On an autoconvolution problem

Daniel Gerth

Department of Mathematics Chemnitz University of Technology

23.09.2011

- Motivation
- Equation
- Identifiability

2 Properties of the operator

3 Regularization

- Regularization algorithm
- Choice of the regularization parameter
- Results for artificial data

well-known: real, kernel-free autoconvolution problem

$$F_{\mathbb{R}}x = y, \qquad (1)$$

$$\int_{-\infty}^{s} x(s-t)x(t)dt = y(s), \qquad (2)$$

.....

$x(t)\in \mathbb{R} ext{ for } 0\leq t\leq 1, \ y(s)\in \mathbb{R} ext{ for } 0\leq s\leq 1 ext{ or } 0\leq s\leq 2.$

new: complex valued functions and nontrivial kernel

problem is provided by Max-Born-Institute for Nonlinear Optics and Short Time Spectroscopy, Berlin

well-known: real, kernel-free autoconvolution problem

s ſ

$$F_{\mathbb{R}}x = y, \tag{1}$$

.....

$$\int_{0} x(s-t)x(t)dt = y(s), \qquad (2)$$

$$x(t) \in \mathbb{R}$$
 for $0 \le t \le 1$, $y(s) \in \mathbb{R}$ for $0 \le s \le 1$ or $0 \le s \le 2$.

new: complex valued functions and nontrivial kernel

problem is provided by Max-Born-Institute for Nonlinear Optics and Short Time Spectroscopy, Berlin

well-known: real, kernel-free autoconvolution problem

$$F_{\mathbb{R}}x = y, \qquad (1)$$

$$\int_{0}^{s} x(s-t)x(t)dt = y(s), \qquad (2)$$

.....

$$x(t) \in \mathbb{R}$$
 for $0 \le t \le 1$, $y(s) \in \mathbb{R}$ for $0 \le s \le 1$ or $0 \le s \le 2$.

new: complex valued functions and nontrivial kernel

problem is provided by Max-Born-Institute for Nonlinear Optics and Short Time Spectroscopy, Berlin

$\begin{array}{l} \text{SD-SPIDER} = \\ \underline{S}elf - \underline{D}efraction \ \underline{S}pectral \ \underline{P}hase \ \underline{I}nterferometry \ for \ \underline{D}irect \ \underline{E}lectric-field \\ \underline{R}econstruction \end{array}$

spectrograph measures Fourier-transformed signals

k-vector diagramme

problem: self-diffracted pulse is a convolution

k-vector diagramme

problem: self-diffracted pulse is a convolution

~

resulting equation

$$Fx = y$$
 (3)

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
 (4)

$0 \leq t \leq 1$, $0 \leq s \leq 2$

with complex valued kernel $k(s,t) = \frac{\mu_0 cL}{2} \frac{s}{n(s)} \underline{\chi}^{(3)}(s,t) \overline{E}^{cw} e^{i(\Delta k_{\xi}\xi + \Delta k_{\eta}\eta + \Delta k_{\zeta}\frac{L}{2})} sinc(\Delta k_{\zeta}\frac{L}{2})$

> fundamental pulse: $x(t) = |x(t)|e^{iarphi_x(t)} \in \mathbb{C}$ SD-pulse: $y(s) = |y(s)|e^{iarphi_y(s)} \in \mathbb{C}$

to be reconstructed: $arphi_{\mathsf{x}}(t) = arphi_0 + \int_{-\infty}^{ au} {{{\mathbb{G}} D}(\hat{t})} d\hat{t}$.

resulting equation

$$Fx = y$$
 (3)

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
 (4)

$$0 \leq t \leq 1$$
, $0 \leq s \leq 2$

with complex valued kernel $k(s,t) = \frac{\mu_0 cL}{2} \frac{s}{n(s)} \underline{\chi}^{(3)}(s,t) \overline{E}^{cw} e^{i(\Delta k_{\xi}\xi + \Delta k_{\eta}\eta + \Delta k_{\zeta}\frac{L}{2})} sinc(\Delta k_{\zeta}\frac{L}{2})$

fundamental pulse:
$$x(t) = |x(t)|e^{i\varphi_x(t)} \in \mathbb{C}$$

SD-pulse: $y(s) = |y(s)|e^{i\varphi_y(s)} \in \mathbb{C}$

to be reconstructed: $arphi_{ extsf{x}}(t) = arphi_0 + \int_{-\infty}^t GD(\hat{t})d\hat{t}$

resulting equation

$$Fx = y$$
 (3)

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
 (4)

$$0 \leq t \leq 1$$
, $0 \leq s \leq 2$

with complex valued kernel $k(s,t) = \frac{\mu_0 cL}{2} \frac{s}{n(s)} \underline{\chi}^{(3)}(s,t) \overline{E}^{cw} e^{i(\Delta k_{\xi}\xi + \Delta k_{\eta}\eta + \Delta k_{\zeta}\frac{L}{2})} sinc(\Delta k_{\zeta}\frac{L}{2})$

fundamental pulse:
$$x(t) = |x(t)|e^{i\varphi_x(t)} \in \mathbb{C}$$

SD-pulse: $y(s) = |y(s)|e^{i\varphi_y(s)} \in \mathbb{C}$

to be reconstructed: $\varphi_x(t) = \varphi_0 + \int_{-\infty}^t GD(\hat{t})d\hat{t}$

at first only φ_y and |x| available Does |y| have to be measured too?

Yes.

|y| carries significant information about $arphi_x$ this has been shown in analytical and numerical examples

at first only φ_y and |x| available Does |y| have to be measured too?

Yes.

|y| carries significant information about φ_{x} this has been shown in analytical and numerical examples

at first only φ_y and |x| available Does |y| have to be measured too?

Yes.

|y| carries significant information about φ_x this has been shown in analytical and numerical examples

at first only φ_y and |x| available Does |y| have to be measured too?

Yes.

|y| carries significant information about φ_x this has been shown in analytical and numerical examples

example of fundamental and convolved pulse, k(s,t) := 1

example of fundamental and convolved pulse, k(s, t) := 1

 \Rightarrow available data $|y|, \varphi_y, |x|$

example of fundamental and convolved pulse, k(s, t) := 1

 \Rightarrow available data |y|, φ_y , |x|

$$F_{x} = y, \qquad F: L^{2}[0,1] \mapsto L^{2}[0,2]$$
 (5)

continuous

• Fréchet-derivative

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

- in general non-compact
- Fréchet-derivative always compact
- everywhere locally ill-posed

<u>Def.</u>: We define an operator of type (5) to be locally ill-posed in x_0 if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0)$ satisfying the condition

$F(x_n) \to F(x_0)$ in Y as $n \to \infty$, but $x_n \nrightarrow x_0$ in X.

$$F_{x} = y, \qquad F: L^{2}[0,1] \mapsto L^{2}[0,2]$$
 (5)

- continuous
- Fréchet-derivative

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

- in general non-compact
- Fréchet-derivative always compact
- everywhere locally ill-posed

<u>Def.</u>: We define an operator of type (5) to be locally ill-posed in x_0 if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0)$ satisfying the condition

$F(x_n) \to F(x_0)$ in Y as $n \to \infty$, but $x_n \to x_0$ in X.

$$F_{x} = y, \qquad F: L^{2}[0,1] \mapsto L^{2}[0,2]$$
 (5)

- continuous
- Fréchet-derivative

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

- in general non-compact
- Fréchet-derivative always compact
- everywhere locally ill-posed

<u>Def.</u>: We define an operator of type (5) to be locally ill-posed in x_0 if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0)$ satisfying the condition

$$F(x_n) \rightarrow F(x_0)$$
 in Y as $n \rightarrow \infty$, but $x_n \not\rightarrow x_0$ in X.

$$\begin{split} 0 &= [F(x_1)](s) - [F(x_2)](s) \\ &= \int_0^s k(s,t)(x_1(s-t) - x_2(s-t))(x_1(t) + x_2(t))dt + \\ &+ \int_0^s k(s,t)x_1(s-t)x_2(t)dt - \int_0^s k(s,t)x_2(s-t)x_1(t)dt. \end{split}$$

is zero if $x_1 = x_2$ or $x_1 = -x_2$. These are most likely the only two solutions.

Since $x_1 = -x_2$ means $x_1 = |x_2|e^{i(\varphi_{22} - \pi)}$ both solutions are equivalent for this problem.

$$0 = [F(x_1)](s) - [F(x_2)](s)$$

= $\int_{0}^{s} k(s,t)(x_1(s-t) - x_2(s-t))(x_1(t) + x_2(t))dt +$
+ $\int_{0}^{s} k(s,t)x_1(s-t)x_2(t)dt - \int_{0}^{s} k(s,t)x_2(s-t)x_1(t)dt.$

is zero if $x_1 = x_2$ or $x_1 = -x_2$. These are most likely the only two solutions of the product of the pro

Since $x_1 = -x_2$ means $x_1 = |x_2|e^{i(\varphi_{x_2} - \pi)}$ both solutions are equivalent for this problem.

$$\begin{aligned} 0 &= [F(x_1)](s) - [F(x_2)](s) \\ &= \int_0^s k(s,t)(x_1(s-t) - x_2(s-t))(x_1(t) + x_2(t))dt + \\ &+ \int_0^s k(s,t)x_1(s-t)x_2(t)dt - \int_0^s k(s,t)x_2(s-t)x_1(t)dt. \end{aligned}$$

is zero if $x_1 = x_2$ or $x_1 = -x_2$. These are most likely the only two solutions.

Since $x_1 = -x_2$ means $x_1 = |x_2|e^{i(\varphi_{x_2}-\pi)}$ both solutions are equivalent for this problem.

$$0 = [F(x_1)](s) - [F(x_2)](s)$$

= $\int_{0}^{s} k(s,t)(x_1(s-t) - x_2(s-t))(x_1(t) + x_2(t))dt +$
+ $\int_{0}^{s} k(s,t)x_1(s-t)x_2(t)dt - \int_{0}^{s} k(s,t)x_2(s-t)x_1(t)dt.$

is zero if $x_1 = x_2$ or $x_1 = -x_2$. These are most likely the only two solutions.

Since $x_1 = -x_2$ means $x_1 = |x_2|e^{i(\varphi_{x_2} - \pi)}$ both solutions are equivalent for this problem.

$$||\underline{y} - \underline{F}(\underline{x}_k) - \underline{F}'(\underline{x}_k)\underline{z}||_2^2 + \alpha_k ||\underline{L}\underline{z}||_2^2$$
(6)

with $\underline{L}\underline{z} = \underline{z}''$ as approximation of the second derivative

\Rightarrow iteration procedure

 $\underline{x}_{k+1} = \underline{x}_k + \gamma(\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k))$ (7) starting value $\underline{x}_0 := |\underline{x}|^{\delta} e^{i\underline{0}}$

main stopping criteria $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, for example q = 0.9999

$$||\underline{y} - \underline{F}(\underline{x}_k) - \underline{F}'(\underline{x}_k)\underline{z}||_2^2 + \alpha_k ||\underline{L}\underline{z}||_2^2$$
(6)

with $\underline{L}\underline{z} = \underline{z}''$ as approximation of the second derivative

\Rightarrow iteration procedure

$$\underline{x}_{k+1} = \underline{x}_k + \gamma(\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k))$$
(7)

starting value $x_0 := |\underline{x}|^{\delta} e^{i\underline{0}}$

main stopping criteria $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q ||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, for example q = 0.9999

$$||\underline{y} - \underline{F}(\underline{x}_k) - \underline{F}'(\underline{x}_k)\underline{z}||_2^2 + \alpha_k ||\underline{L}\underline{z}||_2^2$$
(6)

with $\underline{L}\underline{z} = \underline{z}''$ as approximation of the second derivative

\Rightarrow iteration procedure

$$\underline{x}_{k+1} = \underline{x}_k + \gamma(\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k))$$
(7)

starting value $\underline{x_0} := |\underline{x}|^{\delta} e^{i\underline{0}}$

main stopping criteria $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, for example q = 0.9999

$$||\underline{y} - \underline{F}(\underline{x}_k) - \underline{F}'(\underline{x}_k)\underline{z}||_2^2 + \alpha_k ||\underline{L}\underline{z}||_2^2$$
(6)

with $\underline{L}\underline{z} = \underline{z}''$ as approximation of the second derivative

\Rightarrow iteration procedure

$$\underline{x}_{k+1} = \underline{x}_k + \gamma(\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k))$$
(7)

starting value $\underline{x_0} := |\underline{x}|^{\delta} e^{i \underline{0}}$

main stopping criteria $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, for example q = 0.9999

L-curve method and quasi-optimality failed, no information $||y - y^{\delta}|| < \delta$ for discrepancy principle

instead: using knowledge of the measured absolute values $|\underline{x}|^{\delta}$

calculating solutions $x^*(lpha_\ell)$ for a series of $lpha_\ell$, e.g. $lpha_\ell = lpha_0 \cdot q_lpha^\ell$, $\ell = 0, 1, \ldots, \ell_{max}$

L-curve method and quasi-optimality failed, no information $||y-y^{\delta}||<\delta$ for discrepancy principle

instead: using knowledge of the measured absolute values $|\underline{x}|^{\delta}$

calculating solutions $x^*(lpha_\ell)$ for a series of $lpha_\ell$, e.g. $lpha_\ell = lpha_0 \cdot q_lpha^\ell$, $\ell = 0, 1, \dots, \ell_{max}$

for optimal solution find minimum of $|| \, |\underline{x}^*(lpha_\ell)| - |\underline{x}|^\delta \, ||$

L-curve method and quasi-optimality failed, no information $||y-y^{\delta}||<\delta$ for discrepancy principle

instead: using knowledge of the measured absolute values $|\underline{x}|^{\delta}$

calculating solutions $x^*(\alpha_\ell)$ for a series of α_ℓ , e.g. $\alpha_\ell = \alpha_0 \cdot q_\alpha^\ell$, $\ell = 0, 1, \dots, \ell_{max}$

for optimal solution find minimum of $|| ~|\underline{x}^*(lpha_\ell)| - |\underline{x}|^\delta ~||$

L-curve method and quasi-optimality failed, no information $||y-y^{\delta}||<\delta$ for discrepancy principle

instead: using knowledge of the measured absolute values $|\underline{x}|^{\delta}$

calculating solutions $x^*(\alpha_\ell)$ for a series of α_ℓ , e.g. $\alpha_\ell = \alpha_0 \cdot q_\alpha^\ell$, $\ell = 0, 1, \dots, \ell_{max}$

for optimal solution find minimum of $||~|\underline{x}^*(lpha_\ell)|-|\underline{x}|^\delta~||$

L-curve method and quasi-optimality failed, no information $||y-y^{\delta}||<\delta$ for discrepancy principle

instead: using knowledge of the measured absolute values $|\underline{x}|^{\delta}$

calculating solutions $x^*(\alpha_\ell)$ for a series of α_ℓ , e.g. $\alpha_\ell = \alpha_0 \cdot q_\alpha^\ell$, $\ell = 0, 1, \dots, \ell_{max}$

for optimal solution find minimum of $|| |\underline{x}^*(\alpha_\ell)| - |\underline{x}|^{\delta} ||$

Introduction Regularization algorithm Properties of the operator Choice of the regularization parameter Regularization Results for artificial data

fundamental pulse used to create artificial data

Introduction Regularization algorithm Properties of the operator Regularization arameter Regularization Regularization parameter

x 10⁻²⁸ absolute value solution, a=0.60092 1.2 - - - original pulse Spectr. Pow. Dens. [x(i)] 8.0 4.0 2.0 2.0 starting phase reconstructed pulse 250 350 400 300 500 550 600 shase (arg(x(t))) -10 -15 -20 300 350 450 500 550 400 600 Frequency (THz)

reconstruction for $\delta = 0.1\%$

Introduction Regularization algorithm Properties of the operator Regularization arameter Regularization Regularization parameter

reconstruction for $\delta = 1\%$

16/21

Introduction Regularization algorithm Properties of the operator Choice of the regularization parameter Regularization Results for artificial data

reconstruction for $\delta=5\%$

Introduction Regularization algorithm Properties of the operator Choice of the regularization parameter Regularization Results for artificial data

reconstruction for $\delta = 0\%$

Introduction Regularization algorithm Properties of the operator Regularization algorithm Regularization parameter

reconstruction for $\delta=1\%$

Introduction Regularization algorithm Properties of the operator Choice of the regularization parameter Regularization Results for artificial data

reconstruction for $\delta = 5\%$

Introduction	Regularization algorithm
Properties of the operator	Choice of the regularization parameter
Regularization	Results for artificial data

Thank you for your attention