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1 Introduction
Let Ny denote the set
No=NU{0}=0,1,2,...,

and L be a linear functional acting on the space of polynomials C [z], i.e.,
belonging to the dual vector space C* [z] :

Llap+bgl =aL[p]+bL[q], a,beC, p,qeClx].

The numbers
pn = Lz"] € C, n e Ny,

are called the moments of L.
If we have a sequence of polynomials p, (z) € C|[z],

deg (p,) =n, n € Ny,
satisfying

L [a:kpn} =0, 0<k<n, (1)
L [xnpn] = hn 7é 07

for all n € Ny, we say that {p,} is a family of orthogonal polynomials
with respect to L. Examples include Legendre, Chebyshev, Jacobi, Hermite,



Gegenbauer, Laguerre, Charlier, Kravchuk, Meixner, Hahn polynomials, and
many others!
If n € N and

n
pn (ZL’) = ch$]7
=0
we have

L[z*p,) = ZCJL "] = Zﬂkﬂ'cj,
=0 i=0

and using (1), we get

n

Zuk+jcj = 07 0< k< n,

J=0
n

Z:U’n-‘rjcj = hy, 7£ 0.

=0
If we introduce the Hankel matrix
Mi,j = ity 0 S la.] S n,

we can write

Co 0
| =Y
Cn hy,

and we will have a unique solution if the Hankel determinants A,, satisfy

An = det (Mi-}—j) 7£ 0, n € No.

0<i,j<n

We say that L is a quasi-definite functional if A, #0, n € Ny, and
L is a positive-definite functional if A, > 0, n € N,.

2 Main theory

2.1 Definitions

We begin with a few definitions.



Definition 1 A semi-infinite matrizx A € C*** is a function A : Ny X
Nyg — C. We write

(i) We say that A is an upper triangular matriz if
Ai,j =0, >3

We say that U is a unit upper triangular (UUT) matriz if A is upper

triangular and
Ai,i = 1, 1€ No.

In other words,

1 Agi Aop
A=|o 1 4,
0 O 1

(ii) We say that A is a lower triangular matriz if
Ai,j - O, Z < ]

We say that A is a unit lower triangular (ULT) matriz if L is lower
triangular and

Am‘ = 1, 1€ No.

In other words,

1 0 O
A=14,, 1 0
Asg Axp 1

Definition 2 We say that ¢ € C [2]°"" is a basis of C [z] if ¢, (z) € C[z]
and deg (¢,) = n.
We say that ¢ is a monic basis if q, () is a monic polynomial for all
n € Ny,
qn(x) ="+ ...

The basis that we will use in our examples is constructed with the falling
factorials.

Example 3 The basis of falling factorial (or binomial) polynomials is de-
fined by ¢o () =1 and

6@ =[J-3), nen @)



Using the definition (2), we immediately obtain the recurrence relation

Pni1 () = (x = n) ¢n (7). (3)

Definition 4 We define the Pochhammer (or rising factorial) polynomials
by (z), =1 and

n—1

(x)n:H(aH—k), n € N. 4)

k=0

Remark 5 The Pochhammer polynomials can be generalized to complex val-
ues of n using the formula [6, 5.2.5]

I'(r+n)

@ =

where I (2) is the Gamma function.

—(z+n) ¢ No, (5)

The Pochhammer polynomials satisfy many identities (HW #1), includ-
ing the recurrence [5, 18:5:12]

(7)pym = (@), (¥ +n),,, n,m €Ny, (6)
the change of sign identity
(—z), = (=1)" (@ —n+1),, (7)
and the ratio formulas [5, 18:5:10]
(z—m),  (x—m), 1—=),

(x), _(x_er”)m:(l—:v—n)m’ n,m € No. (8)

We see from (2), (4), and (7) that the polynomials ¢, (z) and (z), are
related by (HW #2)

On (2) = (=1)" (=2), = (x —n+1),. 9)
Note that from (5) and (9), we get

b () = % - m(z) (10)

The falling factorial polynomials are eigenvalues of the forward differ-
ence operator (acting on the variable ) defined by

Af(x) = f(z+1) = f(z).

In fact, we have the following result.



Lemma 6 For all i,7 € Ny, we have
ANl (x) = ¢i (§) by (). (11)
Note that from (2) we see that
¢i (]) = Oa P> jv

and therefore '

Proof. HW #2. m
Using the Pochhammer polynomials we can construct the generalized
hypergeometric function.

Definition 7 The generalized hypergeometric function ,F, is defined
by [6, 16.2]

aty.-yap (a1), - (ay), 2"
qu(bl,...,bq Z)_,;mﬁ (12)

Remark 8 The convergence of the series (12) depends on the values of p
and q. We have three different cases to consider:

1. If p < q+1, ,Fj is an entire function of z.
2. If p=q+1, ,F, is analytic inside the unit circle, |z| < 1.

3. If p > q+1, ,F, diverges for z # 0, unless one or more of the top
parameters a; is a negative integer. If we take a; = —N, with N € Ny,
then ,F|, becomes a polynomial of degree V.

For example, we can write the exponential generating function of the
Pochhammer polynomials as a | Fy function.

Example 9 Using the binomial theorem and (10), we have

(1+2)"= Z(i) 2" = Zgb"n—('x)z”, 2] < 1.
n=0 n=0 ’
From (9), we get
159 ( N ;Z) =Y (@), Z—T —Z(—l)"%(—x)g —(1—2)", |z <1
n=0 ’ n=0 :



In the next section, we will need the following result.
Proposition 10 The polynomials ¢, (x) satisfy the connection formula

on @600 = 3 (1) () im0 (14

k=0

Proof. Can you find one? Maybe using symbolic computation? m

2.2 Linear functionals

Definition 11 Let L : C[z] — C be a linear functional and ¢ € C[z]™*"
be a monic basis.
(i) The numbers

Vn:L[qn]u TLENO?

are called the (generalized) moments of L. We write
TV =L[q]eClx]™".
(ii) We define the Gram matrixz G by
G=L[7 77 eC>*.
As an example, we consider the following linear functional.

Example 12 Let L : C[x] — C be defined by

o0

Zx
Llq] = ZQ(“’)Q’ q € Cla]. (15)
=0
The moments of L on the falling factorial basis are given by
oo Zm
Un (2) = Ln] = Zan (z) 2
=0

We can show (HW #3) that
vn (2) = 2", (16)
Using (16) and (14), we obtain (HW #4)



Remark 13 Note that the matriz G defined by (17) is symmetric, and all
the entries are finite sums, since the hypergeometric series terminates for all
i,j € No. Also, z = 0 is not a singularity of G, ;, since the power 2"+ cancels
the powers of z71.

Definition 14 We say that L is a quasi-definite functional with respect
to a monic basis ¢ € Cl[z]**"if the matriz L ¢ ¢"] admits the LDL
decomposition [3, 4.12]

L[q q"=G=CHC", (18)

where C' € C***° 4s a ULT matrix and H € C®** is a nonsingular diagonal

matrix
Hi; = hidi;, hi#0, i,j€N.

If h; > 0 for allt € Ny, we say that L is a positive-definite functional.

Proposition 15 If L is a quasi-definite functional with respect to ¢, then
we can compute the entries of C and H in (18) by the following iterative
formula:
G; .
ho = Goo, Cio= h’07 Cii=1, 1i€N,
0

O@j = O, 1< j,

and for 1 € N|
1 ks
Cij= i (Gm’ - Zci’kcj’khk> , Jg=1..,1-1, (19)
J k=0
i—1
hz - Gzz - Z(Ozk)2hfk:
k=0

Proof. Let i > j. Then, since C'is a ULT matrix we have C;; =0, j <Kk,
and

Gij= (CHCT), = CixhiCis

2y

k=0
J i-1
= Zci’khk0j7k = Ci’jhj + Zci,khkcj,k'
k=0 k=0



Solving for C; ;, we get

1 .
Cij= " (Gi,j — Zci,khkoj,k) :
j

k=0
In particular, when ¢ = j

i—1

Gii— > (Cip) hk] .

k=0

1=0C; =

1
hi
|

Example 16 Let the matriz G be defined by (17). Since

G ,

— _ z _ 110 _ (A

hO—GO,o—e, Ci’O_G =z,
0,0

we can use (19), and obtain

hi = ze*, hy =22%°, hg =627, ..

)

and
1 0 0O 0 O
z 1 0 0 O
C=122 221 0 0
22322 3z 1 0
24 423 622 4z 1

We see that the matrices C and H in the LDL decomposition (18) have
entries (HW #35)

C’L’mj = <Z) Ziij; Z?j € N07 (20)
J
and Hi,j = hiéi,j, with .
h; = il z'¢*, i€ Ny, (21)

We conclude that L is a quasi-definite functional if z # 0. The functional L
will be positive definite if z > 0.



2.3 Orthogonal polynomials

In this section, we introduce sequences of polynomials orthogonal with re-
spect to linear functionals.

Definition 17 If L is a quasi-definite functional with respect to ¢ , we define
the sequence of monic orthogonal polynomials (MOPS) with respect to
L by

T =017 eClz]™*". (22)

Example 18 Let the matriz C' be defined by (20). Let

S 1o, = 3 (D) ()

k=0 k=0
2y (=1 (@> ( ) i,j € No.
k=0 k J

Then (HW #5),

Ai;

If i > j, we get

and using (10)

A = Z”i (—1y* <;) ¢; (k)

k=j J!
If we use the formula for higher order differences [7, 6.1]
p p ]
@) =3 (") 0 s ), (23)

Jj=0

we see that




But since ¢, (v) is a polynomial of degree j, and i > j

We conclude that
(—1)"* CiiCrj = Aij =05, 1,] € Ny,
k=0
and therefore
()

o= (FD)TECp (24)

The polynomials p = C‘lg are known as (monic) Charlier polyno-
mials [4, 6.1]. Using (20) and (24), we get

i) =30 (), 050 = 3 (-1 (1) 00, o),
From (10) and (9), we have
(1) - extn (-1 (=n),

j =

J! J!

Therefore,

= (e = 0 (M)t o 0 5 = e, o), S
and we obtain the hypergeometric representation [1]

o (z) = (—2)" 2F) ( —n, T ;—z‘1> ‘

Theorem 19 Let L be a quasi-definite functional with respect to ¢ and
be the corresponding MOPS. Then,
(i) The polynomials p, (z) satisfy the orthogonality relation

L[p 7" =H. (25)
(ii) We have



where

(e_’€>)j = Ok,j-
(iii) IfE> is a monic basis of C|x], then
L7 97 =

where U is a UUT matriz. In other words, for all i,7 € Ny

vl ={ 5 (D] 1)

P> ]
Proof. (i) Using (22), we have
Lip P'=L[C'¢ qTCcT] =Cc7'GC™T =

where
cT=(cT) " = (",
(ii) Using (25), we have

(L[P)),; = Llps] = Lpjpo] = hodjo-

(iii) If E’ is a monic basis of C [z], then there exists a ULT matrix A such
that .
v =AT7.

Using (22), we get
L [7 E)T] = L[C7'F TTAT] = C'GAT = HCT A
Since C' and A are ULT matrices, the matrix CT AT is UUT. =

Example 20 Meizner polynomials. Using (15), (21) and (25), we obtain
the orthogonality relation for the (monic) Meixner polynomials [1]

T

zZ
an Pm )$ F =e*n! 2" 5n,m7 n,m e N()-

11



Definition 21 Let P be the MOPS with respect to a quasi-definite functional

L. We define the Jacobi matrix J € C>*** by

J=L[F FTH

(28)

Theorem 22 (i) The Jacobi matrixz J defined by (28) is a tridiagonal matrix

with entries
Jij = biv15 + Bidij + Yidi—1,

where the coefficients [5;,y; are given by

L lrn?
Bi = [}f_plL 1 € Ny,

Yo =0 and
o L [xpipi—l] _ hi
T T hi s

(ii) The polynomials P satisfy the eigenvalue equation

£0, ieN.

Jp =z7p.
By linearity, this extends to

q(x) P =q())7, qeCla].

(i11) Let q € C[z]. Then, q(J) H is a symmetric matriz.

() Let q € Clx] be given by
qg(x)= P &, TeCl].

Then,
ho
= h_k: lq (J)]k,O‘

Wi

Proof. (i) Using (27) in two different ways, we have

hiy i=j+1
L[pi‘”pj]:{o i>j+1

and
hy, j=i+1
L[pjxpi}:{ 0, j>itl

(29)

(30)

(31)

(32)



Thus, from (28) we obtain
(JH),; =0, jé&{i—1i+1}.
The three nonzero entries are given by
Jii—1thi—1 = L{[zpipi—1] = hs,
Jiihi = L [xpf] = hif3;,
and
Jiix1hizi = L [2pipis1] = his1.
(ii) Representing 2 p” with respect to the basis 7', we have
— —
rp =My,

for some matrix M. Multiplying by 77 and applying L on both sides of the
equation, we get

JH=L[zp p']=ML[p p"] =MH,

where we have used (25) and (28). Since H is nonsingular, M = J.
(iii) Using (32), we have

Llgp 7' =La(N)P 7] =a¢()L[P P']=q(J)H.
But on the other hand,
Llgp 7] =L[P 7] =L[P 7"a(J")] = Ha ().

Therefore,

Finally, from (26)

Thus, we conclude that

hjwj = (H &); =Y [q(J)];4 hobro = ho[q (J)]0-

13



Corollary 23 Let p be the MOPS with respect to a quasi-definite functional
L. Then, the polynomials P satisfy the three-term recurrence relation

TPn = Pn+1 + 5npn + VnPn-1, N E N07 (36)

with initial conditions
p-1=0, po=1

The following result is known as the Modified Chebyshev algorithm [2,
2.1.7].

Proposition 24 Let 7 be the MOPS with respect to a quasi-definite func-
tional L and "¢ be a monic basis of C [x] satisfying

vq=T7, (37)

where T is a tridiagonal matriz with entries

T;j = Oiv1,j + Mi0ij + &i0i—1,5- (38)
Let the "modified moments” be defined by

R=L[q 7p"].
Then, the entries of R satisfy the recurrence
Riji1= Riprj+ (i — Bj) Rij + &Ricaj — v Rij1,
with initial values
Ri_1=0, Ro=0L[g|=v; i€eNy.

Moreover, the coefficients in the three-term recurrence relation (36) are
given by

R, Rii
i =i e 39
fi=mit R;; Ri 11 (39)
and R
.= UM 40
K Ri 11 (40)

14



Proof. Let A be the ULT matrix satisfying
T=AT7.

Then,
R=L[q p'|=L[ATD p"] =AH.

Hence, R is a lower triangular matrix and

Ri; = hi.
Using (31) and (37), we have
TGP =07 =T AT =T T

and therefore
TR=L[Tq p"|=L[q p"J"|=RJ"
Using (29) and (38), we get

Rijri;j+miRij+ &Rz = Rijia + BiRi; +7viRij1.

Since R is a lower triangular matrix, we have
Ri,j - O, Z < j,
and setting i = j — 1 in (43), we obtain

v — R;;
I
Rj 11

Note that from (42) and (45) we have
hs

. = J

in agreement with (30).
If we set i = j in (43) and use (45) and (44), we obtain

Rjt1; — iR Rjvi; Ry

B =mj+ R, =n+
Finally, solving for R; ;11 in (43), we get

Riji1=Riv1j+ (i — Bj) Rij + &Ricvy — viRij—1-

15

R;;  Rj_1541

(41)

(42)



Example 25 Charlier polynomials. The falling factorial polynomials satisfy
the 3-term recurrence relation (3). Comparing with (38), we see that

Wn:"a gn:O,

and therefore
E,j = 57;+17j ‘|— 'éé@j.

Using (41), we get
Rz’,j - Zci’ka’j = Ci,jhj = (Z) Ziijj! zjez = ezj! (Z> Zi.

k=0 J

Finally, using (39) and (40) we obtain [1]

R'I’L n R?’LTL—
Bn=n+ RH’ _R,’l ;:n—i—z, (46)

and R
= —— = 2. 47
i Rn—l,n—l ( )
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