

Dⁿ-finite

 $\underset{\circ\circ}{\mathsf{Conclusions}}$

Der Wissenschaftsfonds.

DD-Finite Functions

Working beyond holonomic

Antonio Jiménez-Pastor

MCA - Symbolic Computation (July 2021)

 D^n -finite

 $\underset{\circ\circ}{\overset{\mathsf{Conclusions}}{\overset{}}}$

D-finite functions: the holonomic world

DD-Finite Functions

 D^n -finite

Conclusions

Basic notation

Throughout this talk we consider:

- \mathbb{K} : a **computable** field contained in \mathbb{C} .
- $\mathbb{K}[[x]]$: ring of formal power series over \mathbb{K} .
- ' is the standard derivation w.r.t. x:

$$\left(\sum_{n\geq 0} c_n x^n\right)' = \sum_{n\geq 0} (c_n x^n)' = \sum_{n\geq 0} (n+1)c_{n+1} x^n.$$

 D^n -finite

 $\underset{\circ\circ}{\overset{\mathsf{Conclusions}}{\overset{}}}$

Links to package

Package dd_functions

All results presented in this talk are included in the SageMath package dd_functions.

• Repository:

https://github.com/Antonio-JP/dd_functions

Documentation:

https://antonio-jp.github.io/dd_functions/

• Demo:

https://mybinder.org/v2/gh/Antonio-JP/dd_functions. git/master?filepath=dd_functions_demo.ipynb

Dⁿ-finite

 $\operatorname{Conclusions}_{\circ\circ}$

D-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that f(x) is D-finite if there exists $d \in \mathbb{N}$ and polynomials $p_0(x), \ldots, p_d(x) \in \mathbb{K}[x]$ (not all zero) such that:

$$p_d(x)f^{(d)}(x) + \ldots + p_0(x)f(x) = 0.$$

 D^n -finite

 $\underset{\circ\circ}{\overset{\mathsf{Conclusions}}{\overset{}}}$

Examples

Many special functions are D-finite:

- Exponential functions: e^x .
- Trigonometric functions: sin(x), cos(x).
- Logarithm function: $\log(x+1)$.
- Bessel functions: $J_n(x)$.

• Hypergeometric functions:
$${}_{p}F_{q}\left(\begin{array}{c}a_{1},\ldots,a_{p}\\b_{1},\ldots,b_{q}\end{array};x\right)$$
.

- Airy functions: Ai(x), Bi(x).
- Combinatorial generating functions: $F(x), C(x), \ldots$

 D^n -finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Closure properties

f(x), g(x) D-finite of order d_1, d_2 . a(x) algebraic over $\mathbb{K}(x)$ of degree p.

Property	Function	Order bound	
Addition	f(x) + g(x)	$d_1 + d_2$	
Product	f(x)g(x)	d_1d_2	
Differentiation	f'(x)	d_1	
Integration	$\int f(x)$	d_1+1	
Be Algebraic	a(x)	p	

Dⁿ-finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Working with D-finite functions

There are several implementations of D-finite functions:

- mgfun: Maple package, by F. Chyzak and B. Salvy
- HolonomicFunctions: Mathematica package, by C. Koutschan
- ore_algebra: Sage package, by M. Kauers et al.

 D^{n} -finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Differentially definable functions: extending the class

DD-Finite Functions

Diff. definable $\circ \circ \circ \circ \circ \circ$

Dⁿ-finite

Conclusions

Non-D-finite examples

There are power series that are not D-finite:

- Double exponential: $f(x) = e^{e^x}$.
- Tangent: $tan(x) = \frac{sin(x)}{cos(x)}$.
- \wp -Weierstrass function.
- Gamma function: $f(x) = \Gamma(x+1)$.
- Partition Generating Function: $f(x) = \sum_{n \ge 0} p(n)x^n$.

 D^n -finite

 $\operatorname{Conclusions}_{\circ\circ}$

DD-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that f(x) is D-finite if there exists $d \in \mathbb{N}$ and polynomials $p_0(x), \ldots, p_d(x) \in \mathbb{K}[x]$ (not all zero) such that:

$$p_d(x)f^{(d)}(x) + \ldots + p_0(x)f(x) = 0.$$

D-finite: NO

• Double exponential: $f(x) = e^{e^x}$.

• Tangent:
$$tan(x) = \frac{sin(x)}{cos(x)}$$
.

D^{*n*}-finite

Conclusions

DD-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that f(x) is DD-finite if there exists $d \in \mathbb{N}$ and D-finite functions $r_0(x), \ldots, r_d(x)$ (not all zero) such that:

$$r_d(x)f^{(d)}(x) + \ldots + r_0(x)f(x) = 0.$$

DD-finite: **YES**

- Double exponential: $f(x) = e^{e^x} \rightarrow f'(x) e^x f(x) = 0$
- Tangent: $\tan(x) = \frac{\sin(x)}{\cos(x)} \rightarrow \cos^2(x) \tan''(x) 2\tan(x) = 0.$

Diff. definable

Dⁿ-finite

Conclusions

Differentially definable functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that f(x) is DD-finite if there exists $d \in \mathbb{N}$ and D-finite functions $r_0(x), \ldots, r_d(x)$ (not all zero) such that:

$$r_d(x)f^{(d)}(x) + \ldots + r_0(x)f(x) = 0.$$

Dⁿ-finite

Conclusions

Differentially definable functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that f(x) is differentially definable over R if there exists $d \in \mathbb{N}$ and elements in R $r_0(x), \ldots, r_d(x)$ (not all zero) such that:

$$r_d(x)f^{(d)}(x) + \ldots + r_0(x)f(x) = 0.$$

We denote the set of all diff. definable functions over R by D(R).

- D-finite functions: $D(\mathbb{K}[x])$.
- DD-finite functions: $D(D(\mathbb{K}[x])) = D^2(\mathbb{K}[x])$.

Diff. definable

 D^{n} -finite

 $\underset{\circ\circ}{\mathsf{Conclusions}}$

Characterization via Linear Algebra

Theorem

The following are equivalent:

f(x) is differentially definable over R $(f(x) \in D(R))$

$\$

The **F**-vector space $\langle f(x), f'(x), f''(x), \ldots \rangle$ has finite dimension.

- $R \subset K[[x]]$ is a differential subring
- F is its field of fractions.

Dⁿ-finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Closure properties

f(x), g(x) D-finite of order d_1, d_2 . a(x) algebraic over $\mathbb{K}(x)$ of degree p.

Property	Function	Order bound
Addition	f(x) + g(x)	$d_1 + d_2$
Product	f(x)g(x)	d_1d_2
Differentiation	f'(x)	d_1
Integration	$\int f(x)$	d_1+1
Be Algebraic	a(x)	p

Dⁿ-finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Closure properties

f(x), g(x) in D(R) of order d_1, d_2 . a(x) algebraic over F of degree p.

Property	Function	Order bound	
Addition	f(x) + g(x)	$d_1 + d_2$	
Product	f(x)g(x)	d_1d_2	
Differentiation	f'(x)	d_1	
Integration	$\int f(x)$	d_1+1	
Be Algebraic	a(x)	p	

Dⁿ-finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Closure properties

f(x), g(x) in D(R) of order d_1, d_2 . a(x) algebraic over F of degree p.

Property	Property Function C	
Addition	f(x) + g(x)	$d_1 + d_2$
Product	f(x)g(x)	d_1d_2
Differentiation	f'(x)	d_1
Integration	$\int f(x)$	d_1+1
Be Algebraic	a(x)	p

Proof for addition:

$$\begin{array}{rcl} \langle (f+g)^{(n)} & : & n \in \mathbb{N} \rangle_F = \langle f^{(n)} + g^{(n)} & : & n \in \mathbb{N} \rangle_F \\ & & \subset \langle f^{(n)} & : & n \in \mathbb{N} \rangle_F + \langle g^{(n)} & : & n \in \mathbb{N} \rangle_F \end{array}$$

Dⁿ-finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Closure properties

f(x), g(x) in D(R) of order d_1, d_2 . a(x) algebraic over F of degree p.

Property	Property Function C	
Addition	f(x) + g(x)	$d_1 + d_2$
Product	f(x)g(x)	d_1d_2
Differentiation	f'(x)	d_1
Integration	$\int f(x)$	d_1+1
Be Algebraic	a(x)	p

Proof for addition:

$$\begin{array}{rcl} \langle (f+g)^{(n)} & : & n \in \mathbb{N} \rangle_F = \langle f^{(n)} + g^{(n)} & : & n \in \mathbb{N} \rangle_F \\ & & \subset \langle f^{(n)} & : & n \in \mathbb{N} \rangle_F + \langle g^{(n)} & : & n \in \mathbb{N} \rangle_F \end{array}$$

 $\underset{\circ\circ}{\mathsf{Conclusions}}$

D^n -finite functions: iterating the process

DD-Finite Functions

Iterate the process

D^{*n*}-finite functions

D^{*n*}-finite functions are the *n*th iteration over $\mathbb{K}[x]$, i.e., $D^n(\mathbb{K}[x])$.

$$\mathbb{K}[x] \subset \mathsf{D}(\mathbb{K}[x]) \subset \mathsf{D}^2(\mathbb{K}[x]) \subset \ldots \subset \mathsf{D}^n(\mathbb{K}[x]) \subset \ldots$$

 D^n -finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

New Properties

 $f(x) \in D^{n}(\mathbb{K}[x])$ of order d_{1} . $g(x) \in D^{m}(\mathbb{K}[x])$ of order d_{2} . a(x) algebraic over $D^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	ls in	Order bound
Composition	$f \circ g$	$D^{n+m}(\mathbb{K}[x])$	d_1
Alg. subs.	f ∘ a	$D^{n+m}(\mathbb{K}[x])$	pd_1

 D^{n} -finite

Conclusions

New Properties

 $f(x) \in D^{n}(\mathbb{K}[x])$ of order d_{1} . $g(x) \in D^{m}(\mathbb{K}[x])$ of order d_{2} . a(x) algebraic over $D^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	ls in	Order bound
Composition	$f \circ g$	$D^{n+m}(\mathbb{K}[x])$	d_1
Alg. subs.	<i>f</i>	$D^{n+m}(\mathbb{K}[x])$	pd_1

• a(x) algebraic over $D^m(K[x])$ implies $a(x) \in D^{m+1}(\mathbb{K}[x])$.

 D^n -finite

Conclusions

New Properties

 $f(x) \in D^{n}(\mathbb{K}[x])$ of order d_{1} . $g(x) \in D^{m}(\mathbb{K}[x])$ of order d_{2} . a(x) algebraic over $D^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	ls in	Order bound
Composition	$f \circ g$	$D^{n+m}(\mathbb{K}[x])$	d_1
Alg. subs.	f o a	$D^{n+m}(\mathbb{K}[x])$	pd_1

- a(x) algebraic over $D^m(K[x])$ implies $a(x) \in D^{m+1}(\mathbb{K}[x])$.
- Then f(a(x)) is in $D^{n+m+1}(\mathbb{K}[x])$.

 D^n -finite

Conclusions

New Properties

 $f(x) \in D^{n}(\mathbb{K}[x])$ of order d_{1} . $g(x) \in D^{m}(\mathbb{K}[x])$ of order d_{2} . a(x) algebraic over $D^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	ls in	Order bound
Composition	$f \circ g$	$D^{n+m}(\mathbb{K}[x])$	d_1
Alg. subs.	<i>f</i>	$D^{n+m}(\mathbb{K}[x])$	pd_1

- a(x) algebraic over $D^m(K[x])$ implies $a(x) \in D^{m+1}(\mathbb{K}[x])$.
- Then f(a(x)) is in $D^{n+m+1}(\mathbb{K}[x])$.

 D^{n} -finite

 $\underset{\circ\circ}{\overset{\mathsf{Conclusions}}{\overset{}}}$

$D^n \subsetneq D^{n+1}$: Iterated exponentials

$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subset \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$

 $e^x \notin K[x]$

 D^n -finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

$D^n \subsetneq D^{n+1}$: Iterated exponentials

$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$

$$e^x \notin K[x], \qquad e^{e^x - 1} \notin \mathsf{D}(K[x]).$$

 D^n -finite

 $\underset{\circ\circ}{\overset{\mathsf{Conclusions}}{\overset{}}}$

$D^n \subsetneq D^{n+1}$: Iterated exponentials

$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$

$$e^{x} \notin K[x], \qquad e^{e^{x}-1} \notin \mathsf{D}(K[x]).$$

 D^{n} -finite

Conclusions

$D^n \subsetneq D^{n+1}$: Iterated exponentials

$\mathcal{K}[x] \subsetneq \mathcal{D}(\mathcal{K}[x]) \subsetneq \mathcal{D}^2(\mathcal{K}[x]) \subset \ldots \subset \mathcal{D}^n(\mathcal{K}[x]) \subset \ldots$

$$e^x \notin K[x], \qquad e^{e^x - 1} \notin \mathsf{D}(K[x]).$$

Iterated Exponentials

- $e_0(x) = 1$,
- $\hat{e}_n(x) = \int_0^x e_n(t) dt$,
- $e_{n+1}(x) = \exp(\hat{e}_n(x)).$

DD-Finite Functions

 D^n -finite

Conclusions

$D^n \subsetneq D^{n+1}$: Iterated exponentials

$K[x] \subsetneq D(K[x]) \subsetneq D^2(K[x]) \subsetneq \ldots \subsetneq D^n(K[x]) \subsetneq \ldots$

$$e^x \notin K[x], \qquad e^{e^x-1} \notin \mathsf{D}(K[x]).$$

Iterated Exponentials

- e₀(x) = 1,
 ê_n(x) = ∫₀^x e_n(t)dt,
- $e_{n+1}(x) = \exp(\hat{e}_n(x)).$

$$\left(\begin{array}{c} e_{n+1}(x)\in\mathsf{D}^{n+1}(\mathcal{K}[x])\\ e_{n+1}(x)\notin\mathsf{D}^n(\mathcal{K}[x])\end{array}\right)$$

DD-Finite Functions

 D^{n} -finite

Conclusions

Diff. Algebraic functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that f(x) differentially algebraic over R if there is $n \in \mathbb{N}$ and $P(y_0, \ldots, y_n) \in R[y_0, \ldots, y_n]$ such that

$$P(f(x), f'(x), \ldots, f^{(n)}(x)) = 0.$$

We denote by DA(R) the set of all differentially algebraic functions over R.

Diff. definable

 D^n -finite

Conclusions

Diff. Algebraic functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that f(x) differentially algebraic over R if there is $n \in \mathbb{N}$ and $P(y_0, \ldots, y_n) \in R[y_0, \ldots, y_n]$ such that

$$P(f(x), f'(x), \ldots, f^{(n)}(x)) = 0.$$

We denote by DA(R) the set of all differentially algebraic functions over R.

Diff. definable D(R) Diff. algebraic DA(R) \downarrow \downarrow \downarrow Linear diff. equations Polynomial diff. equations

 D^n -finite

 $\underset{\circ\circ}{\overset{\text{Conclusions}}{\overset{}}}$

Inclusion into Diff. Algebraic

- $D(R) \subset DA(R)$.
- $R \subset S \Rightarrow \mathsf{DA}(R) \subset \mathsf{DA}(S)$.
- $\mathsf{DA}(\mathbb{K}[x]) = \mathsf{DA}(\mathbb{K}).$

 D^n -finite

Conclusions

Inclusion into Diff. Algebraic

- $D(R) \subset DA(R)$.
- $R \subset S \Rightarrow \mathsf{DA}(R) \subset \mathsf{DA}(S)$.
- $\mathsf{DA}(\mathbb{K}[x]) = \mathsf{DA}(\mathbb{K}).$

Proposition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring. Then DA(D(R)) = DA(R).

The proof is constructive.

 D^{n} -finite

 $\underset{\circ\circ}{\mathsf{Conclusions}}$

Inclusion into Diff. Algebraic

- $D(R) \subset DA(R)$.
- $R \subset S \Rightarrow \mathsf{DA}(R) \subset \mathsf{DA}(S)$.
- $\mathsf{DA}(\mathbb{K}[x]) = \mathsf{DA}(\mathbb{K}).$
- **Proposition:** $DA(D^n(R)) = DA(D^{n-1}(R))$.

Theorem

For all $n \in \mathbb{N}$, if $f(x) \in D^n(\mathbb{K}[x])$, then $f(x) \in DA(\mathbb{K})$.

 D^n -finite

 $\underset{\circ\circ}{\mathsf{Conclusions}}$

Inclusion into Diff. Algebraic

- $D(R) \subset DA(R)$.
- $R \subset S \Rightarrow \mathsf{DA}(R) \subset \mathsf{DA}(S)$.
- $\mathsf{DA}(\mathbb{K}[x]) = \mathsf{DA}(\mathbb{K}).$
- **Proposition:** $DA(D^n(R)) = DA(D^{n-1}(R))$.
- Theorem: $D^n(\mathbb{K}[x]) \subset DA(\mathbb{K})$.

Example: double exponential

$$\exp(\exp(x) - 1) \longrightarrow f'(x) - \exp(x)f(x) = 0$$

$$\downarrow$$

$$f''(x)f(x) - f'(x)^2 - f'(x)f(x) = 0$$

 D^n -finite

Conclusions

Inclusion into Diff. Algebraic

- $D(R) \subset DA(R)$.
- $R \subset S \Rightarrow \mathsf{DA}(R) \subset \mathsf{DA}(S)$.
- $DA(\mathbb{K}[x]) = DA(\mathbb{K}).$
- **Proposition:** $DA(D^n(R)) = DA(D^{n-1}(R)).$
- Theorem: $D^n(\mathbb{K}[x]) \subset DA(\mathbb{K})$.

Example: tangent

$$\tan(x) \longrightarrow \cos(x)^{2} f''(x) - 2f(x) = 0$$

$$\downarrow$$

$$-2f^{(5)}(x)f''(x)^{2}f(x) + 12f^{(4)}(x)f'''(x)f''(x)f(x) - 6f^{(4)}(x)f''(x)^{2}f'(x) - 12f'''(x)^{3}f(x) + 12f'''(x)^{2}f''(x)f'(x) - 4f'''(x)f''(x)^{3} - 8f'''(x)f''(x)^{2}f(x) + 8f''(x)^{3}f'(x) = 0$$

Dⁿ-finite 0000000

Conclusions

Reverse inclusion

Is the other inclusion true? Can we have $DA(\mathbb{K}[x]) = D^{\infty}(\mathbb{K}[x])$?

 D^n -finite

Conclusions

Reverse inclusion

Is the other inclusion true? Can we have $DA(\mathbb{K}[x]) = D^{\infty}(\mathbb{K}[x])$?

For some diff. algebraic functions, we can find an $n \in \mathbb{N}$:

Riccati differential equation

Let y(x) be a solution to the Riccati differential equation

$$y'(x) = c(x)y(x)^2 + b(x)y(x) + a(x),$$

where $a(x), b(x) \in D^{n}(\mathbb{K}[x])$ and $c(x) \in D^{n-1}(\mathbb{K}[x])$. Then $y(x) \in D^{n+2}(\mathbb{K}[x])$.

 D^n -finite

Conclusions

Reverse inclusion

Is the other inclusion true? Can we have $DA(\mathbb{K}[x]) = D^{\infty}(\mathbb{K}[x])$?

But that is not always the case

Theorem (Noordman, Top, van der Put)

Let y(x) be a solution to the differential equation

$$y'(x) = y(x)^3 - y(x)^2.$$

Then, there is no $n \in \mathbb{N}$ with $y(x) \in D^n(\mathbb{K}[x])$.

 D^n -finite

Conclusions

Achievements

- Extension of the holonomic framework.
- Running implementation of closure properties.
- Relation to differentially algebraic functions.

Future work

- Fast computation of truncation of Dⁿ-finite functions.
- Development of certified numerical evaluations.
- Combinatorial meaning of the induced sequences.
- Multivariate DD-finite functions.

Dⁿ-finite

Conclusions ••

Thank you!

Contact webpage:

- https://www.dk-compmath.jku.at/people/antonio
- https://www.risc.jku.at/home/ajpastor

Code available:

• https://github.com/Antonio-JP/dd_functions