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A Bit of History



Symbolic Surprises / A Bit of History 3

SYMBOLIC COMPUTATION in Combinatorics,
Number Theory, and Special Functions

Number Theorists played a pioneering role; e.g.:
“Computers in Number Theory” (Oxford, 19691)

1taken from John B. Cosgrove’s home page
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Volume 1, 1st edition 1968, Exercise 1.2.6.63:
[50] Develop computer algebra programs for simplifying sums that
involve binomial coefficients.
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1st edition 1989; contains Gosper’s algorithm (1978).
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2nd edition 1994: What is the difference to the 1st edition?
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Answer:
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Gosper → Zeilberger:

(
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)
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n− 1
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n− 1

k − 1

)

Web source: https://archive.org/stream/historyofjapanes00smitiala

https://archive.org/stream/ historyofjapanes00smitiala
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does not telescope!  Creative Telescoping (Zeilberger):
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Recall:
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Recall:
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Consequently, for

S(n) :=
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one has:

S(n+ 1)− 2S(n) = 0, n ≥ 0.

Alternatively,

S(n) = 2n, n ≥ 0.
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Zeilberger’s algorithm solves Knuth’s [50]-problem from 1968:

1st edition 1996
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An algorithmic supplement to “Concrete Mathematics”:

1st edition 2011
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A conversation with Donald E. Knuth conducted
by Edgar G. Daylight (Paris, June 18, 2014):

Knuth: Learning how to manipulate formulas fluently, and how to
see patterns in formulas instead of patterns in numbers — that’s
what my book “Concrete Mathematics” is essentially about.
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A conversation with Donald E. Knuth conducted
by Edgar G. Daylight (Paris, June 18, 2014) [contd.]:

Edgar: Which was also the topic of Manuel Kauers this morning?

Knuth: Right. In fact, he and Peter Paule in Austria recently
published a beautiful book called “The Concrete Tetrahedron”,
which is sort of the sequel to ”Concrete Mathematics”.



Symbolic Surprises / A Bit of History 17

Contents of the “Concrete Tetrahedron”
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Further Concrete Surprises
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Emil Artin1: “. . . determine the number of possible products of n
elements given in linear order. For example, the elements
a1, a2, a3, a4 in that order yield the products (a1a2)(a3a4),
a1(a2(a3a4))), etc.

Hint. Let cn−1 be the number of products of a1, a2, . . . , an. Find a
recursion formula for cn and use the [Lagrange] generating function

F (x) = c0x+ c1x
2 + · · ·+ cn−1x

n + · · · .”

c0 = 1 : (a1);
c1 = 1 : (a1a2);
c2 = 2 : a1(a2a3), (a1a2)a3;
c3 = 5 : a1(a2(a3a4)), a1((a2a3)a4), (a1a2)(a3a4),

(a1(a2a3))a4, ((a1a2)a3)a4; etc.

1Exercise 2, p.2, of “Algebra with Galois Theory”, Courant LNS 15
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COMPUTER-ASSISTED GUESSING
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COMPUTER-ASSISTED GUESSING
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NOTE. In general, there can be infinitely many recursive
descriptions of given sequences!

EXAMPLE. c(k):=

k∑
j=1

j = 1 + 2 + · · ·+ k.

From the recursive structure of the sum quantifier:

c(k) = c(k − 1) + k, k ≥ 1, and c(0) = 1.

GuessRE[. . . ] computed”

(k + 1)c(k + 1)− (k + 3)c(k) = 0, k ≥ 0, and c(0) = 1.

Other recurrences are, for example:

c(k + 2)− 2c(k + 1) + c(k) = 1, k ≥ 0, and c(0) = 1, c(1) = 3,

c(k) = (k + 1)(k + 2)/2, k ≥ 0; etc.
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Back to Artin’s Problem: IDENTIFY A RECURSIVE PATTERN

c0 = 1 : (a1);
c1 = 1 : (a1a2);
c2 = 2 : a1(a2a3), (a1a2)a3;
c3 = 5 : a1(a2(a3a4)), a1((a2a3)a4), (a1a2)(a3a4),

(a1(a2a3))a4, ((a1a2)a3)a4; etc.

For example,
c3 = c0 c2 + c1 c1 + c2 c0.

In general, for n ≥ 1:

cn =
n−1∑
k=0

ck cn−1−k.

NOTE. It was relatively easy to identify this recursive pattern;
however, this recurrence is not linear!
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GUESSING A LINEAR RECURRENCE

HOW TO PROVE THIS?
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RECALL: For n ≥ 1,

cn =

n−1∑
k=0

ck cn−1−k.

Using a RISC implementation of Zeilberger’s “fast” algorithm we
prove that our conjectured expression

cn =
1

n+ 1

(
2n

n

)
indeed satisfies this recurrence:
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⇒ The homogeneous recurrence is nothing but the recurrence for
the cn: RECALL

NOTE. As a by-product, Zeilberger’s algorithm delivers a
certificate proof for the correctness of the output recurrence:
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Surprise

Instead of Zeilberger’s algorithm (1990) already Gosper’s algorithm
(1978) can solve our problem:

NOTE. The numbers cn are the celebrated Catalan numbers; e.g.,
see Richard Stanley’s book.
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Surprise ⇒ Algorithmic Theory of
Contiguous Relations

I In our “Gosper-surprise” Zeilberger’s algorithm delivered the
minimal possible (homogeneous) recurrence for the sum.

I This is not always the case! (“Zeilberger-surprise”)

EXAMPLE (communicated by H. Prodinger). For m ≥ 0,

S(m) :=

2m+1∑
k=1

(−1)k
(

2m+ 1

k

)2(2m+ 1

k − 1

)
= (−1)m+1 (3m+ 2)!

2(m+ 1)!2m!
.

But Zeilberger’s algorithm does not deliver the minimal recurrence:
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Now we apply what Zeilberger calls “Paule’s creative
symmetrizing”:

Rewrite S(m) =

2m+1∑
k=1

f(2m+ 1, k) as

=

2m+1∑
k=1

f(2m+ 1, k) + f(2m+ 1, 2m+ 1− k)

2
.
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I The order-reduction-effect of “creative symmetrizing” can be
explained via an algorithmic theory of contiguous relations.

Pioneering work: Nobuki Takayama [“Gröbner Basis and the
Problem of Contiguous Relations”, 1989].

I Contiguous relations were first studied by Gauß (1813):

“There must be many universities to-day where 95 per cent, if not
100 per cent, of the functions studied by physics, engineering, and
even mathematics students, are covered by this single symbol 2F1.”
[W.W. Sawyer, Prelude to Mathematics, Baltimore, Penguin, 1955.]
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EXAMPLES.
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EXAMPLES contd.
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NOTE.

I Z’s algorithm and the algorithmic theory of contiguous
relations carry over to q-hypergeometric functions and
q-identities.

For example, one can algorithmically prove polynomial versions
[P. ’94, P. & Riese ’97] of identities like1:

1 +

∞∑
k=1

qk
2

(1− q)(1− q2) . . . (1− qk)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
.

→ “q-Series and Modular Functions”

11st Rogers-Ramanujan identity



Symbolic Surprises / Further Concrete Surprises 40

Commercial Break
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Commercial Break
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Back to Artin’s Generating Function

RECALL F (x) = c0x+ c1x
2 + · · ·+ cn−1x

n + · · · and



Symbolic Surprises / Further Concrete Surprises 41

Back to Artin’s Generating Function

RECALL F (x) = c0x+ c1x
2 + · · ·+ cn−1x

n + · · · and



Symbolic Surprises / Further Concrete Surprises 41

Back to Artin’s Generating Function

RECALL F (x) = c0x+ c1x
2 + · · ·+ cn−1x

n + · · · and



Symbolic Surprises / Further Concrete Surprises 42

Koutschan’s Holonomic Functions Package

EXAMPLE. Background: relativistic Coulomb integrals
[Koutschan, P. & Suslov ’14]
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Using non-commutatative GB and holonomic closure properties,
Koutschan’s package computes a recurrence for the integral Ap:
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AMS David P. Robbins Prize 2016
for paper in: Proceedings of the National Academy of Sciences
(PNAS) 108(6), 2011;
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Another Holonomic Surprise: a Patent!
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q-Series and Modular Functions
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Current project with Silviu Radu:
algebraic relations of modular functions

There are two Rogers-Ramanujan identities:

R(q):=1+

∞∑
k=1

qk
2

(1− q)(1− q2) . . . (1− qk)
=

∞∏
n=0

1

(1− q5n+1)(1− q5n+4)

and

S(q):=1+

∞∑
k=1

qk
2+k

(1− q)(1− q2) . . . (1− qk)
=

∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
.

Ramanujan (1887-1920) discovered 40 algebraic relations between
R(q) and S(q); for example:

R(q11)S(q)− q2R(q)S(q11) = 1.
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Setting
q = q(τ):=e2πiτ ,

R(q) and S(q) can be considered as modular functions on the
upper half of the complex plane.

To my SURPRISE this analytic context can be transferred into
a new computer algebra framework [Radu ’14, P. & Radu ’16].

In a project to study and explain Ramanujan’s algebraic relations
we use

I constructive versions of theorems about meromorphic
functions on compact Riemann surfaces, and

I a (new?) algorithm to represent subalgebras of a univariate
polynomial ring as a freely generated module over a
poynomial ring in one generator.

NOTE. q-series are strongly related to partitions of numbers.
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Example: p(4) = 5: 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

NOTE. The generating function of the partition numbers is

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn

= (1 + q1 + q1+1 + q1+1+1 + . . . )

× (1 + q2 + q2+2 + q2+2+2 + . . . )

× etc.

= . . .+ q1+1+1q2+2 · · ·+ . . .

Let’s look at a table of partition numbers from p(0) := 1 to p(80):
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NOTE. The generating function of the partition numbers is

∞∑
n=0

p(n)qn =

∞∏
n=1

1

1− qn

= (1 + q1 + q1+1 + q1+1+1 + . . . )

× (1 + q2 + q2+2 + q2+2+2 + . . . )

× etc.

= . . .+ q1+1+1q2+2 · · ·+ . . .

Let’s look at a table of partition numbers from p(0) := 1 to p(80):
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1 1 2 3 5
7 11 15 22 30
42 56 77 101 135
176 231 297 385 490
627 792 1002 1255 1575
1958 2436 3010 3718 4565
5604 6842 8349 10143 12310
14883 17977 21637 26015 31185
37338 44583 53174 63261 75175
89134 105558 124754 147273 173525
204226 239943 281589 329931 386155
451276 526823 614154 715220 831820
966467 1121505 1300156 1505499 1741630
2012558 2323520 2679689 3087735 3554345
4087968 4697205 5392783 6185689 7089500
8118264 9289091 10619863 12132164 13848650
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Ramanujan’s Congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11)
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Define:
∞∑
n=0

p(n)qn:=

∞∏
j=1

1

1− qj
:

Ramanujan [1919] proved:

∞∑
n=0

p(5n+ 4)qn = 5

∞∏
j=1

(1− q5j)5

(1− qj)6

and

∞∑
n=0

p(7n+ 5)qn

= 7
∞∏
j=1

(1− q7j)3

(1− qj)4
+ 49q

∞∏
j=1

(1− q7j)7

(1− qj)8
.

What about p(11n+ 6)?
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Almost 100 hundred years later Radu’s “Ramanujan-Kolberg” package

computes in E∞(22):

∞∑
n=0

p(11n+ 6)qn = q14
∞∏
j=1

(1− q22j)22

(1− qj)10(1− q2j)2(1− q11j)11

×(1078t4 + 13893t3 + 31647t2 + 11209t− 21967

+z1(187t3 + 5390t2 + 594t− 9581)

+z2(11t3 + 2761t2 + 5368t− 6754)

with

t:=
3

88
w1 +

1

11
w2 −

1

8
w3, z1:=− 5

88
w1 +

2

11
w2 −

1

8
w3 − 3,

z2:=
1

44
w1 −

3

11
w2 +

5

4
w3,

where the wj ∈ E∞(22) are of the form

wj =

∞∏
j=1

(1− q�j)� . . .

(1− q�j)� . . .
.

This implies that the q-series t, w1, and w2 have coefficients in Z. �
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Symbolic Summation in QFT
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Symbolic Summation in Quantum Field Theory

JKU Collaboration with DESY (Berlin–Zeuthen)
(Deutsches Elektronen–Synchrotron)

Project leader: Carsten Schneider (RISC)
Partners: Johannes Blümlein (DESY)

Peter Paule (RISC)
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Evaluation of Feynman diagrams

Behavior of particles

//

∫
Φ(N, ε, x)dx

Feynman
integrals

DESY

��

Evaluations required for the
LHC experiment at CERN

simple sum expressions

processable by physicists

88

∑
f(N, ε, k)

multi-sums

RISC

(symbolic summation)
oo
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= F−3(N)ε−3 + F−2(N)ε−2 + F−1(N)ε−1 + F0(N)

Simplify ||

N−3∑
j=0

j∑
k=0

k∑
l=0

−j+N−3∑
q=0

−l+N−q−3∑
s=1

−l+N−q−s−3∑
r=0

(−1)−j+k−l+N−q−3×

× (j+1
k+1)(

k
l)(

N−1
j+2 )(−j+N−3

q )(−l+N−q−3
s ) (−l+N−q−s−3

r )r!(−l+N−q−r−s−3)!(s−1)!
(−l+N−q−2)!(−j+N−1)(N−q−r−s−2)(q+s+1)[

4S1(−j +N − 1)− 4S1(−j +N − 2)− 2S1(k)

− (S1(−l +N − q − 2) + S1(−l +N − q − r − s− 3)− 2S1(r + s))

+ 2S1(s− 1)− 2S1(r + s)

]
+ 3 further 6–fold sums
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F0(N) = (using Sigma.m, EvaluateMultiSums.m and J. Ablinger’s HarmonicSums.m package)

7

12
S1(N)4 +

(17N + 5)S1(N)3

3N(N + 1)
+
(35N2 − 2N − 5

2N2(N + 1)2
+

13S2(N)

2
+

5(−1)N

2N2

)
S1(N)2

+
(
−

4(13N + 5)

N2(N + 1)2
+
(4(−1)N (2N + 1)

N(N + 1)
−

13

N

)
S2(N) +

(29
3
− (−1)N

)
S3(N)

+
(
2 + 2(−1)N

)
S2,1(N)− 28S−2,1(N) +

20(−1)N

N2(N + 1)

)
S1(N) +

(3
4
+ (−1)N

)
S2(N)2

− 2(−1)NS−2(N)2 + S−3(N)
(2(3N − 5)

N(N + 1)
+
(
26 + 4(−1)N

)
S1(N) +

4(−1)N

N + 1

)
+
( (−1)N (5− 3N)

2N2(N + 1)
−

5

2N2

)
S2(N) + S−2(N)

(
10S1(N)2 +

(8(−1)N (2N + 1)

N(N + 1)

+
4(3N − 1)

N(N + 1)

)
S1(N) +

8(−1)N (3N + 1)

N(N + 1)2
+
(
− 22 + 6(−1)N

)
S2(N)−

16

N(N + 1)

)
+
( (−1)N (9N + 5)

N(N + 1)
−

29

3N

)
S3(N) +

(19
2
− 2(−1)N

)
S4(N) +

(
− 6 + 5(−1)N

)
S−4(N)

+
(
−

2(−1)N (9N + 5)

N(N + 1)
−

2

N

)
S2,1(N) +

(
20 + 2(−1)N

)
S2,−2(N) +

(
− 17 + 13(−1)N

)
S3,1(N)

−
8(−1)N (2N + 1) + 4(9N + 1)

N(N + 1)
S−2,1(N)−

(
24 + 4(−1)N

)
S−3,1(N) +

(
3− 5(−1)N

)
S2,1,1(N)

+ 32S−2,1,1(N) +

(
3

2
S1(N)2 −

3S1(N)

N
+

3

2
(−1)NS−2(N)

)
ζ(2)

S−2,1,1(N) =
N∑
i=1

(−1)i
i∑

j=1

j∑
k=1

1

k

j

i2

ζ(2) =

∞∑
k=1

1

k2
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∞∑
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1
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Challenges of the project

About 1000 difficult Feynman diagrams have been treated so far

(some took 50 days of calculation time)

↓

About a million multi-sums have been simplified

(most were double and triple sums)

Resources
I up to 9 full time employed researchers at RISC/DESY

I 4 up-to-date mainframe DESY computers at RISC
+ exploiting DESY’s computer farms

I New computer algebra/special functions technologies
(new/tuned algorithms, efficient implementations,...)
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The STAM Project
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The STAM Project

→ talk by Bruno Buchberger (Wednesday, 11 a.m.)
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Conclusion
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Andrews [“q-SERIES”, 1986] about Ramanujan:

“Sometimes when studying his work I have wondered how much
Ramanujan could have done if he had had MACSYMA or
SCRATCHPAD or some other symbolic algebra package.

More
often I get the feeling that he was such a brilliant, clever, and
intuitive computer himself that he really did not need them.”

But let’s conclude with Knuth:
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Recall:

Knuth: Learning how to manipulate formulas fluently, and how to
see patterns in formulas instead of patterns in numbers — that’s
what my book “Concrete Mathematics” is essentially about.

SYMBOLIC COMPUTATION and SOFTWARE not only
greatly assist in these tasks, but also can be used to enhance
mathematical theory!


