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well-known: real, kernel-free autoconvolution problem

FRX:% (1)

/ x(s — t)x(t)dt = y(s), )
0

x(t)eRfor0<t<1 y(s)eRfor0<s<lor0<s<2
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Introduction Motivation
Equation

Identifiability

well-known: real, kernel-free autoconvolution problem

FRX:% (1)

x(t)eRfor0<t<1 y(s)eRfor0<s<lor0<s<2
new: complex valued functions and nontrivial kernel

problem is provided by Max-Born-Institute for Nonlinear Optics
and Short Time Spectroscopy, Berlin
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SD-SPIDER=
Self-Defraction Spectral Phase Interferometry for Direct Electric-field
Reconstruction

—>» a)
‘ spectrograph

nonlinear
material

spectrograph measures Fourier-transformed signals
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resulting equation

Fx=y

FIx](s) = / k(s, t)x(t)x(s — t)dt = y(s)
0
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resulting equation

with complex valued kernel

k(s t) = uoch %X@(S, t)ECWei(Akgﬁ-i-Aknn-i-AkC%)Sl-nc(AkC%)
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Introduction Motivation
Equation

Identifiability

resulting equation

with complex valued kernel

k(s t) = uoch %X@(S, t)ECWei(Akgﬁ-i-Aknn-i-AkC%)Sl-nc(AkC%)

fundamental pulse: x(t) = |x(t)[e">(®) e C
SD-pulse: y(s) = |y(s)|e™®) e C

to be reconstructed: ¢x(t) = @o + [*__ GD(#)d?
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at first only ¢, and |x| available
Does |y| have to be measured too?
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Introduction Motivation
Equation

Identifiability

at first only ¢, and |x| available
Does |y| have to be measured too?

Yes.

ly| carries significant information about oy
this has been shown in analytical and numerical examples
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example of fundamental and convolved pulse, k(s,t) :=1
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example of fundamental and convolved pulse, k(s,t) :=1

"

~ — . x10
Z 2 215
518 b
§ § 10
- 8
H 3
& £ s
=05 5
£ &
@ o 0
250 300 350 400 450 500 550 600 0 100 200 300 400 500 600 700 800
10 15
5
S E
] ®
s 0 85
2 °
£ 5 £
& &
19, -5
250 300 350 400 450 500 550 600 0 100 200 300 400 500 600 700 800
Frequency (THz) (x) Frequency (THz) (x)

= available data |y|, ¢y, |X|
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Properties of the operator

Fx =y, F: 12]0,1] — L2[0,2] (5)

Daniel Gerth On an autoconvolution problem



Properties of the operator

Fx =y, F: 12]0,1] — L2[0,2] (5)

continuous
Fréchet-derivative
S

[F'(x0)h](s) = Of(k(s, t) + k(s,s — t))xo(s — t)h(t)dt

in general non-compact
Fréchet-derivative always compact
everywhere locally ill-posed
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Properties of the operator

Fx =y, F: 12]0,1] — L2[0,2] (5)

continuous
Fréchet-derivative
S

[F'(x0)h](s) = Of(k(s, t) + k(s,s — t))xo(s — t)h(t)dt

@ in general non-compact
@ Fréchet-derivative always compact
@ everywhere locally ill-posed
Def.: We define an operator of type (5) to be locally ill-posed in xp

if, for arbitrarily small p > 0 there exists a sequence {x,} C B,(xp)
satisfying the condition

F(xn) = F(x0) in Y as n — oo, but x, - xp in X.
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Properties of the operator

Injectivity: Let x1, xo € L2[0,1]. Then

0 = [F(x)l(s) — [F(>x2)](s)
- /k(s7 D0a(s — t) — (s — £)(a(t) + (b)) de+

0
s s

+ / k(s, t)x1(s — t)xo(t)dt — / k(s, t)xo(s — t)xi(t)dt.

0 0
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Properties of the operator

Injectivity: Let x1, xo € L2[0,1]. Then

0 = [F(x)](s) — [F(x2)](s)

S

- /k(s7 D0a(s — t) — (s — £)(a(t) + (b)) de+

0
+ / k(s, t)x1(s — t)xo(t)dt — / k(s, t)xo(s — t)xi(t)dt.
0 0
is zero if x;{ = xp or X1 = —xp.
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Injectivity: Let x1, xo € L2[0,1]. Then

0 = [F(x)](s) — [F(x2)](s)

S

- /k(s7 D0a(s — t) — (s — £)(a(t) + (b)) de+

0
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is zero if x;{ = xp or X1 = —xp.
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Properties of the operator

Injectivity: Let x1, xo € L2[0,1]. Then

0 = [F(x)](s) — [F(x2)](s)

S

- /k(s7 D0a(s — t) — (s — £)(a(t) + (b)) de+

0
+ / k(s, t)x1(s — t)xo(t)dt — / k(s, t)xo(s — t)xi(t)dt.
0 0
is zero if x;{ = xp or X1 = —xp.

These are most likely the only two solutions.

Since x; = —x» means x; = ]x2|ei(‘PX2_”) both solutions are
equivalent for this problem.
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

using Levenberg-Marquardt-type algorithm to minimize in each
iteration the linearized problem

ly = E(xi) = E'(xi)zll3 + allLz]]3 (6)

with Lz = Z” as approximation of the second derivative
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

using Levenberg-Marquardt-type algorithm to minimize in each
iteration the linearized problem

ly = E(xi) = E'(xi)zll3 + allLz]]3 (6)

with Lz = Z” as approximation of the second derivative

= iteration procedure

Xep1 = Xt (E () E (x00) + " L) T E ()" (y° = E(x)) (7)

Daniel Gerth On an autoconvolution problem



Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

using Levenberg-Marquardt-type algorithm to minimize in each
iteration the linearized problem

ly = E(xi) = E'(xi)zll3 + allLz]]3 (6)

with Lz = Z” as approximation of the second derivative

= iteration procedure
Xpr1 = X+ (F (i) F (xi0) + " L) T/ (x,) (v = F(x4)) (7)

starting value xg := |x|’e™®
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

using Levenberg-Marquardt-type algorithm to minimize in each
iteration the linearized problem

ly = E(xi) = E'(xi)zll3 + allLz]]3 (6)

with Lz = Z” as approximation of the second derivative

= iteration procedure
Xpr1 = X+ (F (i) F (xi0) + " L) T/ (x,) (v = F(x4)) (7)

starting value xg := |x|’e™®

main stopping criteria ||y® — F(x;1)|l2 > qlly® — F(x)ll2,
0 < g < 1, for example g = 0.9999
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

constant ay := « in all iterations to preserve smoothing properties
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

constant ay := « in all iterations to preserve smoothing properties

L-curve method and quasi-optimality failed, no information
lly — y?|| < & for discrepancy principle
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Regularization Results for artificial data

constant ay := « in all iterations to preserve smoothing properties

L-curve method and quasi-optimality failed, no information
lly — y?|| < & for discrepancy principle

instead: using knowledge of the measured absolute values |g]‘S
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

constant ay := « in all iterations to preserve smoothing properties

L-curve method and quasi-optimality failed, no information
lly — y?|| < & for discrepancy principle

instead: using knowledge of the measured absolute values |g]‘S

calculating solutions x*(ay) for a series of ay, e.g. oy = ag - g,
=0,1,...,lmax
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

constant ay := « in all iterations to preserve smoothing properties

L-curve method and quasi-optimality failed, no information
lly — y?|| < & for discrepancy principle

instead: using knowledge of the measured absolute values |g]‘S

calculating solutions x*(ay) for a series of ay, e.g. oy = ag - g,
=0,1,...,lmax

for optimal solution find minimum of || [x*(ay)| — |x|° ||
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Regularization al
Choice of the regularization parameter

Regularization Results for artificial data

fundamental pulse used to create artificial data
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

reconstruction for 6 = 0.1%

- absolute value solution, =0.60092
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Regularization algorithm

Choice of the regularization parameter
Regularization Results for artificial data

reconstruction for § = 1%

10 absolute value soluion, a=1.3543
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reconstruction for §

Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

reconstruction for § = 0%

absolute value solution, 5=0%, =197.9121
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Regularization

reconstruction for § = 1%

absolute value solution, 5

Regularization algorithm
Choice of the regularization parameter

Results for artificial data
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

reconstruction for § = 5%

absolute value solution, 8=5%, «=24150
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Regularization algorithm
Choice of the regularization parameter

Regularization Results for artificial data

Thank you for your attention
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