+1,2m+1-k)}{2}$.

Now we apply what Zeilberger calls "Paule's creative symmetrizing":

Rewrite
$$S(m) = \sum_{k=1}^{2m+1} f(2m+1,k)$$
 as
= $\sum_{k=1}^{2m+1} \frac{f(2m+1,k) + f(2m+1,2m+1-k)}{2}$.

In[52]:=

$$Zb\left[(-1)^{k} \frac{m+1}{2m-k+2} \binom{2m+1}{k}^{2} \binom{2m+1}{k-1}_{*}^{2}, \frac{2m+1}{k-1}_{*}, \frac{k}{k}, 1, 2m+1, m, 1\right]$$

If `2 m' is a natural number, then:

Out[52]=

$$\left\{-3 \ (4 + 3 \ m) \ (5 + 3 \ m) \ SUM \left[\ m \ \right] \ - \ (2 + m)^2 \ SUM \left[\ 1 + m \ \right] \ = \ 0 \right\}$$

The order-reduction-effect of "creative symmetrizing" can be explained via an algorithmic theory of contiguous relations. Pioneering work: Nobuki Takayama ["Gröbner Basis and the Problem of Contiguous Relations", 1989].

- The order-reduction-effect of "creative symmetrizing" can be explained via an algorithmic theory of contiguous relations.
 Pioneering work: Nobuki Takayama ["Gröbner Basis and the Problem of Contiguous Relations", 1989].
- ► Contiguous relations were first studied by Gauß (1813):

$$_{2}F_{1}\begin{pmatrix}a \pm 1 & b\\ c & ; & x\end{pmatrix}, _{2}F_{1}\begin{pmatrix}a & b \pm 1\\ c & ; & x\end{pmatrix}, _{2}F_{1}\begin{pmatrix}a & b\\ c \pm 1 & ; & x\end{pmatrix}$$

are contiguous to

$$_{2}F_{1}\begin{pmatrix}a&b\\c&;&x\end{pmatrix}:=\sum_{k=0}^{\infty}\frac{(a)_{k}(b)_{k}}{(c)_{k}}x^{k}.$$

- The order-reduction-effect of "creative symmetrizing" can be explained via an algorithmic theory of contiguous relations.
 Pioneering work: Nobuki Takayama ["Gröbner Basis and the Problem of Contiguous Relations", 1989].
- ► Contiguous relations were first studied by Gauß (1813):

$$_{2}F_{1}\begin{pmatrix}a \pm 1 & b\\ c & ; & x\end{pmatrix}, _{2}F_{1}\begin{pmatrix}a & b \pm 1\\ c & ; & x\end{pmatrix}, _{2}F_{1}\begin{pmatrix}a & b\\ c \pm 1 & ; & x\end{pmatrix}$$

are contiguous to

$$_{2}F_{1}\begin{pmatrix}a&b\\c&;&x\end{pmatrix}:=\sum_{k=0}^{\infty}\frac{(a)_{k}(b)_{k}}{(c)_{k}}x^{k}.$$

"There must be many universities to-day where 95 per cent, if not 100 per cent, of the functions studied by physics, engineering, and even mathematics students, are covered by this single symbol $_2F_1$." [W.W. Sawyer, Prelude to Mathematics, Baltimore, Penguin, 1955.]

EXAMPLES. $e^{x} = \lim_{a \to \infty} {}_{2}F_{1} \begin{pmatrix} a & 1 \\ 1 & ; \\ a \end{pmatrix};$ $\log (1 - x) = x {}_{2}F_{1} \begin{pmatrix} 1 & 1 \\ 2 & ; \\ -x \end{pmatrix};$

$$\sin(\mathbf{x}) = \mathbf{x} \lim_{a,b\to\infty} {}_{2}F_{1} \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \frac{3}{2} & \mathbf{j} & -\frac{\mathbf{x}^{2}/4}{ab} \end{pmatrix};$$
$$\cos(\mathbf{x}) = \lim_{a,b\to\infty} {}_{2}F_{1} \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \frac{1}{2} & \mathbf{j} & -\frac{\mathbf{x}^{2}/4}{ab} \end{pmatrix};$$

EXAMPLES contd.

$$\cosh(\mathbf{x}) = \lim_{a,b\to\infty} {}_{2}F_{1} \begin{pmatrix} \mathbf{a} & \mathbf{b} & \frac{\mathbf{x}^{2}/4}{a b} \\ \frac{1}{2} & \mathbf{j} & \frac{\mathbf{x}^{2}}{a b} \end{pmatrix};$$
$$\arccos(\mathbf{x}) = \mathbf{x} {}_{2}F_{1} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & \mathbf{j} & -\mathbf{x}^{2} \\ \frac{3}{2} & \mathbf{j} & -\mathbf{x}^{2} \end{pmatrix};$$
$$\arctan(\mathbf{x}) = \mathbf{x} {}_{2}F_{1} \begin{pmatrix} \frac{1}{2} & 1 \\ \frac{3}{2} & \mathbf{j} & -\mathbf{x}^{2} \\ \frac{3}{2} & \mathbf{j} & -\mathbf{x}^{2} \end{pmatrix};$$

$$\operatorname{erf}(\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_0^{\mathbf{x}} e^{-t^2} dt = \frac{2 \mathbf{x}}{\sqrt{\pi}} \lim_{b \to \infty} {}_{2}F_1 \begin{pmatrix} \frac{1}{2} & \mathbf{b} \\ \frac{3}{2} & \frac{3}{2} \end{pmatrix}$$

x b

NOTE

 Z's algorithm and the algorithmic theory of contiguous relations carry over to q-hypergeometric functions and q-identities.

For example, one can algorithmically prove polynomial versions [P. '94, P. & Riese '97] of identities like¹:

$$1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)(1-q^2)\dots(1-q^k)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}$$

ightarrow "q-Series and Modular Functions"

¹1st Rogers-Ramanujan identity

Commercial Break

Commercial Break

Back to Artin's Generating Function

RECALL $F(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n + \dots$ and $\ln[10]:=$

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

 $\{\{-2 (1+2k) c[k] + (2+k) c[1+k] = 0, c[0] = 1\}, ogf\}$

Back to Artin's Generating Function RECALL $F(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n + \dots$ and $\ln[10]:=$

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

 $\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$

In[41]:=

$$\begin{aligned} \text{RE2DE}[\{-2 \ (1+2 \ k) \ c[k] + (2+k) \ c[1+k] &= 0, \\ c[0] &= 1\}, \ c[k], \ F[x]] \end{aligned}$$

Out[41]=

$$\left\{ -1 \ - \ (-1 \ + \ 2 \ x) \ F \left[\ x \ \right] \ - \ \left(-x \ + \ 4 \ x^2 \right) \ F' \left[\ x \ \right] \ = \ 0 \ , \ F \left[\ 0 \ \right] \ = \ 1 \right\}$$

In[42]:=

```
DSolve[%, F[x], x]
```

Back to Artin's Generating Function

RECALL $F(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n + \dots$ and $\ln[10]:=$

```
GuessRE[{1, 1, 2, 5, 14, 42}, c[k]]
```

Out[10]=

 $\{ \{ -2 \ (1+2 \ k) \ c [k] + (2+k) \ c [1+k] = 0, \ c [0] = 1 \}, \ ogf \}$

Out[41]=

$$\left\{ -1 \ - \ (-1 \ + \ 2 \ x) \ F \left[\ x \ \right] \ - \ \left(-x \ + \ 4 \ x^2 \right) \ F' \left[\ x \ \right] \ = \ 0 \ , \ F \left[\ 0 \ \right] \ = \ 1 \right\}$$

In[42]:=

```
DSolve[%, F[x], x]
```

Out[42]=

$$\left\{ \left\{ F\left[x \right] \rightarrow \frac{1 - \sqrt{1 - 4 x}}{2 x} \right\} \right\}$$

Koutschan's Holonomic Functions Package EXAMPLE. Background: relativistic Coulomb integrals [Koutschan, P. & Suslov '14]

$$\mathbf{A}_{p} = \int_{0}^{\infty} \mathbf{r}^{p+2} \left(F(\mathbf{r})^{2} + G(\mathbf{r})^{2} \right) d\mathbf{r},$$

Koutschan's Holonomic Functions Package EXAMPLE. Background: relativistic Coulomb integrals [Koutschan, P. & Suslov '14]

$$\mathbf{A}_{p} = \int_{0}^{\infty} \mathbf{r}^{p+2} \left(F(\mathbf{r})^{2} + G(\mathbf{r})^{2} \right) d\mathbf{r},$$

where *p∈N* and

$$\begin{pmatrix} F(\mathbf{r}) \\ G(\mathbf{r}) \end{pmatrix} = a^2 \beta^{3/2} \sqrt{\frac{n!}{\gamma \Gamma(n+2\gamma)}}$$

$$(2a\beta \mathbf{r})^{\gamma-1} \exp(-a\beta \mathbf{r})$$

$$* \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix} \begin{pmatrix} L_{n-1}^{2\gamma} & (2a\beta \mathbf{r}) \\ L_n^{2\gamma} & (2a\beta \mathbf{r}) \end{pmatrix};$$

 $n=0, 1, 2, \dots$ (radial quantum number),

$$\mathbf{A}_{p} = \int_{0}^{\infty} \mathbf{r}^{p+2} \left(F \left(\mathbf{r} \right)^{2} + G \left(\mathbf{r} \right)^{2} \right) d\mathbf{r},$$

where *peN* and

$$\begin{pmatrix} F(\mathbf{r}) \\ G(\mathbf{r}) \end{pmatrix} = a^{2} \beta^{3/2} \sqrt{\frac{n!}{\gamma \Gamma(n+2\nu)}}$$

$$(2a\beta \mathbf{r})^{\nu-1} \exp(-a\beta \mathbf{r})$$

$$* \begin{pmatrix} \alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2} \end{pmatrix} \begin{pmatrix} L_{n-1}^{2\nu} (2a\beta \mathbf{r}) \\ L_{n}^{2\nu} (2a\beta \mathbf{r}) \end{pmatrix};$$

n=0, 1, 2, ... (radial quantum number), Laguerre polyomials $L_n^{2\gamma}$ (2 a β r) given by

$$L_n^{\alpha}(\mathbf{x}) = \frac{\Gamma(\alpha+n+1)}{n! \Gamma(\alpha+1)} {}_1F_1\begin{pmatrix} -n \\ \alpha+1 \end{pmatrix}; \mathbf{x}.$$

Using non-commutatative GB and holonomic closure properties, Koutschan's package computes a recurrence for the integral A_p :

Using non-commutatative GB and holonomic closure properties, Koutschan's package computes a recurrence for the integral A_p : FindCreativeTelescoping[CpIntegrand, Der[r]]

%[[1, 2]]

$$\begin{pmatrix} 8 a^{2} n^{2} \beta^{2} \alpha_{1}^{2} \beta_{1}^{2} + 4 a^{2} n^{2} p \beta^{2} \alpha_{1}^{2} \beta_{1}^{2} + 8 a^{2} \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 4 a^{2} n^{2} p \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 8 a^{2} n^{2} p \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 1 \\ 16 a^{2} n^{2} \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 4 a^{2} n^{2} \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 3 a^{2} n^{2} p \beta^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 1 \\ 16 a^{2} n^{2} p^{2} \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 8 a^{2} n^{2} \beta^{2} \alpha_{2}^{2} \beta_{2}^{2} + 2 a^{2} n^{2} p \beta^{2} \alpha_{2}^{2} \beta_{2}^{2} + 3 2 a^{2} n \beta^{2} \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 1 \\ 16 a^{2} n p \beta^{2} \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} + 8 a^{2} n^{2} \beta^{2} \alpha_{2}^{2} \beta_{2}^{2} + 16 a^{2} p \beta^{2} \gamma^{2} \alpha_{2}^{2} \beta_{2}^{2} + 2 3 a^{2} n \beta^{2} \gamma \alpha_{2}^{2} \beta_{2}^{2} + 1 \\ 6 a^{2} n p \beta^{2} \gamma \alpha_{1}^{2} \beta_{1}^{2} + 2 a a^{3} \beta \alpha_{1}^{2} \beta_{1}^{2} + 4 a n^{2} p \beta \alpha_{1}^{2} \beta_{1}^{2} - 8 a n^{3} p \beta \alpha_{1}^{2} \alpha_{2}^{2} \beta_{2}^{2} + 1 \\ 6 a^{2} n p^{2} \gamma \alpha_{1}^{2} \beta_{1}^{2} + 2 a a n^{2} p \beta \gamma \alpha_{1}^{2} \beta_{1}^{2} - 2 4 a n \beta \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 2 \\ 2 4 a n^{3} \beta \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 5 2 a n p \beta \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 2 4 a \beta \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 2 \\ 7 2 a n^{2} \beta \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 8 a n^{3} \beta \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 48 a n^{2} p \beta \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - \\ 3 6 a n p^{2} \beta \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 8 a n^{3} \beta \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 48 a n \beta \gamma^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - \\ 3 2 a n p \beta \gamma^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 5 2 a n p \beta \gamma \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 48 a n \beta \gamma^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - \\ 3 2 a n p \beta \gamma^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2} - 6 a n^{2} \beta \alpha_{2}^{2} \beta_{2}^{2} - 12 a n^{3} \beta \alpha_{2}^{2} \beta_{2}^{2} - 4 a n^{2} p \beta \alpha_{2}^{2} \beta_{2}^{2} - \\ 8 a n^{3} p \beta \alpha_{2}^{2} \beta_{2}^{2} - 24 a \beta \gamma^{3} \alpha_{2}^{2} \beta_{2}^{2} - 6 0 a n^{2} \beta \gamma \alpha_{2}^{2} \beta_{2}^{2} - 16 a n p \beta \gamma \alpha_{2}^{2} \beta_{2}^{2} - \\ 4 0 a n^{2} p \beta \gamma \alpha_{2}^{2} \beta_{2}^{2} - 24 a \beta \gamma^{3} \alpha_{2}^{2} \beta_{2}^{2} - 2 a \beta \gamma^{3} \alpha_{2}^{2} \beta_{2}^{2} - 16 a p \beta \gamma^{2} \alpha_{2}^{2} \beta_{2}^{2} - \\ 4 a n p \beta \gamma^{2} \alpha_{2}^{2} \beta_{2}^{2} - 24 a \beta \gamma^{3} \alpha_{2}^{2} \beta_{2}^{2} - 2 a \beta \gamma^{3$$

AMS David P. Robbins Prize 2016 for paper in: Proceedings of the National Academy of Sciences (PNAS) **108(6)**, 2011;

Proof of George Andrews's and David Robbins's q-TSPP conjecture

(by Christoph Koutschan, Manuel Kauers, Doron Zeilberger)

Another Holonomic Surprise: a Patent!

www.cst.com

Simulation of electromagnetic waves

- joint work by Joachim Schöberl (RWTH Aachen), Peter Paule and Christoph Koutschan (RISC)
- wide range of applications in constructing antennas, mobile phones, etc.
- merchandised by the company CST (Computer Simulation Technology)
- simulation with finite element methods
- significant contributions from Symbolic Computation using CK's package HolonomicFunctions
- symbolically derived formulae allow a considerable speed-up
- method is planned to be registered as a patent

Mathematical and physical background

Simulate the propagation of electromagnetic waves using the Maxwell equations

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \operatorname{curl} E, \quad \frac{\mathrm{d}E}{\mathrm{d}t} = -\operatorname{curl} H$$

where ${\cal H}$ and ${\cal E}$ are the magnetic and the electric field respectively.

Define basis functions (in 2D) in order to approximate the solution:

$$\varphi_{i,j}(x,y) := (1-x)^i P_j^{(2i+1,0)}(2x-1) P_i\left(\frac{2y}{1-x}-1\right)$$

Basis functions in 3D are more involved.

Results

In order to speed up the numerical computations, certain relations for the basis functions $\varphi_{i,j}(x,y)$ are needed.

Using HolonomicFunctions relations like the following can easily be derived:

$$\begin{aligned} &2(i+2j+5)(2i+2j+7)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i,j+1}(x,y)\\ &+(2i+1)(i+2j+1)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i,j+2}(x,y)\\ &-(j+3)(i+2j+5)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i,j+3}(x,y)\\ &+(j+1)(2i+2j+7)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i+1,j}(x,y)\\ &-2(2i+3)(i+j+3)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i+1,j+1}(x,y)\\ &+(i+2j+5)(2i+2j+5)\frac{\mathrm{d}}{\mathrm{d}x}\varphi_{i+1,j+2}(x,y)=\\ &2(i+j+4)(2i+2j+5)(2i+2j+7)\varphi_{i,j+2}(x,y)\\ &+2(i+j+2)(i+2j+5)(2i+2j+7)\varphi_{i+1,j+1}(x,y)\end{aligned}$$

Much bigger formulae in the 3D case! Some efforts were needed to compute them.

Method

- ▶ basis functions \u03c6_{i,j}(x, y) are composed of functions that are holonomic and ∂-finite, i.e., hypergeometric expressions and orthogonal polynomials (Legendre and Jacobi)
- differential equations and recurrence relations for these objects are known
- symbolic algorithms deliver relations for $\varphi_{i,j}(x,y)$
- compute a Gröbner basis for the ideal of such relations
- search in the ideal for relations of the desired form
- all the above steps can be performed automatically by HolonomicFunctions

q-Series and Modular Functions

Current project with Silviu Radu: algebraic relations of modular functions

There are two Rogers-Ramanujan identities:

$$R(q) := 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)(1-q^2)\dots(1-q^k)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}$$

and

$$S(q) := 1 + \sum_{k=1}^{\infty} \frac{q^{k^2 + k}}{(1 - q)(1 - q^2) \dots (1 - q^k)} = \prod_{n=0}^{\infty} \frac{1}{(1 - q^{5n+2})(1 - q^{5n+3})}.$$

Ramanujan (1887-1920) discovered 40 algebraic relations between R(q) and S(q); for example:

$$R(q^{11})S(q) - q^2 R(q)S(q^{11}) = 1.$$

$$q = q(\tau) := e^{2\pi i\tau},$$

R(q) and S(q) can be considered as modular functions on the upper half of the complex plane.

To my SURPRISE this analytic context can be transferred into a new computer algebra framework [Radu '14, P. & Radu '16].

In a project to study and explain Ramanujan's algebraic relations we use

$$q = q(\tau) := e^{2\pi i\tau},$$

R(q) and S(q) can be considered as modular functions on the upper half of the complex plane.

To my SURPRISE this analytic context can be transferred into a new computer algebra framework [Radu '14, P. & Radu '16].

In a project to study and explain Ramanujan's algebraic relations we use

 constructive versions of theorems about meromorphic functions on compact Riemann surfaces, and

$$q = q(\tau) := e^{2\pi i\tau},$$

R(q) and S(q) can be considered as modular functions on the upper half of the complex plane.

To my SURPRISE this analytic context can be transferred into a new computer algebra framework [Radu '14, P. & Radu '16].

In a project to study and explain Ramanujan's algebraic relations we use

- constructive versions of theorems about meromorphic functions on compact Riemann surfaces, and
- a (new?) algorithm to represent subalgebras of a univariate polynomial ring as a freely generated module over a poynomial ring in one generator.

$$q = q(\tau) := e^{2\pi i\tau},$$

R(q) and S(q) can be considered as modular functions on the upper half of the complex plane.

To my SURPRISE this analytic context can be transferred into a new computer algebra framework [Radu '14, P. & Radu '16].

In a project to study and explain Ramanujan's algebraic relations we use

- constructive versions of theorems about meromorphic functions on compact Riemann surfaces, and
- a (new?) algorithm to represent subalgebras of a univariate polynomial ring as a freely generated module over a poynomial ring in one generator.

NOTE. q-series are strongly related to partitions of numbers.

Example: p(4) = 5: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

Example:
$$p(4) = 5$$
: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

NOTE. The generating function of the partition numbers is

$$\sum_{n=0}^{\infty} p(n)q^n = \prod_{n=1}^{\infty} \frac{1}{1-q^n}$$

= $(1+q^1+q^{1+1}+q^{1+1+1}+\dots)$
× $(1+q^2+q^{2+2}+q^{2+2+2}+\dots)$
× etc.
= $\dots + q^{1+1+1}q^{2+2}\dots + \dots$

Let's look at a table of partition numbers from p(0) := 1 to p(80):

1	1	2	3	5
7	11	15	22	30
42	56	77	101	135
176	231	297	385	490
627	792	1002	1255	1575
1958	2436	3010	3718	4565
5604	6842	8349	10143	12310
14883	17977	21637	26015	31185
37338	44583	53174	63261	75175
89134	105558	124754	147273	173525
204226	239943	281589	329931	386155
451276	526823	614154	715220	831820
966467	1121505	1300156	1505499	1741630
2012558	2323520	2679689	3087735	3554345
4087968	4697205	5392783	6185689	7089500
8118264	9289091	10619863	12132164	13848650

Ramanujan's Congruences

$$p(5n+4) \equiv 0 \pmod{5},$$

 $p(7n+5) \equiv 0 \pmod{7},$
 $p(11n+6) \equiv 0 \pmod{11}$

Define:
$$\sum_{n=0}^{\infty} p(n)q^n := \prod_{j=1}^{\infty} \frac{1}{1-q^j}$$
:

Ramanujan [1919] proved:

$$\sum_{n=0}^{\infty} \frac{p(5n+4)q^n}{q^n} = 5 \prod_{j=1}^{\infty} \frac{(1-q^{5j})^5}{(1-q^j)^6}$$

 and

$$\sum_{n=0}^{\infty} \frac{p(7n+5)q^n}{(1-q^{7j})^3} + 49q \prod_{j=1}^{\infty} \frac{(1-q^{7j})^7}{(1-q^j)^8}.$$

Define:
$$\sum_{n=0}^{\infty} p(n)q^n := \prod_{j=1}^{\infty} \frac{1}{1-q^j}$$
 :

Ramanujan [1919] proved:

$$\sum_{n=0}^{\infty} \frac{p(5n+4)q^n}{q^n} = 5 \prod_{j=1}^{\infty} \frac{(1-q^{5j})^5}{(1-q^j)^6}$$

and

$$\sum_{n=0}^{\infty} \frac{p(7n+5)q^n}{(1-q^{7j})^3} + 49q \prod_{j=1}^{\infty} \frac{(1-q^{7j})^7}{(1-q^j)^8}.$$

What about p(11n + 6)?

Almost 100 hundred years later Radu's "Ramanujan-Kolberg" package computes in $E^{\infty}(22)$:

$$\sum_{n=0}^{\infty} p(11n+6)q^n = q^{14} \prod_{j=1}^{\infty} \frac{(1-q^{22j})^{22}}{(1-q^j)^{10}(1-q^{2j})^2(1-q^{11j})^{11}} \times (1078t^4 + 13893t^3 + 31647t^2 + 11209t - 21967 + z_1(187t^3 + 5390t^2 + 594t - 9581) + z_2(11t^3 + 2761t^2 + 5368t - 6754)$$

with

Almost 100 hundred years later Radu's "Ramanujan-Kolberg" package computes in $E^{\infty}(22)$:

$$\sum_{n=0}^{\infty} p(11n+6)q^n = q^{14} \prod_{j=1}^{\infty} \frac{(1-q^{22j})^{22}}{(1-q^j)^{10}(1-q^{2j})^2(1-q^{11j})^{11}} \times (1078t^4 + 13893t^3 + 31647t^2 + 11209t - 21967 + z_1(187t^3 + 5390t^2 + 594t - 9581) + z_2(11t^3 + 2761t^2 + 5368t - 6754)$$

with

$$t := \frac{3}{88}w_1 + \frac{1}{11}w_2 - \frac{1}{8}w_3, z_1 := -\frac{5}{88}w_1 + \frac{2}{11}w_2 - \frac{1}{8}w_3 - 3,$$

$$z_2 := \frac{1}{44}w_1 - \frac{3}{11}w_2 + \frac{5}{4}w_3,$$

where the $w_j \in E^{\infty}(22)$ are of the form

Almost 100 hundred years later Radu's "Ramanujan-Kolberg" package computes in $E^{\infty}(22)$:

$$\sum_{n=0}^{\infty} p(11n+6)q^n = q^{14} \prod_{j=1}^{\infty} \frac{(1-q^{22j})^{22}}{(1-q^j)^{10}(1-q^{2j})^2(1-q^{11j})^{11}} \times (1078t^4 + 13893t^3 + 31647t^2 + 11209t - 21967 + z_1(187t^3 + 5390t^2 + 594t - 9581) + z_2(11t^3 + 2761t^2 + 5368t - 6754)$$

with

$$t := \frac{3}{88}w_1 + \frac{1}{11}w_2 - \frac{1}{8}w_3, z_1 := -\frac{5}{88}w_1 + \frac{2}{11}w_2 - \frac{1}{8}w_3 - 3,$$

$$z_2 := \frac{1}{44}w_1 - \frac{3}{11}w_2 + \frac{5}{4}w_3,$$

where the $w_j \in E^{\infty}(22)$ are of the form

$$\boldsymbol{w_j} = \prod_{j=1}^{\infty} \frac{(1-q^{\Box j})^{\Box} \dots}{(1-q^{\Box j})^{\Box} \dots}.$$

This implies that the q-series t, w_1 , and w_2 have coefficients in \mathbb{Z} . \Box

Symbolic Summation in QFT

Symbolic Summation in Quantum Field Theory

JKU Collaboration with DESY (Berlin–Zeuthen) (Deutsches Elektronen–Synchrotron)

Project leader: Partners:

Carsten Schneider (RISC) Johannes Blümlein (DESY) Peter Paule (RISC)

Evaluation of Feynman diagrams

$$= F_{-3}(N)\varepsilon^{-3} + F_{-2}(N)\varepsilon^{-2} + F_{-1}(N)\varepsilon^{-1} + |F_0(N)|$$

Simplify

$$\begin{split} & \sum_{j=0}^{N-3} \sum_{k=0}^{j} \sum_{l=0}^{k} \sum_{q=0}^{-j+N-3} \sum_{s=1}^{-l+N-q-3} \sum_{r=0}^{-l+N-q-s-3} (-1)^{-j+k-l+N-q-3} \times \\ & \times \frac{\binom{j+1}{k+1}\binom{k}{l}\binom{N-1}{j+2}\binom{-j+N-3}{q}\binom{-l+N-q-3}{s} \binom{-l+N-q-3}{r} \binom{-l+N-q-s-3}{r} r! (-l+N-q-r-s-3)! (s-1)}{(-l+N-q-2)!(-j+N-1)(N-q-r-s-2)(q+s+1)} \\ & \left[4S_1(-j+N-1) - 4S_1(-j+N-2) - 2S_1(k) \right. \\ & \left. - \left(S_1(-l+N-q-2) + S_1(-l+N-q-r-s-3) - 2S_1(r+s)\right) \right. \\ & \left. + 2S_1(s-1) - 2S_1(r+s) \right] + \mathbf{3} \text{ further 6-fold sums} \end{split}$$

$$\begin{split} \hline F_0(N) &= (\text{using Sigma.m, EvaluateMultiSums.n and J. Ablinger's HarmonicSums.m package}) \\ \hline \frac{7}{12}S_1(N)^4 + \frac{(17N+5)S_1(N)^3}{3N(N+1)} + \left(\frac{35N^2-2N-5}{2N^2(N+1)^2} + \frac{13S_2(N)}{2} + \frac{5(-1)^N}{2N^2}\right)S_1(N)^2 \\ &+ \left(-\frac{4(13N+5)}{N^2(N+1)^2} + \left(\frac{4(-1)^N(2N+1)}{N(N+1)} - \frac{13}{N}\right)S_2(N) + \left(\frac{29}{3} - (-1)^N\right)S_3(N) \right. \\ &+ \left(2 + 2(-1)^N\right)S_{2,1}(N) - 28S_{-2,1}(N) + \frac{20(-1)^N}{N^2(N+1)}\right)S_1(N) + \left(\frac{3}{4} + (-1)^N\right)S_2(N)^2 \\ &- 2(-1)^N S_{-2}(N)^2 + S_{-3}(N)\left(\frac{2(3N-5)}{N(N+1)} + (26 + 4(-1)^N)S_1(N) + \frac{4(-1)^N}{N+1}\right) \\ &+ \left(\frac{(-1)^N(5-3N)}{2N^2(N+1)} - \frac{5}{2N^2}\right)S_2(N) + S_{-2}(N)\left(10S_1(N)^2 + \left(\frac{8(-1)^N(2N+1)}{N(N+1)}\right) \\ &+ \frac{4(3N-1)}{N(N+1)}S_1(N) + \frac{8(-1)^N(3N+1)}{N(N+1)^2} + \left(-22 + 6(-1)^N\right)S_2(N) - \frac{16}{N(N+1)}\right) \\ &+ \left(\frac{(-1)^N(9N+5)}{N(N+1)} - \frac{29}{3N}\right)S_3(N) + \left(\frac{19}{2} - 2(-1)^N\right)S_4(N) + \left(-6 + 5(-1)^N\right)S_{-4}(N) \\ &+ \left(-\frac{2(-1)^N(9N+5)}{N(N+1)} - \frac{2}{N}\right)S_{2,1}(N) + (20 + 2(-1)^N)S_{2,-2}(N) + \left(-17 + 13(-1)^N\right)S_{3,1}(N) \\ &+ \left(\frac{3(-1)^N(2N+1) + 4(9N+1)}{N(N+1)}S_{-2,1}(N) - (24 + 4(-1)^N)S_{-3,1}(N) + (3 - 5(-1)^N)S_{2,1}(N)\right) \\ &+ 32S_{-2,1,1}(N) + \left(\frac{3}{2}S_1(N)^2 - \frac{3S_1(N)}{N} + \frac{3}{2}(-1)^NS_{-2}(N)\right) \\ \end{bmatrix}$$

$$\begin{split} \hline F_0(N) &= & (\text{using Sigma.m, EvaluateMultiSums.m and J. Ablinger's HarmonicSums.m package)} \\ \hline \frac{7}{12}S_1(N)^4 + \frac{(17N+5)S_1(N)^3}{3N(N+1)} + (\frac{35N^2-2N-5}{2N^2(N+1)^2} + \frac{13S_2(N)}{2} + \frac{5(-1)^N}{2N^2})S_1(N)^2 \\ &+ (-\frac{4(13N+5)}{N^2(N+1)^2} + (\frac{4(-1)^N(2N+1)}{N(N+1)} - \frac{13}{N})S_2(N) + (\frac{29}{3} - (-1)^N)S_3(N) \\ &+ (2+2(-1)^N)S_{2,1}(N) - 28S_{-2,1}(N) + \frac{20(-1)^N}{N(N+1)})S_1(N) + (\frac{3}{4} + (-1)^N)S_2(N)^2 \\ &- 2(-1) \\ &+ (\frac{(-1)}{2}) \\ &+ \frac{4(3N}{N(N)}S_{-2,1,1}(N) = \sum_{i=1}^{N} \frac{(-1)^i \sum_{j=1}^i \frac{1}{j}}{i^2} \\ &+ (\frac{(-1)^N}{N(N+1)} - \frac{3N}{3N})^{S_3(N) + (\frac{1}{2} - 2(-1)^N)}S_4(N) + (-6 + 5(-1)^N)S_{-4}(N) \\ &+ (-\frac{2(-1)^N(9N+5)}{N(N+1)} - \frac{2}{N})S_{2,1}(N) + (20 + 2(-1)^N)S_{2,-2}(N) + (-17 + 13(-1)^N)S_3, \\ &- \frac{8(-1)^N(2N+1) + 4(9N+1)}{N(N+1)}S_{-2,1}(N) - (24 + 4(-1)^N)S_{-3,1}(N) + (3 - 5(-1)^N)S_{2,1} \\ &+ 32S_{-2,1,1}(N) + \left(\frac{3}{2}S_1(N)^2 - \frac{3S_1(N)}{N} + \frac{3}{2}(-1)^NS_{-2}(N)\right) \zeta(2) \end{split}$$

Challenges of the project

About 1000 difficult Feynman diagrams have been treated so far

(some took 50 days of calculation time)

About a million multi-sums have been simplified

(most were double and triple sums)

Resources

- up to 9 full time employed researchers at RISC/DESY
- 4 up-to-date mainframe DESY computers at RISC
 + exploiting DESY's computer farms
- New computer algebra/special functions technologies (new/tuned algorithms, efficient implementations,...)

The STAM Project

The STAM Project

 \rightarrow talk by Bruno Buchberger (Wednesday, 11 a.m.)

Conclusion

Andrews ["q-SERIES", 1986] about Ramanujan:

"Sometimes when studying his work I have wondered how much Ramanujan could have done if he had had MACSYMA or SCRATCHPAD or some other symbolic algebra package.

Andrews ["q-SERIES", 1986] about Ramanujan:

"Sometimes when studying his work I have wondered how much Ramanujan could have done if he had had MACSYMA or SCRATCHPAD or some other symbolic algebra package. More often I get the feeling that he was such a brilliant, clever, and intuitive computer himself that he really did not need them."

But let's conclude with Knuth:

Recall:

Knuth: Learning how to manipulate formulas fluently, and how to see patterns in formulas instead of patterns in numbers — that's what my book "Concrete Mathematics" is essentially about.

SYMBOLIC COMPUTATION and SOFTWARE not only greatly assist in these tasks, but also can be used to enhance mathematical theory!