DD-Finite Functions

Working beyond holonomic
Antonio Jiménez-Pastor

MCA - Symbolic Computation (July 2021)

D-finite functions: the holonomic world

Basic notation

Throughout this talk we consider:

- \mathbb{K} : a computable field contained in \mathbb{C}.
- $\mathbb{K}[[x]]$: ring of formal power series over \mathbb{K}.
- ' is the standard derivation w.r.t. x :

$$
\left(\sum_{n \geq 0} c_{n} x^{n}\right)^{\prime}=\sum_{n \geq 0}\left(c_{n} x^{n}\right)^{\prime}=\sum_{n \geq 0}(n+1) c_{n+1} x^{n}
$$

Links to package

Package dd_functions

All results presented in this talk are included in the SageMath package dd_functions.

- Repository:
https://github.com/Antonio-JP/dd_functions
- Documentation:
https://antonio-jp.github.io/dd_functions/
- Demo:
https://mybinder.org/v2/gh/Antonio-JP/dd_functions. git/master?filepath=dd_functions_demo.ipynb

DD-Finite Functions

D-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ is D-finite if there exists $d \in \mathbb{N}$ and polynomials $p_{0}(x), \ldots, p_{d}(x) \in \mathbb{K}[x]$ (not all zero) such that:

$$
p_{d}(x) f^{(d)}(x)+\ldots+p_{0}(x) f(x)=0
$$

Examples

Many special functions are D-finite:

- Exponential functions: e^{x}.
- Trigonometric functions: $\sin (x), \cos (x)$.
- Logarithm function: $\log (x+1)$.
- Bessel functions: $J_{n}(x)$.
- Hypergeometric functions: ${ }_{p} F_{q}\left(\begin{array}{l}a_{1}, \ldots, a_{p} \\ b_{1}, \ldots, b_{q}\end{array} ; x\right)$.
- Airy functions: $A i(x), B i(x)$.
- Combinatorial generating functions: $F(x), C(x), \ldots$

Closure properties

$f(x), g(x)$ D-finite of order d_{1}, d_{2}. $a(x)$ algebraic over $\mathbb{K}(x)$ of degree p.

Property	Function	Order bound
Addition	$f(x)+g(x)$	$d_{1}+d_{2}$
Product	$f(x) g(x)$	$d_{1} d_{2}$
Differentiation	$f^{\prime}(x)$	d_{1}
Integration	$\int f(x)$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Working with D-finite functions

There are several implementations of D-finite functions:

- mgfun: Maple package, by F. Chyzak and B. Salvy
- HolonomicFunctions: Mathematica package, by C. Koutschan
- ore_algebra: Sage package, by M. Kauers et al.

Differentially definable functions: extending the class

Non-D-finite examples

There are power series that are not D-finite:

- Double exponential: $f(x)=e^{e^{x}}$.
- Tangent: $\tan (x)=\frac{\sin (x)}{\cos (x)}$.
- \wp-Weierstrass function.
- Gamma function: $f(x)=\Gamma(x+1)$.
- Partition Generating Function: $f(x)=\sum_{n \geq 0} p(n) x^{n}$.

DD-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ is D-finite if there exists $d \in \mathbb{N}$ and polynomials $p_{0}(x), \ldots, p_{d}(x) \in \mathbb{K}[x]$ (not all zero) such that:

$$
p_{d}(x) f^{(d)}(x)+\ldots+p_{0}(x) f(x)=0
$$

D-finite: NO

- Double exponential: $f(x)=e^{e^{x}}$.
- Tangent: $\tan (x)=\frac{\sin (x)}{\cos (x)}$.

DD-Finite Functions

DD-finite functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ is DD-finite if there exists $d \in \mathbb{N}$ and D-finite functions $r_{0}(x), \ldots, r_{d}(x)$ (not all zero) such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

DD-finite: YES

- Double exponential: $f(x)=e^{e^{x}} \rightarrow f^{\prime}(x)-e^{x} f(x)=0$
- Tangent: $\tan (x)=\frac{\sin (x)}{\cos (x)} \rightarrow \cos ^{2}(x) \tan ^{\prime \prime}(x)-2 \tan (x)=0$.

DD-Finite Functions

Differentially definable functions

Definition

Let $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ is DD-finite if there exists $d \in \mathbb{N}$ and D-finite functions $r_{0}(x), \ldots, r_{d}(x)$ (not all zero) such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

Differentially definable functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ is differentially definable over R if there exists $d \in \mathbb{N}$ and elements in $R r_{0}(x), \ldots, r_{d}(x)$ (not all zero) such that:

$$
r_{d}(x) f^{(d)}(x)+\ldots+r_{0}(x) f(x)=0
$$

We denote the set of all diff. definable functions over R by $\mathrm{D}(R)$.

- D-finite functions: $\mathrm{D}(\mathbb{K}[x])$.
- DD-finite functions: $\mathrm{D}(\mathrm{D}(\mathbb{K}[x]))=\mathrm{D}^{2}(\mathbb{K}[x])$.

DD-Finite Functions

Characterization via Linear Algebra

Theorem

The following are equivalent:

$$
f(x) \text { is differentially definable over } \mathrm{R}(f(x) \in \mathrm{D}(R))
$$

\Uparrow

The F-vector space $\left\langle f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots\right\rangle$ has finite dimension.

- $R \subset K[[x]]$ is a differential subring
- F is its field of fractions.

Closure properties

$f(x), g(x)$ D-finite of order d_{1}, d_{2}. $a(x)$ algebraic over $\mathbb{K}(x)$ of degree p.

Property	Function	Order bound
Addition	$f(x)+g(x)$	$d_{1}+d_{2}$
Product	$f(x) g(x)$	$d_{1} d_{2}$
Differentiation	$f^{\prime}(x)$	d_{1}
Integration	$\int f(x)$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Closure properties

$f(x), g(x)$ in $\mathrm{D}(R)$ of order d_{1}, d_{2}. $a(x)$ algebraic over F of degree p.

Property	Function	Order bound
Addition	$f(x)+g(x)$	$d_{1}+d_{2}$
Product	$f(x) g(x)$	$d_{1} d_{2}$
Differentiation	$f^{\prime}(x)$	d_{1}
Integration	$\int f(x)$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Closure properties

$f(x), g(x)$ in $\mathrm{D}(R)$ of order d_{1}, d_{2}. $a(x)$ algebraic over F of degree p.

Property	Function	Order bound
Addition	$f(x)+g(x)$	$d_{1}+d_{2}$
Product	$f(x) g(x)$	$d_{1} d_{2}$
Differentiation	$f^{\prime}(x)$	d_{1}
Integration	$\int f(x)$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Proof for addition:

$$
\begin{aligned}
\left\langle(f+g)^{(n)}: n \in \mathbb{N}\right\rangle_{F} & =\left\langle f^{(n)}+g^{(n)}: n \in \mathbb{N}\right\rangle_{F} \\
& \subset\left\langle f^{(n)}: n \in \mathbb{N}\right\rangle_{F}+\left\langle g^{(n)}: n \in \mathbb{N}\right\rangle_{F}
\end{aligned}
$$

Closure properties

$f(x), g(x)$ in $\mathrm{D}(R)$ of order d_{1}, d_{2}. $a(x)$ algebraic over F of degree p.

Property	Function	Order bound
Addition	$f(x)+g(x)$	$d_{1}+d_{2}$
Product	$f(x) g(x)$	$d_{1} d_{2}$
Differentiation	$f^{\prime}(x)$	d_{1}
Integration	$\int f(x)$	$d_{1}+1$
Be Algebraic	$a(x)$	p

Proof for addition:

$$
\begin{aligned}
\left\langle(f+g)^{(n)}: n \in \mathbb{N}\right\rangle_{F} & =\left\langle f^{(n)}+g^{(n)}: n \in \mathbb{N}\right\rangle_{F} \\
& \subset\left\langle f^{(n)}: n \in \mathbb{N}\right\rangle_{F}+\left\langle g^{(n)}: n \in \mathbb{N}\right\rangle_{F}
\end{aligned}
$$

D^{n}-finite functions: iterating the process

D^{n}-finite functions

Remark

$$
\begin{aligned}
R \subset \mathbb{K}[[x]] \text { diff. ring } \Rightarrow & \mathrm{D}(R) \subset \mathbb{K}[[x]] \text { diff. ring } \\
& \downarrow
\end{aligned}
$$

Iterate the process

Diff. definable
D^{n}-finite

D^{n}-finite functions

Remark

$$
\begin{aligned}
R \subset \mathbb{K}[[x]] \text { diff. ring } \Rightarrow & \mathrm{D}(R) \subset \mathbb{K}[[x]] \text { diff. ring } \\
& \downarrow
\end{aligned}
$$

Iterate the process

D^{n}-finite functions
D^{n}-finite functions are the nth iteration over $\mathbb{K}[x]$, i.e., $\mathrm{D}^{n}(\mathbb{K}[x])$.

$$
\mathbb{K}[x] \subset D(\mathbb{K}[x]) \subset D^{2}(\mathbb{K}[x]) \subset \ldots \subset D^{n}(\mathbb{K}[x]) \subset \ldots
$$

DD-Finite Functions

New Properties

$f(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$ of order d_{1}.
$g(x) \in \mathrm{D}^{m}(\mathbb{K}[x])$ of order d_{2}.
$a(x)$ algebraic over $\mathrm{D}^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	Is in	Order bound
Composition	$f \circ g$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	d_{1}
Alg. subs.	$f \circ a$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	$p d_{1}$

New Properties

$f(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$ of order d_{1}.
$g(x) \in \mathrm{D}^{m}(\mathbb{K}[x])$ of order d_{2}.
$a(x)$ algebraic over $\mathrm{D}^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	Is in	Order bound
Composition	$f \circ g$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	d_{1}
Alg. subs.	$f \circ a$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	$p d_{1}$

- $a(x)$ algebraic over $\mathrm{D}^{m}(K[x])$ implies $a(x) \in \mathrm{D}^{m+1}(\mathbb{K}[x])$.

New Properties

$f(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$ of order d_{1}.
$g(x) \in \mathrm{D}^{m}(\mathbb{K}[x])$ of order d_{2}.
$a(x)$ algebraic over $\mathrm{D}^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	Is in	Order bound
Composition	$f \circ g$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	d_{1}
Alg. subs.	$f \circ a$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	$p d_{1}$

- $a(x)$ algebraic over $\mathrm{D}^{m}(K[x])$ implies $a(x) \in \mathrm{D}^{m+1}(\mathbb{K}[x])$.
- Then $f(a(x))$ is in $\mathrm{D}^{n+m+1}(\mathbb{K}[x])$.

New Properties

$f(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$ of order d_{1}.
$g(x) \in \mathrm{D}^{m}(\mathbb{K}[x])$ of order d_{2}.
$a(x)$ algebraic over $\mathrm{D}^{m}(\mathbb{K}[x])$ of degree p.

Property	Function	Is in	Order bound
Composition	$f \circ g$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	d_{1}
Alg. subs.	$f \circ a$	$\mathrm{D}^{n+m}(\mathbb{K}[x])$	$p d_{1}$

- $a(x)$ algebraic over $\mathrm{D}^{m}(K[x])$ implies $a(x) \in \mathrm{D}^{m+1}(\mathbb{K}[x])$.
- Then $f(a(x))$ is in $\mathrm{D}^{n+m+1}(\mathbb{K}[x])$.

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subset \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \notin K[x]
$$

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \notin K[x], \quad e^{e^{x}-1} \notin \mathrm{D}(K[x]) .
$$

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \notin K[x], \quad e^{e^{x}-1} \notin \mathrm{D}(K[x]) .
$$

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subset \ldots \subset \mathrm{D}^{n}(K[x]) \subset \ldots
$$

$$
e^{x} \notin K[x], \quad e^{e^{x}-1} \notin D(K[x]) .
$$

Iterated Exponentials

- $e_{0}(x)=1$,
- $\hat{e}_{n}(x)=\int_{0}^{x} e_{n}(t) d t$,
- $e_{n+1}(x)=\exp \left(\hat{e}_{n}(x)\right)$.

$\mathrm{D}^{n} \subsetneq \mathrm{D}^{n+1}$: Iterated exponentials

$$
K[x] \subsetneq \mathrm{D}(K[x]) \subsetneq \mathrm{D}^{2}(K[x]) \subsetneq \ldots \subsetneq \mathrm{D}^{n}(K[x]) \subsetneq \ldots
$$

$$
e^{x} \notin K[x], \quad e^{e^{x}-1} \notin \mathrm{D}(K[x]) .
$$

Iterated Exponentials

- $e_{0}(x)=1$,
- $\hat{e}_{n}(x)=\int_{0}^{x} e_{n}(t) d t$,
- $e_{n+1}(x)=\exp \left(\hat{e}_{n}(x)\right)$.

$$
\left\{\begin{array}{l}
e_{n+1}(x) \in \mathrm{D}^{n+1}(K[x]) \\
e_{n+1}(x) \notin \mathrm{D}^{n}(K[x])
\end{array}\right.
$$

Diff. Algebraic functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ differentially algebraic over R if there is $n \in \mathbb{N}$ and $P\left(y_{0}, \ldots, y_{n}\right) \in R\left[y_{0}, \ldots, y_{n}\right]$ such that

$$
P\left(f(x), f^{\prime}(x), \ldots, f^{(n)}(x)\right)=0
$$

We denote by $\mathrm{DA}(R)$ the set of all differentially algebraic functions over R.

DD-Finite Functions

Diff. Algebraic functions

Definition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring and $f(x) \in \mathbb{K}[[x]]$. We say that $f(x)$ differentially algebraic over R if there is $n \in \mathbb{N}$ and $P\left(y_{0}, \ldots, y_{n}\right) \in R\left[y_{0}, \ldots, y_{n}\right]$ such that

$$
P\left(f(x), f^{\prime}(x), \ldots, f^{(n)}(x)\right)=0
$$

We denote by $\mathrm{DA}(R)$ the set of all differentially algebraic functions over R.

Diff. definable
\downarrow
Linear diff. equations

Diff. algebraic $\operatorname{DA}(R)$ \downarrow
Polynomial diff. equations

Inclusion into Diff. Algebraic

- $\mathrm{D}(R) \subset \mathrm{DA}(R)$.
- $R \subset S \Rightarrow \mathrm{DA}(R) \subset \mathrm{DA}(S)$.
- $\operatorname{DA}(\mathbb{K}[x])=\mathrm{DA}(\mathbb{K})$.

Inclusion into Diff. Algebraic

- $\mathrm{D}(R) \subset \mathrm{DA}(R)$.
- $R \subset S \Rightarrow \mathrm{DA}(R) \subset \mathrm{DA}(S)$.
- $\operatorname{DA}(\mathbb{K}[x])=\mathrm{DA}(\mathbb{K})$.

Proposition

Let $R \subset \mathbb{K}[[x]]$ be a differential ring. Then $\mathrm{DA}(\mathrm{D}(R))=\mathrm{DA}(R)$.
The proof is constructive.

Inclusion into Diff. Algebraic

- $\mathrm{D}(R) \subset \mathrm{DA}(R)$.
- $R \subset S \Rightarrow \mathrm{DA}(R) \subset \mathrm{DA}(S)$.
- $\operatorname{DA}(\mathbb{K}[x])=\mathrm{DA}(\mathbb{K})$.
- Proposition: $\mathrm{DA}\left(\mathrm{D}^{n}(R)\right)=\mathrm{DA}\left(\mathrm{D}^{n-1}(R)\right)$.

Theorem

For all $n \in \mathbb{N}$, if $f(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$, then $f(x) \in \mathrm{DA}(\mathbb{K})$.

Inclusion into Diff. Algebraic

- $\mathrm{D}(R) \subset \mathrm{DA}(R)$.
- $R \subset S \Rightarrow \mathrm{DA}(R) \subset \mathrm{DA}(S)$.
- $\operatorname{DA}(\mathbb{K}[x])=\mathrm{DA}(\mathbb{K})$.
- Proposition: $\mathrm{DA}\left(\mathrm{D}^{n}(R)\right)=\mathrm{DA}\left(\mathrm{D}^{n-1}(R)\right)$.
- Theorem: $\mathrm{D}^{n}(\mathbb{K}[x]) \subset \mathrm{DA}(\mathbb{K})$.

Example: double exponential

$$
\begin{gathered}
\exp (\exp (x)-1) \longrightarrow f^{\prime}(x)-\exp (x) f(x)=0 \\
\downarrow \\
f^{\prime \prime}(x) f(x)-f^{\prime}(x)^{2}-f^{\prime}(x) f(x)=0
\end{gathered}
$$

Inclusion into Diff. Algebraic

- $\mathrm{D}(R) \subset \mathrm{DA}(R)$.
- $R \subset S \Rightarrow \mathrm{DA}(R) \subset \mathrm{DA}(S)$.
- $\operatorname{DA}(\mathbb{K}[x])=\mathrm{DA}(\mathbb{K})$.
- Proposition: $\mathrm{DA}\left(\mathrm{D}^{n}(R)\right)=\mathrm{DA}\left(\mathrm{D}^{n-1}(R)\right)$.
- Theorem: $\mathrm{D}^{n}(\mathbb{K}[x]) \subset \mathrm{DA}(\mathbb{K})$.

Example: tangent

$$
\begin{gathered}
\tan (x) \longrightarrow \cos (x)^{2} f^{\prime \prime}(x)-2 f(x)=0 \\
\downarrow \\
-2 f^{(5)}(x) f^{\prime \prime}(x)^{2} f(x)+12 f^{(4)}(x) f^{\prime \prime \prime}(x) f^{\prime \prime}(x) f(x)- \\
6 f^{(4)}(x) f^{\prime \prime}(x)^{2} f^{\prime}(x)-12 f^{\prime \prime \prime}(x)^{3} f(x)+ \\
12 f^{\prime \prime \prime}(x)^{2} f^{\prime \prime}(x) f^{\prime}(x)-4 f^{\prime \prime \prime}(x) f^{\prime \prime}(x)^{3}- \\
8 f^{\prime \prime \prime}(x) f^{\prime \prime}(x)^{2} f(x)+8 f^{\prime \prime}(x)^{3} f^{\prime}(x)=0
\end{gathered}
$$

Reverse inclusion

Is the other inclusion true? Can we have $\operatorname{DA}(\mathbb{K}[x])=\mathrm{D}^{\infty}(\mathbb{K}[x])$?

Reverse inclusion

Is the other inclusion true? Can we have $\operatorname{DA}(\mathbb{K}[x])=\mathrm{D}^{\infty}(\mathbb{K}[x])$?

For some diff. algebraic functions, we can find an $n \in \mathbb{N}$:

Riccati differential equation

Let $y(x)$ be a solution to the Riccati differential equation

$$
y^{\prime}(x)=c(x) y(x)^{2}+b(x) y(x)+a(x)
$$

where $a(x), b(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$ and $c(x) \in \mathrm{D}^{n-1}(\mathbb{K}[x])$.
Then $y(x) \in \mathrm{D}^{n+2}(\mathbb{K}[x])$.

Diff. definable
D^{n}-finite

Reverse inclusion

Is the other inclusion true? Can we have $\operatorname{DA}(\mathbb{K}[x])=\mathrm{D}^{\infty}(\mathbb{K}[x])$?

But that is not always the case

Theorem (Noordman, Top, van der Put)

Let $y(x)$ be a solution to the differential equation

$$
y^{\prime}(x)=y(x)^{3}-y(x)^{2}
$$

Then, there is no $n \in \mathbb{N}$ with $y(x) \in \mathrm{D}^{n}(\mathbb{K}[x])$.

DD-Finite Functions

Conclusions

Achievements

- Extension of the holonomic framework.
- Running implementation of closure properties.
- Relation to differentially algebraic functions.

Future work

- Fast computation of truncation of D^{n}-finite functions.
- Development of certified numerical evaluations.
- Combinatorial meaning of the induced sequences.
- Multivariate DD-finite functions.

Thank you!

Contact webpage:

- https://www.dk-compmath.jku.at/people/antonio
- https://www.risc.jku.at/home/ajpastor Code available:
- https://github.com/Antonio-JP/dd_functions

