Homework 9.11.18

Exercise 1 Show that the Pochhammer polynomials defined by $(x)_{0}=1$ and

$$
(x)_{n}=\prod_{k=0}^{n-1}(x+k), \quad n \in \mathbb{N}
$$

satisfy the identities
(i)

$$
(x)_{n+m}=(x)_{n}(x+n)_{m}, \quad n, m \in \mathbb{N}_{0}
$$

(ii)

$$
(-x)_{n}=(-1)^{n}(x-n+1)_{n}
$$

and
(iii)

$$
\frac{(x-m)_{n}}{(x)_{n}}=\frac{(x-m)_{m}}{(x-m+n)_{m}}=\frac{(1-x)_{m}}{(1-x-n)_{m}}, \quad n, m \in \mathbb{N}_{0}
$$

Exercise 2 Show that the falling factorial polynomials defined by $\phi_{0}(x)=1$ and

$$
\phi_{n}(x)=\prod_{j=0}^{n-1}(x-j), \quad n \in \mathbb{N}
$$

satisfy the identities

$$
\begin{equation*}
\phi_{n}(x)=(-1)^{n}(-x)_{n}=(x-n+1)_{n}, \tag{i}
\end{equation*}
$$

(ii)

$$
\phi_{n}(x+1)=\phi_{n}(x)+n \phi_{n-1}(x),
$$

$$
\begin{equation*}
\Delta^{i} \phi_{j}(x)=\phi_{i}(j) \phi_{j-i}(x), \tag{iii}
\end{equation*}
$$

where Δ is the forward difference operator.
Exercise 3 Let the moments $\nu_{n}(z)$ be defined by

$$
\nu_{n}(z)=\sum_{x=0}^{\infty} \phi_{n}(x) \frac{z^{x}}{x!} .
$$

Show that
(i)

$$
\nu_{0}(z)=e^{z} .
$$

(ii)

$$
\nu_{n+1}-z \nu_{n}=0 .
$$

(iii)

$$
\nu_{n}(z)=z^{n} e^{z}
$$

Exercise 4 Let the entries of the Gram matrix G be defined by

$$
G_{i, j}=e^{z} \sum_{k=0}^{\infty}\binom{i}{k}\binom{j}{k} k!z^{i+j-k} .
$$

Show that

$$
G_{i, j}=e^{z} z^{i+j}{ }_{2} F_{0}\binom{-i,-j}{-z^{-1}} .
$$

Exercise 5 Let

$$
C_{i, j}=\binom{i}{j} z^{i-j}, \quad H_{i, j}=i!z^{i} e^{z} \delta_{i, j}, \quad i, j \in \mathbb{N}_{0}
$$

Show that
(i)

$$
G=C H C^{T},
$$

where G is the matrix defined in the previous exercise.
(ii) If

$$
A_{i, j}=\sum_{k=0}^{\infty}(-1)^{i-k} C_{i, k} C_{k, j}, \quad i, j \in \mathbb{N}_{0}
$$

then

$$
\begin{array}{ll}
A_{i, j}=0, & i<j \\
A_{i, j}=1, & i=j .
\end{array}
$$

