How to use it

What to do with it

Conclusions

Innia

The Sage package comb_walks

for Walks in the Quarter Plane

Alin Bostan Frédéric Chyzak Antonio Jiménez-Pastor Pierre Lairez

Der Wissenschaftsfonds.

ISSAC (July 2020)

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Outline

- Walks in the Quarter Plane
- e How to use comb_walks
- What to do with comb_walks
- Onclusions

Walks in the Quarter Plane $_{\circ\circ\circ\circ\circ\circ}$

How to use it $_{000}$

What to do with it

 $\underset{\circ\circ\circ}{\text{Conclusions}}$

Walks in the Quarter Plane

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Walks in the Quarter Plane

• Never cross the X and Y axis.

Walks in the Quarter Plane $_{\circ \circ \circ \circ \circ \circ}$

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Walks in the Quarter Plane

- Never cross the X and Y axis.
- Steps taken from a fixed set of valid steps.

Walks in the Quarter Plane $_{\circ \circ \circ \circ \circ \circ}$

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Walks in the Quarter Plane

- Never cross the X and Y axis.
- Steps taken from a fixed set of valid steps.
- Length of the walk = Number of steps

How to use it $_{000}$

What to do with it

Conclusions

Combinatorial problem

A counting problem

- Given a set of valid steps S, how many walks are there that start from (0,0) and end at (i, j) after n steps taken from S?
- We call that number $q_{i,j,n}$.

How to use it $_{000}$

What to do with it

Conclusions

Combinatorial problem

A counting problem

- Given a set of valid steps S, how many walks are there that start from (0,0) and end at (i, j) after n steps taken from S?
- We call that number $q_{i,j,n}$.

$$Q(x,y,t)=\sum_{i,j,n\in\mathbb{N}}q_{i,j,n}x^{i}y^{j}t^{n}.$$

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

A classification problem

Given a set \mathcal{S} , what algebraic or differential properties does Q(x, y, t) have?

How to use it $_{000}$

What to do with it

Conclusions

A classification problem

Given a set \mathcal{S} , what algebraic or differential properties does Q(x, y, t) have?

• Rational: there are $N(x, y, t), D(x, y, t) \in \mathbb{Q}[x, y, t]$ such that

$$Q(x,y,t)=\frac{N(x,y,t)}{D(x,y,t)}.$$

- Algebraic: there is $P(Z) \in \mathbb{Q}(x, y, t)[Z]$ such that P(Q(x, y, t)) = 0.
- **D-finite**: Q(x, y, t) satisfies linear differential equations w.r.t. ∂_x , ∂_y and ∂_t with coefficients in $\mathbb{Q}[x, y, t]$.
- D-algebraic: Q(x, y, t) satisfies non-linear differential equations w.r.t. ∂_x, ∂_y or ∂_t with coefficients in Q[x, y, t].
- D-transcendental: any other case.

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

The kernel equation

Kernel polynomial

Fixed set \mathcal{S} of valid steps:

$$K(x, y, t) = xy\left(1 - t\sum_{(a,b)\in\mathcal{S}} x^a y^b\right).$$

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

The kernel equation

Kernel polynomial

Fixed set \mathcal{S} of valid steps:

$$\mathcal{K}(x,y,t) = xy\left(1 - t\sum_{(a,b)\in\mathcal{S}} x^a y^b\right).$$

Functional equation

$$\begin{aligned} Q(x,y,t) & \mathcal{K}(x,y,t) = xy - Q(0,0,t) \mathcal{K}(0,0,t) \\ & + Q(x,0,t) \mathcal{K}(x,0,t) + Q(0,y,t) \mathcal{K}(0,y,t). \end{aligned}$$

How to use it

What to do with it

Conclusions

Tools used for classification

• Sections of Q(x, y, t)K(x, y, t): study

$$F_1(x,t) = Q(x,0,t)K(x,0,t), \ F_2(y,t) = Q(0,y,t)K(0,y,t).$$

• Algebraic geometry: study the curve in $\mathbb{P}\times\mathbb{P}$:

$$E_t = \left\{ (x_0 : x_1, y_0 : y_1) : K\left(\frac{x_0}{x_1}, \frac{y_0}{y_1}, t\right) = 0 \right\}.$$

How to use it $_{000}$

What to do with it

Conclusions

Tools used for classification

• Sections of Q(x, y, t)K(x, y, t): study

$$F_1(x,t) = Q(x,0,t)K(x,0,t), \ F_2(y,t) = Q(0,y,t)K(0,y,t).$$

• Algebraic geometry: study the curve in $\mathbb{P}\times\mathbb{P}$:

$$E_t = \left\{ (x_0 : x_1, y_0 : y_1) : K\left(\frac{x_0}{x_1}, \frac{y_0}{y_1}, t\right) = 0 \right\}$$

Case of a curve of genus 0: rational parametrization.Case of a curve of genus 1: elliptic curve.

How to use it $_{000}$

What to do with it

Conclusions

Tools used for classification

• Sections of Q(x, y, t)K(x, y, t): study

$$F_1(x,t) = Q(x,0,t)K(x,0,t), \ F_2(y,t) = Q(0,y,t)K(0,y,t).$$

• Algebraic geometry: study the curve in $\mathbb{P}\times\mathbb{P}$:

$$E_t = \left\{ (x_0 : x_1, y_0 : y_1) : K\left(\frac{x_0}{x_1}, \frac{y_0}{y_1}, t\right) = 0 \right\}$$

Case of a curve of genus 0: rational parametrization.
Case of a curve of genus 1: elliptic curve.

How to use it $\bullet \circ \circ$

 $\underset{\circ\circ\circ}{\text{Conclusions}}$

How to get and use comb_walks

How to use it $\circ \circ \circ$

What to do with it

Conclusions

Git repository

Code hosted in GitLab Inria

https://gitlab.inria.fr/discretewalks/comb_walks

How to use it $_{\circ \circ \circ}$

What to do with it

Conclusions

Git repository

Code hosted in GitLab Inria

https://gitlab.inria.fr/discretewalks/comb_walks

Installation via pip

Recommended to install all the dependencies:

sage -pip [--user] install git+https://gitlab.inria.fr/discretewalks/comb_walks.git

How to use it $\circ \circ \bullet$

What to do with it

Conclusions

Documentation and Demo

Documentation available online

https://discretewalks.gitlabpages.inria.fr/comb_walks/docs/

How to use it $\circ\circ\bullet$

What to do with it

Conclusions

Documentation and Demo

Documentation available online

https://discretewalks.gitlabpages.inria.fr/comb_walks/docs/

Easy accessible demo using Binder					
← → C 🔒 gitlab.inria.fr/discretewalks/comb_walks	1				
🔶 Projects Groups Snippets Help	Q 🕜 🗸 Sign in				
Walk Models with elliptic kernel function					

Х

How to use it $\circ\circ\bullet$

What to do with it

 $\underset{\circ\circ\circ}{\mathsf{Conclusions}}$

Documentation and Demo

C Jupyter comb_walks_demo (unsaved changes)	Join this repo's Video Chat Visit repo Copy Bind							
File Edit View Insert Cell Kernel Widgets Help	Not Trusted SageMatt							
图 + 多 包 吃 本 V H Run ■ C H Markdown V 回								
Walks in the Quarter Plane in Sage								
The package comb_walks								
1. Introduction to walks in the plane								
A walk in the lattice \mathbb{Z}^2 is a sequence of points (P_0, \dots, P_n) . We say that P_0 is the origin of the w the differences $s_i = P_i - P_{i-1} \in \mathbb{Z}^2$ for $1 \leq n$ are its steps.	alk and P_n is its ending point, that n is its length and that a							
Given a set $S \subset \mathbb{Z}^2$ whose elements we call valid steps, we can consider walks in the lattice plan $s_i \in S$ for all $1 \le i \le n$. We call the resulting set of walks a model of walks.	te that only have steps in such subset, i.e., walks where							
The following combinatorial problem was considered:	The following combinatorial problem was considered:							
 Walks on the plane: given a set S ⊂ {−1, 0, 1}² \ {(0, 0)} (which are called small steps), (i, j) using n steps taken from S? 	how many walks are there from the origin $(0,0)$ to the point							
To study this problem, we collect the numbers $g_{ij,k}$ in a generating series: $G(x,y,t) = \sum_{ij \in \mathcal{I}, x} \sum_{n \in \mathcal{N}} g_{ij,n} x^i y^j t^n.$								
The classification of different models according to the algebraic and differential nature of the function $g_{ij,r} = \sum_{i=1,m=0}^{N_{ij}} g_{ij-alj(r-b)(n-1)}$,	ion $G(x, y, t)$ is done by using the recurrence relation							
which holds for all different models. Moreover, for each $(a, b) \in \mathbb{Z}^2$ we have $L^{a'y^b}G(x, y, t) = \sum_{l, j \in \mathbb{Z}} \sum_{x \in \mathbb{N}} g_{l,jx} x^{l+a'y^b}$	+b _f a+1							
$= \sum_{i,j\in\mathbb{Z}} \sum_{n\geq 1} g_{(i-a),(j-b),i}$	$_{(n+1)}x^iy^jt^n$.							
Now, if we sum the left-hand sides of the previous equation over all $(a, b) \in S$, we can simplify the to the following equation:	e right-hand side using the recurrence equation. This leads							
$G(x, y, t) = \frac{1}{1 - tS(x, y)},$								
where $S(x, y)$ is the so-called step polynomial of the model S and it is defined as follows:								
The Sage package comb walks								

How to use it $_{\circ\circ\circ}$

 $\underset{\circ\circ\circ}{\text{Conclusions}}$

What can we do with comb_walks

How to use it $_{\circ\circ\circ}$

What to do with it 0 = 0 = 0 = 0

Conclusions

Main user data structure

WalkModel

- Each instance of the class represents a model of walks.
- The constructor inputs the set of valid steps.

In [2]: WalkModel((1,0),(0,1),(-1,-1))

Out[2]: Walk Model with steps: ((1, 0), 1), ((0, 1), 1), ((-1, -1), 1)

How to use it $_{\circ\circ\circ}$

What to do with it 0 = 0 = 0

Conclusions

Main user data structure

WalkModel

- Each instance of the class represents a model of walks.
- The constructor inputs the set of valid steps.
- Possible to use letters for the steps: N, S, E, W, etc.

In [3]: WalkModel(N,E,SW)

Out[3]: Walk Model with steps: ((0, 1), 1), ((1, 0), 1), ((-1, -1), 1)

How to use it 0000

What to do with it

Conclusions

Plotting methods

The Sage package comb_walks

Х

How to use it 0000

Conclusions

Plotting methods

How to use it $_{\circ\circ\circ}$

Conclusions

Methods for geometric objects

Kernel function

```
The function K in \mathbb{P}^2:
```

In [13]: WalkModel(N,NE,W,SW).kernel()

Out[13]:
$$(-t) x^2 y^2 + (-t) x y^2 z + x y z^2 + (-t) y z^3 + (-t) z^4$$

How to use it

Conclusions

Methods for geometric objects

Kernel function

```
The function K in \mathbb{P} \times \mathbb{P}:
```

In [14]: WalkModel(N,NE,W,SW).kernel('P')

Out[14]: $(-t) x_0^2 y_0^2 + (-t) x_0 x_1 y_0^2 + x_0 x_1 y_0 y_1 + (-t) x_1^2 y_0 y_1 + (-t) x_1^2 y_1^2$

How to use it $_{\circ\circ\circ}$

Conclusions

Methods for geometric objects

Kernel function

The function K in $\mathbb{P} \times \mathbb{P}$:

The automorphism au

Map that changes first the y coordinate and then the x coordinate:

```
In [20]: WalkModel(N,NE,W,SW).tau('P')
```

Walks in the Quarter Plane $_{\circ\circ\circ\circ\circ\circ}$

How to use it $_{\circ\circ\circ}$

Conclusions

Methods for geometric objects

The function $b_i := \tau(F_i) - F_i$

Dut[23]:
$$\frac{\left(\frac{-1}{t}\right)x^2y + \left(\frac{-1}{t}\right)xy + 2x + 1}{-x^2y - xy}$$

In [24]: WalkModel(N,NE,W,SW).b(2)
Out[24]:
$$\frac{x^2y^2 + xy^2 - 1}{-xy - y}$$

Walks in the Quarter Plane $_{\circ\circ\circ\circ\circ\circ}$

How to use it $_{\circ\circ\circ}$

Conclusions

Telescoping functions over the curve

Poles of rational functions on the kernel curve

In [28]:	<pre>model = WalkModel(NE,S,W) model.poles(model.b(2))</pre>			
Out[28]:	[(0:1,1:0), (1:0,0:1), (0:1,0:1)]			

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Telescoping functions over the curve

Poles of rational functions on the kernel curve

In [28]:	<pre>model = WalkModel(NE,S,W) model.poles(model.b(2))</pre>			
Out[28]:	[(0:1,1:0), (1:0,0:1), (0:1,0:1)]			

Telescoping functions over the curve

Compute L and g such that $L \cdot b = \tau(g) - g$:

01

Out[31]: True

How to use it $_{\circ\circ\circ}$

Conclusions

Telescoping functions over the curve

Poles of rational functions on the kernel curve

In [28]:	<pre>model = WalkModel(NE,S,W) model.poles(model.b(2))</pre>			
Out[28]:	[(0:1,1:0), (1:0,0:1), (0:1,0:1)]			

Telescoping functions over the curve

Compute L and g such that $L \cdot b = \tau(g) - g$. In this case:

$$\delta b_2 = (\tau - 1) \left(t \frac{x_0^2 y_0 + x_1^2 y_1}{x_0 x_1 y_0} \right)$$

How to use it $_{\circ\circ\circ}$

Conclusions

Built-in models

- FiniteGroup: all models where $\mathit{ord}(\tau) < \infty$.
- EllipticC: models with infinite group and elliptic kernel.
- NonEllipticC: other models.

Conclusions

Built-in models

- FiniteGroup: all models where $\mathit{ord}(\tau) < \infty$.
- EllipticC: models with infinite group and elliptic kernel.
- NonEllipticC: other models.

Exhaustive website

The functionality of the package has been applied to all those models. The results can be found in the webpage

https://discretewalks.gitlabpages.inria.fr/comb_walks/

Walks	in	the	Quarter	Plane

How to use it

What to do with it 00000000

Conclusions

The website

https://discretewalks.gitlabpages.inria.fr/comb_walks/

How to use it $_{\circ\circ\circ}$

What to do with it 00000000

Conclusions

The website

https://discretewalks.gitlabpages.inria.fr/comb_walks/

How to use it $_{\circ\circ\circ}$

What to do with it 00000000

Conclusions

The website

https://discretewalks.gitlabpages.inria.fr/comb_walks/

Walks	in	the	Quarter	Plane

How to use it

What to do with it 00000000

Conclusions

The website

https://discretewalks.gitlabpages.inria.fr/comb_walks/

Walks	in	the	Quarter	Plane

How to use it $_{\circ\circ\circ}$

What to do with it 00000000

Conclusions

The website

https://discretewalks.gitlabpages.inria.fr/comb_walks/

How to use it

What to do with it

Conclusions

Conclusions

How to use it

What to do with it

Conclusions

Conclusions

Achievements

- A framework to classify models of walks in the quarter plane
- Telescoping method over elliptic kernel functions
- Visualization of the results over classical examples

Future work

- Develop a constructive method for obtaining algebraic and differential equations
- Study the performance and complexity of the current code
- Adapt the current implementation to wider use

How to use it $_{\circ\circ\circ}$

What to do with it

Conclusions

Thank you!

Results and documentation:

- https://discretewalks.gitlabpages.inria.fr/comb_walks/
- https://discretewalks.gitlabpages.inria.fr/comb_walks/docs/

GitLab repository:

• https://gitlab.inria.fr/discretewalks/comb_walks