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Motivation
Equation
Identifiability

well-known: real, kernel-free autoconvolution problem

FRx = y , (1)
s∫

0

x(s − t)x(t)dt = y(s), (2)

x(t) ∈ R for 0 ≤ t ≤ 1, y(s) ∈ R for 0 ≤ s ≤ 1 or 0 ≤ s ≤ 2.

new: complex valued functions and nontrivial kernel

problem is provided by Max-Born-Institute for Nonlinear Optics
and Short Time Spectroscopy, Berlin
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SD-SPIDER=
Self-Defraction Spectral Phase Interferometry for Direct Electric-field
Reconstruction

spectrograph measures Fourier-transformed signals
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k-vector diagramme

problem: self-diffracted pulse is a convolution
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resulting equation

Fx = y (3)

F [x ](s) =

s∫
0

k(s, t)x(t)x(s − t)dt = y(s) (4)

0 ≤ t ≤ 1, 0 ≤ s ≤ 2

with complex valued kernel

k(s, t) = µ0cL
2

s
n(s)χ

(3)(s, t)E
cw

e i(∆kξξ+∆kηη+∆kζ
L
2

)sinc(∆kζ
L
2 )

fundamental pulse: x(t) = |x(t)|e iϕx (t) ∈ C

SD-pulse: y(s) = |y(s)|e iϕy (s) ∈ C

to be reconstructed: ϕx(t) = ϕ0 +
∫ t
−∞ GD(t̂)dt̂
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at first only ϕy and |x | available
Does |y | have to be measured too?

Yes.

|y | carries significant information about ϕx

this has been shown in analytical and numerical examples
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example of fundamental and convolved pulse, k(s, t) := 1
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⇒ available data |y |, ϕy , |x |
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Introduction
Properties of the operator

Regularization

Fx = y , F : L2[0, 1] 7→ L2[0, 2] (5)

continuous

Fréchet-derivative

[F ′(x0)h](s) =
s∫

0

(k(s, t) + k(s, s − t))x0(s − t)h(t)dt

in general non-compact

Fréchet-derivative always compact

everywhere locally ill-posed

Def.: We define an operator of type (5) to be locally ill-posed in x0

if, for arbitrarily small ρ > 0 there exists a sequence {xn} ⊂ Bρ(x0)
satisfying the condition

F (xn)→ F (x0) in Y as n→∞, but xn 9 x0 in X .
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Regularization

Injectivity: Let x1, x2 ∈ L2[0, 1]. Then

0 = [F (x1)](s)− [F (x2)](s)

=

s∫
0

k(s, t)(x1(s − t)− x2(s − t))(x1(t) + x2(t))dt+

+

s∫
0

k(s, t)x1(s − t)x2(t)dt −
s∫

0

k(s, t)x2(s − t)x1(t)dt.

is zero if x1 = x2 or x1 = −x2.
These are most likely the only two solutions.

Since x1 = −x2 means x1 = |x2|e i(ϕx2−π) both solutions are
equivalent for this problem.
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Introduction
Properties of the operator

Regularization

Regularization algorithm
Choice of the regularization parameter
Results for artificial data

using Levenberg-Marquardt-type algorithm to minimize in each
iteration the linearized problem

||y − F (xk)− F ′(xk)z ||22 + αk ||Lz ||22 (6)

with Lz = z ′′ as approximation of the second derivative

⇒ iteration procedure

xk+1 = xk +γ(F ′(xk)∗F ′(xk)+αkL
∗L)−1F ′(xk)∗(y δ−F (xk)) (7)

starting value x0 := |x |δe i0

main stopping criteria ||y δ − F (xk+1)||2 ≥ q||y δ − F (xk)||2,
0 < q < 1, for example q = 0.9999
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Properties of the operator

Regularization

Regularization algorithm
Choice of the regularization parameter
Results for artificial data

constant αk := α in all iterations to preserve smoothing properties

L-curve method and quasi-optimality failed, no information
||y − y δ|| < δ for discrepancy principle

instead: using knowledge of the measured absolute values |x |δ

calculating solutions x∗(α`) for a series of α`, e.g. α` = α0 · q`α,
` = 0, 1, . . . , `max

for optimal solution find minimum of || |x∗(α`)| − |x |δ ||
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fundamental pulse used to create artificial data
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reconstruction for δ = 0.1%
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reconstruction for δ = 1%
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reconstruction for δ = 5%
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reconstruction for δ = 0%
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reconstruction for δ = 1%
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reconstruction for δ = 5%
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Thank you for your attention
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