Matrix factorizations and orthogonal polynomials

Diego Dominici

November 9, 2018

1 Introduction

Let \mathbb{N}_{0} denote the set

$$
\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=0,1,2, \ldots,
$$

and L be a linear functional acting on the space of polynomials $\mathbb{C}[x]$, i.e., belonging to the dual vector space $\mathbb{C}^{*}[x]$:

$$
L[a p+b q]=a L[p]+b L[q], \quad a, b \in \mathbb{C}, \quad p, q \in \mathbb{C}[x] .
$$

The numbers

$$
\mu_{n}=L\left[x^{n}\right] \in \mathbb{C}, \quad n \in \mathbb{N}_{0}
$$

are called the moments of L.
If we have a sequence of polynomials $p_{n}(x) \in \mathbb{C}[x]$,

$$
\operatorname{deg}\left(p_{n}\right)=n, \quad n \in \mathbb{N}_{0}
$$

satisfying

$$
\begin{align*}
L\left[x^{k} p_{n}\right] & =0, \quad 0 \leq k<n, \tag{1}\\
L\left[x^{n} p_{n}\right] & =h_{n} \neq 0,
\end{align*}
$$

for all $n \in \mathbb{N}_{0}$, we say that $\left\{p_{n}\right\}$ is a family of orthogonal polynomials with respect to L. Examples include Legendre, Chebyshev, Jacobi, Hermite,

Gegenbauer, Laguerre, Charlier, Kravchuk, Meixner, Hahn polynomials, and many others!

If $n \in \mathbb{N}$ and

$$
p_{n}(x)=\sum_{j=0}^{n} c_{j} x^{j}
$$

we have

$$
L\left[x^{k} p_{n}\right]=\sum_{j=0}^{n} c_{j} L\left[x^{k+j}\right]=\sum_{j=0}^{n} \mu_{k+j} c_{j},
$$

and using (1), we get

$$
\begin{aligned}
& \sum_{j=0}^{n} \mu_{k+j} c_{j}=0, \quad 0 \leq k<n \\
& \sum_{j=0}^{n} \mu_{n+j} c_{j}=h_{n} \neq 0
\end{aligned}
$$

If we introduce the Hankel matrix

$$
M_{i, j}=\mu_{i+j}, \quad 0 \leq i, j \leq n,
$$

we can write

$$
M\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
h_{n}
\end{array}\right],
$$

and we will have a unique solution if the Hankel determinants Δ_{n} satisfy

$$
\Delta_{n}=\operatorname{det}_{0 \leq i, j \leq n}\left(\mu_{i+j}\right) \neq 0, \quad n \in \mathbb{N}_{0}
$$

We say that L is a quasi-definite functional if $\Delta_{n} \neq 0, \quad n \in \mathbb{N}_{0}$, and L is a positive-definite functional if $\Delta_{n}>0, \quad n \in \mathbb{N}_{0}$.

2 Main theory

2.1 Definitions

We begin with a few definitions.

Definition 1 A semi-infinite matrix $A \in \mathbb{C}^{\infty \times \infty}$ is a function $A: \mathbb{N}_{0} \times$ $\mathbb{N}_{0} \rightarrow \mathbb{C}$. We write

$$
A(i, j)=A_{i, j} .
$$

(i) We say that A is an upper triangular matrix if

$$
A_{i, j}=0, \quad i>j
$$

We say that U is a unit upper triangular (UUT) matrix if A is upper triangular and

$$
A_{i, i}=1, \quad i \in \mathbb{N}_{0}
$$

In other words,

$$
A=\left(\begin{array}{ccc}
1 & A_{0,1} & A_{0,2} \\
0 & 1 & A_{1,2} \\
0 & 0 & 1
\end{array}\right)
$$

(ii) We say that A is a lower triangular matrix if

$$
A_{i, j}=0, \quad i<j .
$$

We say that A is a unit lower triangular (ULT) matrix if L is lower triangular and

$$
A_{i, i}=1, \quad i \in \mathbb{N}_{0}
$$

In other words,

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
A_{1,0} & 1 & 0 \\
A_{2,0} & A_{2,1} & 1
\end{array}\right)
$$

Definition 2 We say that $\vec{q} \in \mathbb{C}[x]^{\infty \times 1}$ is a basis of $\mathbb{C}[x]$ if $q_{n}(x) \in \mathbb{C}[x]$ and $\operatorname{deg}\left(q_{n}\right)=n$.

We say that \vec{q} is a monic basis if $q_{n}(x)$ is a monic polynomial for all $n \in \mathbb{N}_{0}$,

$$
q_{n}(x)=x^{n}+\cdots .
$$

The basis that we will use in our examples is constructed with the falling factorials.

Example 3 The basis of falling factorial (or binomial) polynomials is defined by $\phi_{0}(x)=1$ and

$$
\begin{equation*}
\phi_{n}(x)=\prod_{j=0}^{n-1}(x-j), \quad n \in \mathbb{N} \tag{2}
\end{equation*}
$$

Using the definition (2), we immediately obtain the recurrence relation

$$
\begin{equation*}
\phi_{n+1}(x)=(x-n) \phi_{n}(x) . \tag{3}
\end{equation*}
$$

Definition 4 We define the Pochhammer (or rising factorial) polynomials by $(x)_{0}=1$ and

$$
\begin{equation*}
(x)_{n}=\prod_{k=0}^{n-1}(x+k), \quad n \in \mathbb{N} \tag{4}
\end{equation*}
$$

Remark 5 The Pochhammer polynomials can be generalized to complex values of n using the formula [6, 5.2.5]

$$
\begin{equation*}
(x)_{n}=\frac{\Gamma(x+n)}{\Gamma(x)}, \quad-(x+n) \notin \mathbb{N}_{0} \tag{5}
\end{equation*}
$$

where $\Gamma(z)$ is the Gamma function.
The Pochhammer polynomials satisfy many identities (HW \#1), including the recurrence [5, 18:5:12]

$$
\begin{equation*}
(x)_{n+m}=(x)_{n}(x+n)_{m}, \quad n, m \in \mathbb{N}_{0} \tag{6}
\end{equation*}
$$

the change of sign identity

$$
\begin{equation*}
(-x)_{n}=(-1)^{n}(x-n+1)_{n}, \tag{7}
\end{equation*}
$$

and the ratio formulas [5, 18:5:10]

$$
\begin{equation*}
\frac{(x-m)_{n}}{(x)_{n}}=\frac{(x-m)_{m}}{(x-m+n)_{m}}=\frac{(1-x)_{m}}{(1-x-n)_{m}}, \quad n, m \in \mathbb{N}_{0} \tag{8}
\end{equation*}
$$

We see from (2), (4), and (7) that the polynomials $\phi_{n}(x)$ and $(x)_{n}$ are related by (HW \#2)

$$
\begin{equation*}
\phi_{n}(x)=(-1)^{n}(-x)_{n}=(x-n+1)_{n} . \tag{9}
\end{equation*}
$$

Note that from (5) and (9), we get

$$
\begin{equation*}
\phi_{n}(x)=\frac{\Gamma(x+1)}{\Gamma(x-n+1)}=n!\binom{x}{n} . \tag{10}
\end{equation*}
$$

The falling factorial polynomials are eigenvalues of the forward difference operator (acting on the variable x) defined by

$$
\Delta f(x)=f(x+1)-f(x) .
$$

In fact, we have the following result.

Lemma 6 For all $i, j \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
\Delta^{i} \phi_{j}(x)=\phi_{i}(j) \phi_{j-i}(x) . \tag{11}
\end{equation*}
$$

Note that from (2) we see that

$$
\phi_{i}(j)=0, \quad i>j
$$

and therefore

$$
\Delta^{i} \phi_{j}(x)=0, \quad i>j .
$$

Proof. HW \#2.
Using the Pochhammer polynomials we can construct the generalized hypergeometric function.

Definition 7 The generalized hypergeometric function ${ }_{p} F_{q}$ is defined by [6, 16.2]

$$
{ }_{p} F_{q}\left(\begin{array}{l}
a_{1}, \ldots, a_{p} \tag{12}\\
b_{1}, \ldots, b_{q}
\end{array} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k} \cdots\left(a_{p}\right)_{k}}{\left(b_{1}\right)_{k} \cdots\left(b_{q}\right)_{k}} \frac{z^{k}}{k!} .
$$

Remark 8 The convergence of the series (12) depends on the values of p and q. We have three different cases to consider:

1. If $p<q+1,{ }_{p} F_{q}$ is an entire function of z.
2. If $p=q+1,{ }_{p} F_{q}$ is analytic inside the unit circle, $|z|<1$.
3. If $p>q+1,{ }_{p} F_{q}$ diverges for $z \neq 0$, unless one or more of the top parameters a_{i} is a negative integer. If we take $a_{1}=-N$, with $N \in \mathbb{N}_{0}$, then ${ }_{p} F_{q}$ becomes a polynomial of degree N.

For example, we can write the exponential generating function of the Pochhammer polynomials as a ${ }_{1} F_{0}$ function.

Example 9 Using the binomial theorem and (10), we have

$$
(1+z)^{x}=\sum_{n=0}^{\infty}\binom{x}{n} z^{n}=\sum_{n=0}^{\infty} \frac{\phi_{n}(x)}{n!} z^{n}, \quad|z|<1
$$

From (9), we get
${ }_{1} F_{0}\left(\begin{array}{c}x \\ -\end{array} ; z\right)=\sum_{n=0}^{\infty}(x)_{n} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \phi_{n}(-x) \frac{z^{n}}{n!}=(1-z)^{-x}, \quad|z|<1$.

In the next section, we will need the following result.
Proposition 10 The polynomials $\phi_{n}(x)$ satisfy the connection formula

$$
\begin{equation*}
\phi_{n}(x) \phi_{m}(x)=\sum_{k=0}^{\infty}\binom{n}{k}\binom{m}{k} k!\phi_{n+m-k}(x) . \tag{14}
\end{equation*}
$$

Proof. Can you find one? Maybe using symbolic computation?

2.2 Linear functionals

Definition 11 Let $L: \mathbb{C}[x] \rightarrow \mathbb{C}$ be a linear functional and $\vec{q} \in \mathbb{C}[x]^{\infty \times 1}$ be a monic basis.
(i) The numbers

$$
\nu_{n}=L\left[q_{n}\right], \quad n \in \mathbb{N}_{0}
$$

are called the (generalized) moments of L. We write

$$
\vec{\nu}=L[\vec{q}] \in \mathbb{C}[x]^{\infty \times 1}
$$

(ii) We define the Gram matrix G by

$$
G=L\left[\begin{array}{ll}
\vec{q} & \vec{q}^{T}
\end{array}\right] \in \mathbb{C}^{\infty \times \infty}
$$

As an example, we consider the following linear functional.
Example 12 Let $L: \mathbb{C}[x] \rightarrow \mathbb{C}$ be defined by

$$
\begin{equation*}
L[q]=\sum_{x=0}^{\infty} q(x) \frac{z^{x}}{x!}, \quad q \in \mathbb{C}[x] . \tag{15}
\end{equation*}
$$

The moments of L on the falling factorial basis are given by

$$
\nu_{n}(z)=L\left[\phi_{n}\right]=\sum_{x=0}^{\infty} \phi_{n}(x) \frac{z^{x}}{x!} .
$$

We can show (HW \#3) that

$$
\begin{equation*}
\nu_{n}(z)=z^{n} e^{z} \tag{16}
\end{equation*}
$$

Using (16) and (14), we obtain (HW \#4)

$$
G_{i, j}=L\left[\phi_{i}, \phi_{j}\right]=e^{z} z^{i+j}{ }_{2} F_{0}\left(\begin{array}{c}
-i,-j \tag{17}\\
-
\end{array} ; z^{-1}\right) .
$$

Remark 13 Note that the matrix G defined by (17) is symmetric, and all the entries are finite sums, since the hypergeometric series terminates for all $i, j \in \mathbb{N}_{0}$. Also, $z=0$ is not a singularity of $G_{i, j}$, since the power z^{i+j} cancels the powers of z^{-1}.

Definition 14 We say that L is a quasi-definite functional with respect to a monic basis $\vec{q} \in \mathbb{C}[x]^{\infty \times 1}$ if the matrix $L\left[\vec{q} \vec{q}^{T}\right]$ admits the $L D L$ decomposition [3, 4.12]

$$
L\left[\begin{array}{ll}
\vec{q} & \vec{q}^{T} \tag{18}
\end{array}\right]=G=C H C^{T},
$$

where $C \in \mathbb{C}^{\infty \times \infty}$ is a ULT matrix and $H \in \mathbb{C}^{\infty \times \infty}$ is a nonsingular diagonal matrix

$$
H_{i, j}=h_{i} \delta_{i, j}, \quad h_{i} \neq 0, \quad i, j \in \mathbb{N}_{0}
$$

If $h_{i}>0$ for all $i \in \mathbb{N}_{0}$, we say that L is a positive-definite functional.
Proposition 15 If L is a quasi-definite functional with respect to \vec{q}, then we can compute the entries of C and H in (18) by the following iterative formula:

$$
\begin{aligned}
h_{0} & =G_{0,0}, \quad C_{i, 0}=\frac{G_{i, 0}}{h_{0}}, \quad C_{i, i}=1, \quad i \in \mathbb{N}_{0} \\
C_{i, j} & =0, \quad i<j
\end{aligned}
$$

and for $i \in \mathbb{N}$,

$$
\begin{align*}
C_{i, j} & =\frac{1}{h_{j}}\left(G_{i, j}-\sum_{k=0}^{j-1} C_{i, k} C_{j, k} h_{k}\right), \quad j=1, \ldots, i-1 \tag{19}\\
h_{i} & =G_{i, i}-\sum_{k=0}^{i-1}\left(C_{i, k}\right)^{2} h_{k}
\end{align*}
$$

Proof. Let $i \geq j$. Then, since C is a ULT matrix we have $C_{j, k}=0, \quad j<k$, and

$$
\begin{aligned}
G_{i, j} & =\left(C H C^{T}\right)_{i, j}=\sum_{k=0}^{\infty} C_{i, k} h_{k} C_{j, k} \\
& =\sum_{k=0}^{j} C_{i, k} h_{k} C_{j, k}=C_{i, j} h_{j}+\sum_{k=0}^{j-1} C_{i, k} h_{k} C_{j, k}
\end{aligned}
$$

Solving for $C_{i, j}$, we get

$$
C_{i, j}=\frac{1}{h_{j}}\left(G_{i, j}-\sum_{k=0}^{j-1} C_{i, k} h_{k} C_{j, k}\right) .
$$

In particular, when $i=j$

$$
1=C_{i, i}=\frac{1}{h_{i}}\left[G_{i, i}-\sum_{k=0}^{i-1}\left(C_{i, k}\right)^{2} h_{k}\right] .
$$

Example 16 Let the matrix G be defined by (17). Since

$$
h_{0}=G_{0,0}=e^{z}, \quad C_{i, 0}=\frac{G_{i, 0}}{G_{0,0}}=z^{i},
$$

we can use (19), and obtain

$$
h_{1}=z e^{z}, \quad h_{2}=2 z^{2} e^{z}, \quad h_{3}=6 z^{3} e^{z}, \ldots,
$$

and

$$
C=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
z & 1 & 0 & 0 & 0 \\
z^{2} & 2 z & 1 & 0 & 0 \\
z^{3} & 3 z^{2} & 3 z & 1 & 0 \\
z^{4} & 4 z^{3} & 6 z^{2} & 4 z & 1
\end{array}\right) .
$$

We see that the matrices C and H in the LDL decomposition (18) have entries (HW \#5)

$$
\begin{equation*}
C_{i, j}=\binom{i}{j} z^{i-j}, \quad i, j \in \mathbb{N}_{0} \tag{20}
\end{equation*}
$$

and $H_{i, j}=h_{i} \delta_{i, j}$, with

$$
\begin{equation*}
h_{i}=i!z^{i} e^{z}, \quad i \in \mathbb{N}_{0} . \tag{21}
\end{equation*}
$$

We conclude that L is a quasi-definite functional if $z \neq 0$. The functional L will be positive definite if $z>0$.

2.3 Orthogonal polynomials

In this section, we introduce sequences of polynomials orthogonal with respect to linear functionals.

Definition 17 If L is a quasi-definite functional with respect to \vec{q}, we define the sequence of monic orthogonal polynomials (MOPS) with respect to L by

$$
\begin{equation*}
\vec{p}=C^{-1} \vec{q} \in \mathbb{C}[x]^{\infty \times 1} \tag{22}
\end{equation*}
$$

Example 18 Let the matrix C be defined by (20). Let

$$
\begin{aligned}
A_{i, j} & =\sum_{k=0}^{\infty}(-1)^{i-k} C_{i, k} C_{k, j}=\sum_{k=0}^{\infty}(-1)^{i-k}\binom{i}{k} z^{i-k}\binom{k}{j} z^{k-j} \\
& =z^{i-j} \sum_{k=0}^{\infty}(-1)^{i-k}\binom{i}{k}\binom{k}{j}, \quad i, j \in \mathbb{N}_{0} .
\end{aligned}
$$

Then (HW \#5),

$$
\begin{array}{ll}
A_{i, j}=0, & i<j \\
A_{i, j}=1, & i=j .
\end{array}
$$

If $i>j$, we get

$$
A_{i, j}=z^{i-j} \sum_{k=j}^{i}(-1)^{i-k}\binom{i}{k}\binom{k}{j}
$$

and using (10)

$$
A_{i, j}=z^{i-j} \sum_{k=j}^{i}(-1)^{i-k}\binom{i}{k} \frac{\phi_{j}(k)}{j!} .
$$

If we use the formula for higher order differences [7, 6.1]

$$
\begin{equation*}
\Delta^{p} f(x)=\sum_{j=0}^{p}\binom{p}{j}(-1)^{p-j} f(x+j) \tag{23}
\end{equation*}
$$

we see that

$$
A_{i, j}=\frac{z^{i-j}}{j!}\left[\Delta^{i} \phi_{j}(x)\right]_{x=0}, \quad i>j
$$

But since $\phi_{j}(x)$ is a polynomial of degree j, and $i>j$

$$
A_{i, j}=0, \quad i>j
$$

We conclude that

$$
\sum_{k=0}^{\infty}(-1)^{i-k} C_{i, k} C_{k, j}=A_{i, j}=\delta_{i, j}, \quad i, j \in \mathbb{N}_{0}
$$

and therefore

$$
\begin{equation*}
\left(C^{-1}\right)_{i, k}=(-1)^{i-k} C_{i, k} \tag{24}
\end{equation*}
$$

The polynomials $\vec{p}=C^{-1} \vec{\phi}$ are known as (monic) Charlier polynomials [4, 6.1]. Using (20) and (24), we get

$$
p_{n}(x)=\sum_{j=0}^{\infty}\left(C^{-1}\right)_{n, j} \phi_{j}(x)=\sum_{j=0}^{\infty}(-1)^{n-j}\binom{n}{j} z^{n-j} \phi_{j}(x) .
$$

From (10) and (9), we have

$$
\binom{n}{j}=\frac{\phi_{j}(n)}{j!}=\frac{(-1)^{j}(-n)_{j}}{j!} .
$$

Therefore,

$$
(-z)^{-j}\binom{n}{j} \phi_{j}(x)=(-1)^{j}\binom{n}{j} j!(-1)^{j} \phi_{j}(x) \frac{(-z)^{-j}}{j!}=(-n)_{j}(-x)_{j} \frac{(-z)^{-j}}{j!}
$$

and we obtain the hypergeometric representation [1]

$$
p_{n}(x)=(-z)^{n}{ }_{2} F_{0}\left(\begin{array}{c}
-n,-x \\
-
\end{array} ;-z^{-1}\right) .
$$

Theorem 19 Let L be a quasi-definite functional with respect to \vec{q} and \vec{p} be the corresponding MOPS. Then,
(i) The polynomials $p_{n}(x)$ satisfy the orthogonality relation

$$
\begin{equation*}
L\left[\vec{p} \vec{p}^{T}\right]=H \tag{25}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
L[\vec{p}]=h_{0} \overrightarrow{e_{0}}, \tag{26}
\end{equation*}
$$

where

$$
\left(\overrightarrow{e_{k}}\right)_{j}=\delta_{k, j} .
$$

(iii) If $\vec{\psi}$ is a monic basis of $\mathbb{C}[x]$, then

$$
L\left[\begin{array}{ll}
\vec{p} & \vec{\psi}^{T}
\end{array}\right]=H U
$$

where U is a UUT matrix. In other words, for all $i, j \in \mathbb{N}_{0}$

$$
L\left[p_{i} \psi_{j}\right]=\left\{\begin{array}{cc}
h_{i}, & i=j \tag{27}\\
0, & i>j
\end{array} .\right.
$$

Proof. (i) Using (22), we have

$$
L\left[\begin{array}{ll}
\vec{p} & \vec{p}^{T}
\end{array}\right]=L\left[\begin{array}{lll}
C^{-1} & \vec{q} & \vec{q}^{T} C^{-T}
\end{array}\right]=C^{-1} G C^{-T}=H,
$$

where

$$
C^{-T}=\left(C^{T}\right)^{-1}=\left(C^{-1}\right)^{T}
$$

(ii) Using (25), we have

$$
(L[\vec{p}])_{j}=L\left[p_{j}\right]=L\left[p_{j} p_{0}\right]=h_{0} \delta_{j, 0}
$$

(iii) If $\vec{\psi}$ is a monic basis of $\mathbb{C}[x]$, then there exists a ULT matrix A such that

$$
\vec{\psi}=A \vec{q}
$$

Using (22), we get

$$
L\left[\begin{array}{ll}
\vec{p} & \vec{\psi}^{T}
\end{array}\right]=L\left[\begin{array}{lll}
C^{-1} & \vec{q} & \vec{q}^{T}
\end{array} A^{T}\right]=C^{-1} G A^{T}=H C^{T} A^{T}
$$

Since C and A are ULT matrices, the matrix $C^{T} A^{T}$ is UUT.
Example 20 Meixner polynomials. Using (15), (21) and (25), we obtain the orthogonality relation for the (monic) Meixner polynomials [1]

$$
\sum_{x=0}^{\infty} p_{n}(x) p_{m}(x)(a)_{x} \frac{z^{x}}{x!}=e^{z} n!z^{n} \delta_{n, m}, \quad n, m \in \mathbb{N}_{0}
$$

Definition 21 Let \vec{p} be the MOPS with respect to a quasi-definite functional L. We define the Jacobi matrix $J \in \mathbb{C}^{\infty \times \infty}$ by

$$
\begin{equation*}
J=L\left[x \vec{p} \vec{p}^{T}\right] H^{-1} \tag{28}
\end{equation*}
$$

Theorem 22 (i) The Jacobi matrix J defined by (28) is a tridiagonal matrix with entries

$$
\begin{equation*}
J_{i, j}=\delta_{i+1, j}+\beta_{i} \delta_{i, j}+\gamma_{i} \delta_{i-1, j}, \tag{29}
\end{equation*}
$$

where the coefficients β_{i}, γ_{i} are given by

$$
\beta_{i}=\frac{L\left[x p_{i}^{2}\right]}{h_{i}}, \quad i \in \mathbb{N}_{0}
$$

$\gamma_{0}=0$ and

$$
\begin{equation*}
\gamma_{i}=\frac{L\left[x p_{i} p_{i-1}\right]}{h_{i-1}}=\frac{h_{i}}{h_{i-1}} \neq 0, \quad i \in \mathbb{N} . \tag{30}
\end{equation*}
$$

(ii) The polynomials \vec{p} satisfy the eigenvalue equation

$$
\begin{equation*}
J \vec{p}=x \vec{p} \tag{31}
\end{equation*}
$$

By linearity, this extends to

$$
\begin{equation*}
q(x) \vec{p}=q(J) \vec{p}, \quad q \in \mathbb{C}[x] . \tag{32}
\end{equation*}
$$

(iii) Let $q \in \mathbb{C}[x]$. Then, $q(J) H$ is a symmetric matrix.
(iv) Let $q \in \mathbb{C}[x]$ be given by

$$
\begin{equation*}
q(x)=\vec{p}^{T} \vec{\omega}, \quad \vec{\omega} \in \mathbb{C}[x]^{\infty \times 1} \tag{33}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\omega_{k}=\frac{h_{0}}{h_{k}}[q(J)]_{k, 0} . \tag{34}
\end{equation*}
$$

Proof. (i) Using (27) in two different ways, we have

$$
L\left[p_{i} x p_{j}\right]=\left\{\begin{array}{cc}
h_{i}, & i=j+1 \\
0, & i>j+1
\end{array}\right.
$$

and

$$
L\left[p_{j} x p_{i}\right]=\left\{\begin{array}{cc}
h_{j}, & j=i+1 \\
0, & j>i+1
\end{array} .\right.
$$

Thus, from (28) we obtain

$$
(J H)_{i, j}=0, \quad j \notin\{i-1, i, i+1\} .
$$

The three nonzero entries are given by

$$
\begin{gathered}
J_{i, i-1} h_{i-1}=L\left[x p_{i} p_{i-1}\right]=h_{i}, \\
J_{i, i} h_{i}=L\left[x p_{i}^{2}\right]=h_{i} \beta_{i},
\end{gathered}
$$

and

$$
J_{i, i+1} h_{i+1}=L\left[x p_{i} p_{i+1}\right]=h_{i+1} .
$$

(ii) Representing $x \vec{p}$ with respect to the basis \vec{p}, we have

$$
x \vec{p}=M \vec{p}
$$

for some matrix M. Multiplying by \vec{p}^{T} and applying L on both sides of the equation, we get

$$
J H=L\left[\begin{array}{ll}
x & \vec{p} \\
\vec{p}^{T}
\end{array}\right]=M L\left[\begin{array}{ll}
\vec{p} & \vec{p}^{T}
\end{array}\right]=M H
$$

where we have used (25) and (28). Since H is nonsingular, $M=J$.
(iii) Using (32), we have

$$
L\left[q \vec{p} \vec{p}^{T}\right]=L\left[q(J) \vec{p} \vec{p}^{T}\right]=q(J) L\left[\begin{array}{l}
\vec{p} \\
\vec{p}^{T}
\end{array}\right]=q(J) H
$$

But on the other hand,

$$
L\left[q \vec{p} \quad \vec{p}^{T}\right]=L\left[\begin{array}{ll}
\vec{p} & \vec{p}^{T} q
\end{array}\right]=L\left[\begin{array}{l}
\vec{p}
\end{array} \vec{p}^{T} q\left(J^{T}\right)\right]=H q\left(J^{T}\right)
$$

Therefore,

$$
\begin{equation*}
[q(J) H]^{T}=H^{T}[q(J)]^{T}=H q\left(J^{T}\right)=q(J) H \tag{35}
\end{equation*}
$$

(iv) From (33), we have

$$
L[\vec{p} q]=L\left[\begin{array}{lll}
\vec{p} & \vec{p}^{T} & \vec{\omega}
\end{array}\right]=H \vec{\omega}
$$

Using (32),

$$
L[\vec{p} q]=L[q \vec{p}]=L[q(J) \vec{p}]=q(J) L[\vec{p}] .
$$

Finally, from (26)

$$
q(J) L[\vec{p}]=q(J) h_{0} \overrightarrow{e_{0}}
$$

Thus, we conclude that

$$
h_{j} \omega_{j}=(H \vec{\omega})_{j}=\sum_{k}[q(J)]_{j, k} h_{0} \delta_{k, 0}=h_{0}[q(J)]_{j, 0}
$$

Corollary 23 Let \vec{p} be the MOPS with respect to a quasi-definite functional L. Then, the polynomials \vec{p} satisfy the three-term recurrence relation

$$
\begin{equation*}
x p_{n}=p_{n+1}+\beta_{n} p_{n}+\gamma_{n} p_{n-1}, \quad n \in \mathbb{N}_{0}, \tag{36}
\end{equation*}
$$

with initial conditions

$$
p_{-1}=0, \quad p_{0}=1 .
$$

The following result is known as the Modified Chebyshev algorithm [2, 2.1.7].

Proposition 24 Let \vec{p} be the MOPS with respect to a quasi-definite functional L and \vec{q} be a monic basis of $\mathbb{C}[x]$ satisfying

$$
\begin{equation*}
x \vec{q}=T \vec{q}, \tag{37}
\end{equation*}
$$

where T is a tridiagonal matrix with entries

$$
\begin{equation*}
T_{i, j}=\delta_{i+1, j}+\eta_{i} \delta_{i, j}+\xi_{i} \delta_{i-1, j} \tag{38}
\end{equation*}
$$

Let the "modified moments" be defined by

$$
R=L\left[\begin{array}{ll}
\vec{q} & \vec{p}^{T}
\end{array}\right] .
$$

Then, the entries of R satisfy the recurrence

$$
R_{i, j+1}=R_{i+1, j}+\left(\eta_{i}-\beta_{j}\right) R_{i, j}+\xi_{i} R_{i-1, j}-\gamma_{j} R_{i, j-1}
$$

with initial values

$$
R_{i,-1}=0, \quad R_{i, 0}=L\left[q_{i}\right]=\nu_{i}, \quad i \in \mathbb{N}_{0} .
$$

Moreover, the coefficients in the three-term recurrence relation (36) are given by

$$
\begin{equation*}
\beta_{i}=\eta_{i}+\frac{R_{i+1, i}}{R_{i, i}}-\frac{R_{i, i-1}}{R_{i-1, i-1}}, \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{i}=\frac{R_{i, i}}{R_{i-1, i-1}} \tag{40}
\end{equation*}
$$

Proof. Let A be the ULT matrix satisfying

$$
\vec{q}=A \vec{p}
$$

Then,

$$
R=L\left[\begin{array}{ll}
\vec{q} & \vec{p}^{T}
\end{array}\right]=L\left[\begin{array}{lll}
A & \vec{p} & \vec{p}^{T} \tag{41}
\end{array}\right]=A H
$$

Hence, R is a lower triangular matrix and

$$
\begin{equation*}
R_{i, i}=h_{i} . \tag{42}
\end{equation*}
$$

Using (31) and (37), we have

$$
T \vec{q} \vec{p}^{T}=x \vec{q} \vec{p}^{T}=\vec{q} x \vec{p}^{T}=\vec{q} \vec{p}^{T} J^{T},
$$

and therefore

$$
T R=L\left[\begin{array}{lll}
T & \vec{q} & \vec{p}^{T}
\end{array}\right]=L\left[\begin{array}{ll}
\vec{q} & \vec{p}^{T} J^{T}
\end{array}\right]=R J^{T} .
$$

Using (29) and (38), we get

$$
\begin{equation*}
R_{i+1, j}+\eta_{i} R_{i, j}+\xi_{i} R_{i-1, j}=R_{i, j+1}+\beta_{j} R_{i, j}+\gamma_{j} R_{i, j-1} . \tag{43}
\end{equation*}
$$

Since R is a lower triangular matrix, we have

$$
\begin{equation*}
R_{i, j}=0, \quad i<j, \tag{44}
\end{equation*}
$$

and setting $i=j-1$ in (43), we obtain

$$
\begin{equation*}
\gamma_{j}=\frac{R_{j, j}}{R_{j-1, j-1}} . \tag{45}
\end{equation*}
$$

Note that from (42) and (45) we have

$$
\gamma_{j}=\frac{h_{j}}{h_{j-1}}
$$

in agreement with (30).
If we set $i=j$ in (43) and use (45) and (44), we obtain

$$
\beta_{j}=\eta_{j}+\frac{R_{j+1, j}-\gamma_{j} R_{j, j-1}}{R_{j, j}}=\eta_{j}+\frac{R_{j+1, j}}{R_{j, j}}-\frac{R_{j, j-1}}{R_{j-1, j-1}} .
$$

Finally, solving for $R_{i, j+1}$ in (43), we get

$$
R_{i, j+1}=R_{i+1, j}+\left(\eta_{i}-\beta_{j}\right) R_{i, j}+\xi_{i} R_{i-1, j}-\gamma_{j} R_{i, j-1}
$$

Example 25 Charlier polynomials. The falling factorial polynomials satisfy the 3-term recurrence relation (3). Comparing with (38), we see that

$$
\eta_{n}=n, \quad \xi_{n}=0
$$

and therefore

$$
T_{i, j}=\delta_{i+1, j}+i \delta_{i, j}
$$

Using (41), we get

$$
R_{i, j}=\sum_{k=0}^{\infty} C_{i, k} H_{k, j}=C_{i, j} h_{j}=\binom{i}{j} z^{i-j} j!z^{j} e^{z}=e^{z} j!\binom{i}{j} z^{i}
$$

Finally, using (39) and (40) we obtain [1]

$$
\begin{equation*}
\beta_{n}=n+\frac{R_{n+1, n}}{R_{n, n}}-\frac{R_{n, n-1}}{R_{n-1, n-1}}=n+z \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{n}=\frac{R_{n, n}}{R_{n-1, n-1}}=n z \tag{47}
\end{equation*}
$$

References

[1] D. Dominici. Laguerre-Freud equations for generalized Hahn polynomials of type I. J. Difference Equ. Appl. 24(6), 916-940 (2018).
[2] W. Gautschi. "Orthogonal polynomials: computation and approximation". Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004).
[3] G. H. Golub and C. F. Van Loan. "Matrix computations". Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, fourth ed. (2013).
[4] M. E. H. Ismail. "Classical and quantum orthogonal polynomials in one variable", vol. 98 of "Encyclopedia of Mathematics and its Applications". Cambridge University Press, Cambridge (2009).
[5] K. Oldham, J. Myland, and J. Spanier. "An atlas of functions". Springer, New York, second ed. (2009).
[6] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. "NIST handbook of mathematical functions". U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010).
[7] J. Quaintance and H. W. Gould. "Combinatorial identities for Stirling numbers". World Scientific Publishing Co. Pte. Ltd., Singapore (2016).

