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Finite sets of numbers can be viewed as solutions of polynomial
equations:

p = (x− 1)(x− 2)(x− 4) = 0

q = (x− 1)(x− 2)(x− 3) = 0

Intersection: gcd(p, q) = 0

Union: lcm(p, q) = 0
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In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0
∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.

2



In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0

∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.

2



In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0

∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.

2



In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0

∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.

2



In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0
∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.

2



A polynomial in three variables describes a surface.

xz− y2 = 0

∧

y− z2 = 0

∧

x− yz = 0

Curves and finite sets of points can be viewed as intersections of
such surfaces.
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Let K be a field (e.g., K = Q), and let K[X] = K[x1, . . . , xn] be the
set of polynomials in x1, . . . , xn with coefficients in K.

Example: 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 − 17 ∈ Q[x, y].
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Let K be a field (e.g., K = Q), and let K[X] = K[x1, . . . , xn] be the
set of polynomials in x1, . . . , xn with coefficients in K.

Example: 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 − 17 ∈ Q[x, y].

Polynomial equations have implications:

1 u = 0 and v = 0 ⇒ u+ v = 0

2 u = 0 and v arbitrary ⇒ uv = 0.
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If I is the smallest ideal containing p1, . . . , pk, we write

I = 〈p1, . . . , pk〉

and call {p1, . . . , pk} a basis for I.
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Definition A set I ⊆ K[X] is called an ideal iff
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Example: For I = 〈x, y〉 ⊆ Q[x, y] we have

• 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 − 17 6∈ I
• 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 ∈ I

Note:

p ∈ 〈p1, . . . , pk〉 ⇐⇒ ∃ q1, . . . , qk : p = q1p1 + · · ·+ qkpk

Example:

3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3

=
(
3x2y2 + 8xy

)
x+

(
7x2y2 − 4x+ 8y2

)
y

=
(
7xy3 − 4y

)
x+

(
3x3y+ 8x2 + 8y2

)
y
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Note: Also the basis of an ideal is not unique.

Example: 〈x2 + y2 − 4︸ ︷︷ ︸
p1

, xy− 1︸ ︷︷ ︸
p2

〉 = 〈y4 − 4y2 + 1︸ ︷︷ ︸
q1

, y3 − 4y+ x︸ ︷︷ ︸
q2

〉.

Proof:
“⊆” p1 = (y2 − 4)q1 + (x+ 4y− y3)q2,

p2 = −q1 + yq2.

“⊇” q1 = y
2 p1 − (xy+ 1)p2,

q2 = yp1 − xp2.

Among all the bases of a given ideal, the Gröbner basis is one that
satisfies a certain minimality condition.
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For n > 1, divisibility on the set of monomials xe11 x
e2
2 · · · xenn is no

longer a total ordering, e.g., x2y and xy2 are not comparable.

Fix a total ordering on the monomials which is compatible with
divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a
unique maximal term, called the head or the leading term.

Example: 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 − 17.

Among all the bases of an ideal, the Gröbner basis is such that the
leading terms of its elements are as small as possible.
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If a basis of an ideal has a polynomial with head h, then every
multiple of h is the head of some element of I.

x4y

xy3

x2y2
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multiple of h is the head of some element of I.
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In general however, the ideal may also contain polynomials whose
head is not a multiple of the head of any basis element.

The basis is called a Gröbner basis if this does not happen.

8



If a basis of an ideal has a polynomial with head h, then every
multiple of h is the head of some element of I.

x4y

xy3

x2y2

In general however, the ideal may also contain polynomials whose
head is not a multiple of the head of any basis element.
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If a basis of an ideal has a polynomial with head h, then every
multiple of h is the head of some element of I.

x4y

xy3

x2y2

{g1, . . . , gk} is a Gröbner basis⇐⇒ ∀ p ∈ 〈g1, . . . , gk〉 \ {0} ∃ i ∈ {1, . . . , k} : Head(gi) | Head(p).
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Fact 1: Every ideal I ⊆ K[X] has a finite Gröbner basis

Fact 2: The Gröbner basis is essentially unique

Fact 3: Given an arbitrary basis, a Gröbner basis can be computed

Fact 4: The computation of a Gröbner basis is a hard problem
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Fix an ideal I ⊆ K[X] and define

p ∼ q ⇐⇒ p− q ∈ I.

Then K[X]/∼ = K[X]/I is a ring.
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Its elements can be interpreted as polynomial functions restricted to
the zero set of I.

f(x)
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Fix an ideal I ⊆ K[X] and define

p ∼ q ⇐⇒ p− q ∈ I.

Then K[X]/∼ = K[X]/I is a ring.

The ideal basis is a Gröbner basis iff each equivalence class contains
exactly one polynomial with only blue terms.
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Using the elimination property, we can find elements of an ideal
which only contain some of the variables.

Example:

〈x2 + y2 − 4, xy− 1〉 ∩Q[x]

= 〈x4 − 4x2 + 1〉 ⊆ Q[x]

Fact 7∗: If G is a Gröbner basis of I, then G ∩ K[X∗] is a Gröbner
basis of I ∩ K[X∗], where X∗ ⊆ {x1, . . . , xn}

In particular, we can “triangularize” (and thus solve) a system of
polynomial equations.

∗ only works for suitably chosen term orders.

11



Using the elimination property, we can find elements of an ideal
which only contain some of the variables.

Example:

〈x2 + y2 − 4, xy− 1〉 ∩Q[x]

= 〈x4 − 4x2 + 1〉 ⊆ Q[x]
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Some applications of Gröbner Bases

• Computing with Algebraic Numbers

• Quantifier Elimination

• Subring Membership

• Graph Coloring

• Integer Programming

• Circuit Verification
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α ∈ C is called algebraic iff p(α) = 0 for some p ∈ Q[x] \ {0}.

Example:
√
2 is algebraic but π is not.

Theorem: If α,β are algebraic, then so is α+ β.

Question: How to compute a polynomial for α+ β from given
polynomials for α and β?

Answer: If p(α) = q(β) = 0, then we can take a basis element of

〈p(x), q(y), z− (x+ y)〉 ∩Q[z].
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〈p(x), q(y), z− (x+ y)〉 ∩Q[z] = 〈u(z)〉

x

y

z
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Example: Let p = x2 + 2xy+ 3y2. What conditions must a, b, c
satisfy such that there exist α,β with

p(αx, βy) = ax2 + bxy+ cy2 ?

Coefficient comparison yields:

〈α2 − a, 2αβ− b, 3β2 − c〉 ∩Q[a, b, c]

= 〈3b2 − 4ac〉

Answer: Suitable α,β exist if and only if 3b2 = 4ac.
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Example: 9x2y2 + 3x2y+ x2 + 6xy2 + 4y2
?∈ Q[x+ 2y, 3xy+ 1]

Set I = 〈u− (x+ 2y), v− (3xy+ 1)〉 ⊆ Q[x, y, u, v] and choose a
term order for eliminating x and y.

Then compute

red(9x2y2 + 3x2y+ x2 + 6xy2 + 4y2, I)

= u2 + uv− u+ v2 − 10
3 v+

7
3

Fact 8:

• If the result is free of x and y, it is a suitable p

• If the result still contains x and y, no suitable p exists.
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Example: Is the following graph 3-colorable?

Yes!

0
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Example: Is the following graph 3-colorable?

Yes!

Idea:

• Let’s use the 3rd roots of unity ω0,ω1,ω2 as colors.

• Take one variable for each vertex: x0, x1, . . . , x9.

• Specify the equations x3i − 1 = 0 for all i.
(“Every vertex gets one color”)

• For each edge (i, j), specify the restriction xi 6= xj.
(“Adjacent vertices get different colors”)

• Note: xi 6= xj ⇐⇒ xi − xj 6= 0 ⇐⇒ The equation
(xi − xj)z = 1, for a new variable z, has a solution.

• Note also: A 6= 0∧ B 6= 0 ⇐⇒ AB 6= 0
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Example: Is the following graph 3-colorable?

Yes!

Compute a Gröbner basis of the ideal

〈x30 − 1, x31 − 1, . . . , x39 − 1,
(x5 − x9)(x5 − x0)(x5 − x6) · · · (x8 − x7)z− 1〉 ⊆ Q[x0, . . . , x9, z].

Fact: The number of distinct colorings of the graph is exactly the
number of blue terms for this Gröbner basis.

The colorings correspond to the solutions of the equation system.
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number of blue terms for this Gröbner basis.

The colorings correspond to the solutions of the equation system.

20



Example: Is the following graph 3-colorable?

Yes!
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Some applications of Gröbner Bases

• Computing with Algebraic Numbers

• Quantifier Elimination

• Subring Membership

• Graph Coloring

• Integer Programming

• Circuit Verification
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Example: If there are Chicken McNuggets of sizes 4, 6, 9, and 20,
is there a way to buy exactly 123 nuggets?

If so, what is the minimal number of boxes we have to buy?

Idea: Consider the ideal

I = 〈x4 − x41, x6 − x61, x9 − x91, x20 − x201 〉 ⊆ Q[x1, x4, x6, x9, x20].

Choose a term order which eliminates x1 and minimizes total
degree for the remaining variables.

Then red(x1231 , I) is a monomial which tells us what to buy. If it
contains x1, there is no way.

For the example, we find red(x1231 , I) = x24x6x9x
5
20
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Some applications of Gröbner Bases

• Computing with Algebraic Numbers

• Quantifier Elimination

• Subring Membership

• Graph Coloring

• Integer Programming

• Circuit Verification

∗

∗ Joint work with Armin Biere and Daniela Ritirc
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• Every circuit implements a certain function {0, 1}n → {0, 1}m

• A circuit is “correct” if it corresponds the right function

• The behaviour of a gate is described by a polynomial equation

x y

z

z = xy

x y

z

z = x+ y− 2xy

x y

z

z = x+ y− xy
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• For the whole circuit, we have one variable for each circuit
input bit and each gate output, and one polynomial per gate.

A1 A0 B1 B0

C3 C2 C1 C0

◦

C0 −A0B0 = 0

C0 = A0B0

◦

L1 −A0B1 = 0

L1 = A0B1

◦

L2 −A1B0 = 0

L2 = A1B0

◦

L3 −A1B1 = 0

L3 = A1B1

◦

C1 − L1 − L2 + 2L1L2 = 0

C1 = L1 + L2 − 2L1L2
◦

L4 − L1L2 = 0

L4 = L1L2
◦

C2 − L3 − L4 + 2L3L4 = 0

C2 = L3 + L4 − 2L3L4
◦

C3 − L3L4 = 0

C3 = L3L4
◦ A0(A0 − 1) = 0
◦ A1(A1 − 1) = 0
◦ B0(B0 − 1) = 0
◦ B1(B1 − 1) = 0

• We also have polynomials for restricting the range of the
variables to {0, 1}.
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• The ideal generated by these polynomial contains all the
polynomial relations implied by the circuit.

• The polynomials form a Gröbner bases for a suitably chosen
order.

• Taking Q as ground field, a multiplier circuit is correct iff its
ideal contains the polynomial(n−1∑

k=0

2kAk

)(n−1∑
k=0

2kBk

)
−

(2n−1∑
k=0

2kCk

)
• Correctness thus reduces to ideal membership test.
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• Can we trust the computer algebra system and/or the
implementation of our own improvements?

• Can we construct a checkable proof object rather than a
yes/no answer?

• Recall: p ∈ 〈p1, . . . , pm〉 ⇐⇒ p = q1p1 + · · ·+ qmpm for
certain polynomials qi.

• These cofactors q1, . . . , qm can serve as certificate of the
ideal membership.

• This is well-known in theory, but not so easy in practice: the
cofactors can be quite large.
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• Translate the defining properties of ideals into a formal proof
system:

∀ p, q ∈ I : p+ q ∈ I  
p q

p+ q

∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I  
q

pq

• We construct a formal proof by tracing the reduction process

...
* : -b+1-a, a, -a*b+a-a^2;

+ : -a*b+a-a^2, a^2-a, -a*b;

+ : -a*b, -c+a*b, -c;

* : -c, -1, c;
...
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Some applications of Gröbner Bases

• Computing with Algebraic Numbers

• Quantifier Elimination

• Subring Membership

• Graph Coloring

• Integer Programming

• Circuit Verification∗

∗ Joint work with Armin Biere and Daniela Ritirc
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