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1 Introduction

Let N0 denote the set

N0 = N ∪ {0} = 0, 1, 2, . . . ,

and L be a linear functional acting on the space of polynomials C [x] , i.e.,
belonging to the dual vector space C∗ [x] :

L [ap+ bq] = aL [p] + bL [q] , a, b ∈ C, p, q ∈ C [x] .

The numbers
µn = L [xn] ∈ C, n ∈ N0,

are called the moments of L.
If we have a sequence of polynomials pn (x) ∈ C [x] ,

deg (pn) = n, n ∈ N0,

satisfying

L
[
xkpn

]
= 0, 0 ≤ k < n, (1)

L [xnpn] = hn 6= 0,

for all n ∈ N0, we say that {pn} is a family of orthogonal polynomials
with respect to L. Examples include Legendre, Chebyshev, Jacobi, Hermite,
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Gegenbauer, Laguerre, Charlier, Kravchuk, Meixner, Hahn polynomials, and
many others!
If n ∈ N and

pn (x) =
n∑
j=0

cjx
j,

we have

L
[
xkpn

]
=

n∑
j=0

cjL
[
xk+j

]
=

n∑
j=0

µk+jcj,

and using (1), we get

n∑
j=0

µk+jcj = 0, 0 ≤ k < n,

n∑
j=0

µn+jcj = hn 6= 0.

If we introduce the Hankel matrix

Mi,j = µi+j, 0 ≤ i, j ≤ n,

we can write

M


c0
c1
...
cn

 =


0
0
...
hn

 ,
and we will have a unique solution if the Hankel determinants ∆n satisfy

∆n = det
0≤i,j≤n

(µi+j) 6= 0, n ∈ N0.

We say that L is a quasi-definite functional if ∆n 6= 0, n ∈ N0, and
L is a positive-definite functional if ∆n > 0, n ∈ N0.

2 Main theory

2.1 Definitions

We begin with a few definitions.
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Definition 1 A semi-infinite matrix A ∈ C∞×∞ is a function A : N0 ×
N0 → C. We write

A (i, j) = Ai,j.

(i) We say that A is an upper triangular matrix if

Ai,j = 0, i > j.

We say that U is a unit upper triangular (UUT) matrix if A is upper
triangular and

Ai,i = 1, i ∈ N0.
In other words,

A =

1 A0,1 A0,2
0 1 A1,2
0 0 1

 .

(ii) We say that A is a lower triangular matrix if

Ai,j = 0, i < j.

We say that A is a unit lower triangular (ULT) matrix if L is lower
triangular and

Ai,i = 1, i ∈ N0.
In other words,

A =

 1 0 0
A1,0 1 0
A2,0 A2,1 1

 .

Definition 2 We say that −→q ∈ C [x]∞×1 is a basis of C [x] if qn (x) ∈ C [x]
and deg (qn) = n.
We say that −→q is a monic basis if qn (x) is a monic polynomial for all

n ∈ N0,
qn (x) = xn + · · · .

The basis that we will use in our examples is constructed with the falling
factorials.

Example 3 The basis of falling factorial (or binomial) polynomials is de-
fined by φ0 (x) = 1 and

φn (x) =
n−1∏
j=0

(x− j) , n ∈ N. (2)
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Using the definition (2), we immediately obtain the recurrence relation

φn+1 (x) = (x− n)φn (x) . (3)

Definition 4 We define the Pochhammer (or rising factorial) polynomials
by (x)0 = 1 and

(x)n =
n−1∏
k=0

(x+ k) , n ∈ N. (4)

Remark 5 The Pochhammer polynomials can be generalized to complex val-
ues of n using the formula [6, 5.2.5]

(x)n =
Γ (x+ n)

Γ (x)
, − (x+ n) /∈ N0, (5)

where Γ (z) is the Gamma function.

The Pochhammer polynomials satisfy many identities (HW #1), includ-
ing the recurrence [5, 18:5:12]

(x)n+m = (x)n (x+ n)m , n,m ∈ N0, (6)

the change of sign identity

(−x)n = (−1)n (x− n+ 1)n , (7)

and the ratio formulas [5, 18:5:10]

(x−m)n
(x)n

=
(x−m)m

(x−m+ n)m
=

(1− x)m
(1− x− n)m

, n,m ∈ N0. (8)

We see from (2), (4), and (7) that the polynomials φn (x) and (x)n are
related by (HW #2)

φn (x) = (−1)n (−x)n = (x− n+ 1)n . (9)

Note that from (5) and (9), we get

φn (x) =
Γ (x+ 1)

Γ (x− n+ 1)
= n!

(
x

n

)
. (10)

The falling factorial polynomials are eigenvalues of the forward differ-
ence operator (acting on the variable x) defined by

∆f (x) = f (x+ 1)− f (x) .

In fact, we have the following result.
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Lemma 6 For all i, j ∈ N0, we have

∆iφj (x) = φi (j)φj−i (x) . (11)

Note that from (2) we see that

φi (j) = 0, i > j,

and therefore
∆iφj (x) = 0, i > j.

Proof. HW #2.
Using the Pochhammer polynomials we can construct the generalized

hypergeometric function.

Definition 7 The generalized hypergeometric function pFq is defined
by [6, 16.2]

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
. (12)

Remark 8 The convergence of the series (12) depends on the values of p
and q. We have three different cases to consider:

1. If p < q + 1, pFq is an entire function of z.

2. If p = q + 1, pFq is analytic inside the unit circle, |z| < 1.

3. If p > q + 1, pFq diverges for z 6= 0, unless one or more of the top
parameters ai is a negative integer. If we take a1 = −N, with N ∈ N0,
then pFq becomes a polynomial of degree N.

For example, we can write the exponential generating function of the
Pochhammer polynomials as a 1F0 function.

Example 9 Using the binomial theorem and (10), we have

(1 + z)x =

∞∑
n=0

(
x

n

)
zn =

∞∑
n=0

φn (x)

n!
zn, |z| < 1.

From (9), we get

1F0

(
x
− ; z

)
=
∞∑
n=0

(x)n
zn

n!
=
∞∑
n=0

(−1)n φn (−x)
zn

n!
= (1− z)−x , |z| < 1.

(13)
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In the next section, we will need the following result.

Proposition 10 The polynomials φn (x) satisfy the connection formula

φn (x)φm (x) =

∞∑
k=0

(
n

k

)(
m

k

)
k!φn+m−k (x) . (14)

Proof. Can you find one? Maybe using symbolic computation?

2.2 Linear functionals

Definition 11 Let L : C [x] → C be a linear functional and −→q ∈ C [x]∞×1

be a monic basis.
(i) The numbers

νn = L [qn] , n ∈ N0,
are called the (generalized) moments of L. We write

−→ν = L [−→q ] ∈ C [x]∞×1 .

(ii) We define the Gram matrix G by

G = L
[−→q −→q T ] ∈ C∞×∞.

As an example, we consider the following linear functional.

Example 12 Let L : C [x]→ C be defined by

L [q] =
∞∑
x=0

q(x)
zx

x!
, q ∈ C [x] . (15)

The moments of L on the falling factorial basis are given by

νn (z) = L [φn] =

∞∑
x=0

φn (x)
zx

x!
.

We can show (HW #3) that

νn (z) = znez. (16)

Using (16) and (14), we obtain (HW #4)

Gi,j = L [φi, φj] = ezzi+j 2F0

(
−i,−j
− ; z−1

)
. (17)
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Remark 13 Note that the matrix G defined by (17) is symmetric, and all
the entries are finite sums, since the hypergeometric series terminates for all
i, j ∈ N0. Also, z = 0 is not a singularity of Gi,j, since the power zi+j cancels
the powers of z−1.

Definition 14 We say that L is a quasi-definite functional with respect
to a monic basis −→q ∈ C [x]∞×1if the matrix L

[−→q −→q T ] admits the LDL
decomposition [3, 4.12]

L
[−→q −→q T ] = G = CHCT , (18)

where C ∈ C∞×∞ is a ULT matrix and H ∈ C∞×∞ is a nonsingular diagonal
matrix

Hi,j = hiδi,j, hi 6= 0, i, j ∈ N0.
If hi > 0 for all i ∈ N0, we say that L is a positive-definite functional.

Proposition 15 If L is a quasi-definite functional with respect to −→q , then
we can compute the entries of C and H in (18) by the following iterative
formula:

h0 = G0,0, Ci,0 =
Gi,0
h0

, Ci,i = 1, i ∈ N0,

Ci,j = 0, i < j,

and for i ∈ N,

Ci,j =
1

hj

(
Gi,j −

j−1∑
k=0

Ci,kCj,khk

)
, j = 1, . . . , i− 1, (19)

hi = Gi,i −
i−1∑
k=0

(Ci,k)
2 hk.

Proof. Let i ≥ j. Then, since C is a ULT matrix we have Cj,k = 0, j < k,
and

Gi,j =
(
CHCT

)
i,j

=
∞∑
k=0

Ci,khkCj,k

=

j∑
k=0

Ci,khkCj,k = Ci,jhj +

j−1∑
k=0

Ci,khkCj,k.
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Solving for Ci,j, we get

Ci,j =
1

hj

(
Gi,j −

j−1∑
k=0

Ci,khkCj,k

)
.

In particular, when i = j

1 = Ci,i =
1

hi

[
Gi,i −

i−1∑
k=0

(Ci,k)
2 hk

]
.

Example 16 Let the matrix G be defined by (17). Since

h0 = G0,0 = ez, Ci,0 =
Gi,0
G0,0

= zi,

we can use (19), and obtain

h1 = zez, h2 = 2z2ez, h3 = 6z3ez, . . . ,

and

C =


1 0 0 0 0
z 1 0 0 0
z2 2z 1 0 0
z3 3z2 3z 1 0
z4 4z3 6z2 4z 1

 .

We see that the matrices C and H in the LDL decomposition (18) have
entries (HW #5)

Ci,j =

(
i

j

)
zi−j, i, j ∈ N0, (20)

and Hi,j = hiδi,j, with
hi = i! ziez, i ∈ N0. (21)

We conclude that L is a quasi-definite functional if z 6= 0. The functional L
will be positive definite if z > 0.
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2.3 Orthogonal polynomials

In this section, we introduce sequences of polynomials orthogonal with re-
spect to linear functionals.

Definition 17 If L is a quasi-definite functional with respect to −→q , we define
the sequence of monic orthogonal polynomials (MOPS) with respect to
L by

−→p = C−1−→q ∈ C [x]∞×1 . (22)

Example 18 Let the matrix C be defined by (20). Let

Ai,j =
∞∑
k=0

(−1)i−k Ci,kCk,j =
∞∑
k=0

(−1)i−k
(
i

k

)
zi−k

(
k

j

)
zk−j

= zi−j
∞∑
k=0

(−1)i−k
(
i

k

)(
k

j

)
, i, j ∈ N0.

Then (HW #5),

Ai,j = 0, i < j

Ai,j = 1, i = j.

If i > j, we get

Ai,j = zi−j
i∑

k=j

(−1)i−k
(
i

k

)(
k

j

)
,

and using (10)

Ai,j = zi−j
i∑

k=j

(−1)i−k
(
i

k

)
φj (k)

j!
.

If we use the formula for higher order differences [7, 6.1]

∆pf (x) =

p∑
j=0

(
p

j

)
(−1)p−j f (x+ j) , (23)

we see that

Ai,j =
zi−j

j!

[
∆iφj (x)

]
x=0

, i > j.
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But since φj (x) is a polynomial of degree j, and i > j

Ai,j = 0, i > j.

We conclude that
∞∑
k=0

(−1)i−k Ci,kCk,j = Ai,j = δi,j, i, j ∈ N0,

and therefore (
C−1

)
i,k

= (−1)i−k Ci,k. (24)

The polynomials −→p = C−1
−→
φ are known as (monic) Charlier polyno-

mials [4, 6.1]. Using (20) and (24), we get

pn (x) =
∞∑
j=0

(
C−1

)
n,j

φj (x) =
∞∑
j=0

(−1)n−j
(
n

j

)
zn−jφj (x) .

From (10) and (9), we have(
n

j

)
=
φj (n)

j!
=

(−1)j (−n)j
j!

.

Therefore,

(−z)−j
(
n

j

)
φj (x) = (−1)j

(
n

j

)
j! (−1)j φj (x)

(−z)−j

j!
= (−n)j (−x)j

(−z)−j

j!
,

and we obtain the hypergeometric representation [1]

pn (x) = (−z)n 2F0

(
−n,−x
− ;−z−1

)
.

Theorem 19 Let L be a quasi-definite functional with respect to −→q and −→p
be the corresponding MOPS. Then,
(i) The polynomials pn (x) satisfy the orthogonality relation

L
[−→p −→p T ] = H. (25)

(ii) We have
L [−→p ] = h0

−→e0 , (26)
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where
(−→ek )j = δk,j.

(iii) If
−→
ψ is a monic basis of C [x] , then

L
[−→p −→ψ T

]
= HU,

where U is a UUT matrix. In other words, for all i, j ∈ N0

L [piψj] =

{
hi, i = j
0, i > j

. (27)

Proof. (i) Using (22), we have

L
[−→p −→p T ] = L

[
C−1−→q −→q TC−T

]
= C−1GC−T = H,

where
C−T =

(
CT
)−1

=
(
C−1

)T
.

(ii) Using (25), we have

(L [−→p ])j = L [pj] = L [pjp0] = h0δj,0.

(iii) If
−→
ψ is a monic basis of C [x] , then there exists a ULT matrix A such

that −→
ψ = A −→q .

Using (22), we get

L
[−→p −→ψ T

]
= L

[
C−1−→q −→q TAT

]
= C−1GAT = HCTAT .

Since C and A are ULT matrices, the matrix CTAT is UUT.

Example 20 Meixner polynomials. Using (15), (21) and (25), we obtain
the orthogonality relation for the (monic) Meixner polynomials [1]

∞∑
x=0

pn (x) pm (x) (a)x
zx

x!
= ezn! zn δn,m, n,m ∈ N0.
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Definition 21 Let −→p be the MOPS with respect to a quasi-definite functional
L. We define the Jacobi matrix J ∈ C∞×∞ by

J = L
[
x−→p −→p T

]
H−1. (28)

Theorem 22 (i) The Jacobi matrix J defined by (28) is a tridiagonal matrix
with entries

Ji,j = δi+1,j + βiδi,j + γiδi−1,j, (29)

where the coeffi cients βi, γi are given by

βi =
L [xp2i ]

hi
, i ∈ N0,

γ0 = 0 and

γi =
L [xpipi−1]

hi−1
=

hi
hi−1

6= 0, i ∈ N. (30)

(ii) The polynomials −→p satisfy the eigenvalue equation

J −→p = x−→p . (31)

By linearity, this extends to

q (x)−→p = q (J)−→p , q ∈ C [x] . (32)

(iii) Let q ∈ C [x] . Then, q (J)H is a symmetric matrix.
(iv) Let q ∈ C [x] be given by

q (x) = −→p T −→ω , −→ω ∈ C [x]∞×1 . (33)

Then,

ωk =
h0
hk

[q (J)]k,0 . (34)

Proof. (i) Using (27) in two different ways, we have

L [pi xpj] =

{
hi, i = j + 1
0, i > j + 1

,

and

L [pj xpi] =

{
hj, j = i+ 1
0, j > i+ 1

.
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Thus, from (28) we obtain

(JH)i,j = 0, j /∈ {i− 1, i, i+ 1} .
The three nonzero entries are given by

Ji,i−1hi−1 = L [xpipi−1] = hi,

Ji,ihi = L
[
xp2i
]

= hiβi,

and
Ji,i+1hi+1 = L [xpipi+1] = hi+1.

(ii) Representing x−→p with respect to the basis −→p , we have
x−→p = M−→p ,

for some matrix M. Multiplying by −→p T and applying L on both sides of the
equation, we get

JH = L
[
x−→p −→p T

]
= ML

[−→p −→p T ] = MH,

where we have used (25) and (28). Since H is nonsingular, M = J.
(iii) Using (32), we have

L
[
q−→p −→p T

]
= L

[
q (J)−→p −→p T

]
= q (J)L

[−→p −→p T ] = q (J)H.

But on the other hand,

L
[
q−→p −→p T

]
= L

[−→p −→p T q] = L
[−→p −→p T q (JT )] = Hq

(
JT
)
.

Therefore,
[q (J)H]T = HT [q (J)]T = Hq

(
JT
)

= q (J)H. (35)

(iv) From (33), we have

L [−→p q] = L
[−→p −→p T −→ω ] = H −→ω .

Using (32),

L [−→p q] = L [q−→p ] = L [q (J)−→p ] = q (J)L [−→p ] .

Finally, from (26)
q (J)L [−→p ] = q (J)h0

−→e0 .
Thus, we conclude that

hjωj = (H −→ω )j =
∑
k

[q (J)]j,k h0δk,0 = h0 [q (J)]j,0 .
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Corollary 23 Let −→p be the MOPS with respect to a quasi-definite functional
L. Then, the polynomials −→p satisfy the three-term recurrence relation

xpn = pn+1 + βnpn + γnpn−1, n ∈ N0, (36)

with initial conditions
p−1 = 0, p0 = 1.

The following result is known as the Modified Chebyshev algorithm [2,
2.1.7].

Proposition 24 Let −→p be the MOPS with respect to a quasi-definite func-
tional L and −→q be a monic basis of C [x] satisfying

x−→q = T −→q , (37)

where T is a tridiagonal matrix with entries

Ti,j = δi+1,j + ηiδi,j + ξiδi−1,j. (38)

Let the "modified moments" be defined by

R = L
[−→q −→p T ] .

Then, the entries of R satisfy the recurrence

Ri,j+1 = Ri+1,j + (ηi − βj)Ri,j + ξiRi−1,j − γjRi,j−1,

with initial values

Ri,−1 = 0, Ri,0 = L [qi] = νi, i ∈ N0.

Moreover, the coeffi cients in the three-term recurrence relation (36) are
given by

βi = ηi +
Ri+1,i
Ri,i

− Ri,i−1
Ri−1,i−1

, (39)

and

γi =
Ri,i

Ri−1,i−1
. (40)
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Proof. Let A be the ULT matrix satisfying
−→q = A −→p .

Then,
R = L

[−→q −→p T ] = L
[
A −→p −→p T

]
= AH. (41)

Hence, R is a lower triangular matrix and

Ri,i = hi. (42)

Using (31) and (37), we have

T −→q −→p T = x−→q −→p T = −→q x−→p T = −→q −→p TJT ,

and therefore

TR = L
[
T −→q −→p T

]
= L

[−→q −→p TJT ] = R JT .

Using (29) and (38), we get

Ri+1,j + ηiRi,j + ξiRi−1,j = Ri,j+1 + βjRi,j + γjRi,j−1. (43)

Since R is a lower triangular matrix, we have

Ri,j = 0, i < j, (44)

and setting i = j − 1 in (43), we obtain

γj =
Rj,j

Rj−1,j−1
. (45)

Note that from (42) and (45) we have

γj =
hj
hj−1

,

in agreement with (30).
If we set i = j in (43) and use (45) and (44), we obtain

βj = ηj +
Rj+1,j − γjRj,j−1

Rj,j
= ηj +

Rj+1,j
Rj,j

− Rj,j−1
Rj−1,j−1

.

Finally, solving for Ri,j+1 in (43), we get

Ri,j+1 = Ri+1,j + (ηi − βj)Ri,j + ξiRi−1,j − γjRi,j−1.
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Example 25 Charlier polynomials. The falling factorial polynomials satisfy
the 3-term recurrence relation (3). Comparing with (38), we see that

ηn = n, ξn = 0,

and therefore
Ti,j = δi+1,j + iδi,j.

Using (41), we get

Ri,j =
∞∑
k=0

Ci,kHk,j = Ci,jhj =

(
i

j

)
zi−jj! zjez = ezj!

(
i

j

)
zi.

Finally, using (39) and (40) we obtain [1]

βn = n+
Rn+1,n
Rn,n

− Rn,n−1
Rn−1,n−1

= n+ z, (46)

and

γn =
Rn,n

Rn−1,n−1
= nz. (47)
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