A Stochastic Convergence Analysis for Tikhonov-Regularization with Sparsity Constraints

D. Gerth, R. Ramlau

IFIP TC7, September 2013, Klagenfurt

D. Gerth, R. Ramlau

Introduction

- □ A Convergence Theorem
- Convergence Rates
- Numerical Examples

Overview

Introduction

A Convergence Theorem

- Convergence Rates
- Numerical Examples

Starting question

Can we prove convergence (-rates) for Tikhonov-Regularization with sparsity-penalty if instead of $||y - y^{\delta}|| \leq \delta$ an explicit stochastic error model is used?

Starting question

Can we prove convergence (-rates) for Tikhonov-Regularization with sparsity-penalty if instead of $||y - y^{\delta}|| \leq \delta$ an explicit stochastic error model is used?

We study the solution of the linear ill-posed problem

$$Ax = y$$

with $\mathbf{A} \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ where \mathcal{X} and \mathcal{Y} are Hilbert spaces.

Basic deterministic model:

$$||\mathbf{A}\mathbf{x} - \mathbf{y}^{\delta}||^2 + \hat{\alpha}\Phi_{\mathbf{w},p}(\mathbf{x}) \to \min_{\mathbf{x}}$$
 (1)

• Penalty $\Phi_{\mathbf{w},p}(\mathbf{x}) = \sum_{\lambda \in \Lambda} w_{\lambda} |\langle \mathbf{x}, \psi_{\lambda} \rangle|^p$ for an ONB $\{\psi_{\lambda}\}$

computation requires discretization, done via projections

$$P_m: \mathcal{Y} \to \mathbb{R}^m, \quad \mathbf{y} \mapsto y, \quad \text{e.g. point evaluation}$$
$$T_n: \mathcal{X} \to \mathbb{R}^n, \quad x = T_n \mathbf{x} = \{\langle \mathbf{x}, \psi_i \rangle\}_{i=1,...,n}$$
$$T_n^*: \mathbb{R}^n \to \mathcal{X}, \quad \mathbf{x}_n = \sum_{i=1}^n \langle \mathbf{x}, \psi_i \rangle \psi_i$$

where $\{\psi_i\}_{i=1}^{\infty}$ is ONB in \mathcal{X} .

computation requires discretization, done via projections

$$P_m: \mathcal{Y} \to \mathbb{R}^m, \quad \mathbf{y} \mapsto y, \quad \text{e.g. point evaluation}$$
$$T_n: \mathcal{X} \to \mathbb{R}^n, \quad x = T_n \mathbf{x} = \{\langle \mathbf{x}, \psi_i \rangle\}_{i=1,...,n}$$
$$T_n^*: \mathbb{R}^n \to \mathcal{X}, \quad \mathbf{x}_n = \sum_{i=1}^n \langle \mathbf{x}, \psi_i \rangle \psi_i$$

where $\{\psi_i\}_{i=1}^{\infty}$ is ONB in \mathcal{X} .

■ each component of y carries *stochastic* noise, $y^{\sigma} = y + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_m)$.

computation requires discretization, done via projections

$$P_m: \mathcal{Y} \to \mathbb{R}^m, \quad \mathbf{y} \mapsto y, \quad \text{e.g. point evaluation}$$
$$T_n: \mathcal{X} \to \mathbb{R}^n, \quad x = T_n \mathbf{x} = \{ \langle \mathbf{x}, \psi_i \rangle \}_{i=1,...,n}$$
$$T_n^*: \mathbb{R}^n \to \mathcal{X}, \quad \mathbf{x}_n = \sum_{i=1}^n \langle \mathbf{x}, \psi_i \rangle \psi_i$$

where $\{\psi_i\}_{i=1}^{\infty}$ is ONB in \mathcal{X} .

- each component of y carries *stochastic* noise, $y^{\sigma} = y + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_m)$.
- Define $A := P_m \mathbf{A} T_n^*$, then we want to find x s.t.

$$Ax = y^{\sigma} \tag{2}$$

We use Bayes' formula

to calculate the solution. In this framework, every quantity is treated as a random variable in a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

$$\pi_{post}(x|y^{\sigma}) = \frac{\pi_{\varepsilon}(y^{\sigma}|x)\pi_{pr}(x)}{\pi_{y^{\sigma}}(y^{\sigma})}.$$

- $\pi_{post}(x|y^{\sigma})$ posterior density
- $\pi_{\varepsilon}(y^{\sigma}|x)$ likelihood function
- $\pi_{pr}(x)$ prior distribution
- $\pi_{y^{\sigma}}(y^{\sigma})$ data distribution (irrelevant)

We use Bayes' formula

to calculate the solution. In this framework, every quantity is treated as a random variable in a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

$$\pi_{post}(x|y^{\sigma}) = \frac{\pi_{\varepsilon}(y^{\sigma}|x)\pi_{pr}(x)}{\pi_{y^{\sigma}}(y^{\sigma})}.$$

•
$$\pi_{post}(x|y^{\sigma})$$
 posterior density

- $\pi_{\varepsilon}(y^{\sigma}|x)$ likelihood function
- $\pi_{pr}(x)$ prior distribution

■ $\pi_{y^{\sigma}}(y^{\sigma})$ data distribution (irrelevant) gaussian error model:

$$\pi_{\varepsilon} \propto exp(-\frac{1}{2\sigma^2}||Ax - y^{\sigma}||^2),$$

Besov spaces

- \blacksquare We are looking for sparse reconstructions w.r.t. a basis in ${\mathcal X}$
- our choice: Besov-Space $B^s_{p,q}(\mathbb{R}^d)$ prior (notation: $B^s_p(\mathbb{R}^d)$)
- Reasons:
 - "easy" characterization with coefficients of a wavelet expansion
 - sparsity-promoting properties
 - discretization invariance (Lassas, Saksman, Siltanen '09)

Definition of the wavelet expansion

Let $\phi \in C^{\tilde{s}}(\mathbb{R})$ be a scaling function and $\psi \in C^{\tilde{s}}(\mathbb{R})$ a compactly supported wavelet, $\tilde{s} > s$ and define

$$\begin{split} \phi_{j,k}(t) &= 2^{\frac{j}{2}} \phi(2^{j}t - k), \\ \psi_{j,k}(t) &= 2^{\frac{j}{2}} \psi(2^{j}t - k), \quad j,k \in \mathbb{Z} \end{split}$$

such that the collection $\{\psi_{j,k} : j, k \in \mathbb{Z}\}$ constitutes an orthonormal basis of $L_2(\mathbb{R})$ and for each $\mathbf{h} \in L_2(\mathbb{R})$ we have

$$\mathbf{h} = \sum_{k=-\infty}^{\infty} \langle \mathbf{h}, \phi_{0,k} \rangle \phi_{0,k} + \sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} \langle \mathbf{h}, \psi_{j,k} \rangle \psi_{j,k}.$$

Definition of the wavelet expansion

Let $\phi \in C^{\tilde{s}}(\mathbb{R})$ be a scaling function and $\psi \in C^{\tilde{s}}(\mathbb{R})$ a compactly supported wavelet, $\tilde{s} > s$ and define

$$\begin{split} \phi_{j,k}(t) &= 2^{\frac{j}{2}} \phi(2^{j}t - k), \\ \psi_{j,k}(t) &= 2^{\frac{j}{2}} \psi(2^{j}t - k), \quad j,k \in \mathbb{Z}. \end{split}$$

such that the collection $\{\psi_{j,k} : j, k \in \mathbb{Z}\}$ constitutes an orthonormal basis of $L_2(\mathbb{R})$ and for each $\mathbf{h} \in L_2(\mathbb{R})$ we have

$$\mathbf{h} = \sum_{k=-\infty}^{\infty} \langle \mathbf{h}, \phi_{0,k} \rangle \phi_{0,k} + \sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} \langle \mathbf{h}, \psi_{j,k} \rangle \psi_{j,k}.$$

assumption:

only finitely many nonzero scalar products on each scale

- with this, a *d*-dimensional basis can be constructed
- let $\{\psi_{\lambda} : \lambda \in \Lambda\}$ denote the set of all wavelets ψ , also including the scaling functions ϕ where Λ is an appropriate index set, possibly infinite

set
$$|\lambda|=j$$
, then $\mathbf{x}\in B_p^s(\mathbb{R}^d)\subset L^2(\mathbb{R}^d)$, $s< ilde s$, if

$$||\mathbf{x}||_{B_p^s} := \left(\sum_{\lambda \in \Lambda} \underbrace{2^{\varsigma p|\lambda|}}_{w_{\lambda}} |\langle \mathbf{x}, \psi_{\lambda} \rangle|^p\right)^{1/p} < \infty$$

and $\varsigma = s + d(\frac{1}{2} - \frac{1}{p}) \ge 0$. We focus on $1 \le p \le 2$.

Besov-space random variables

Definition (adapted from Lassas/Saksman/Siltanen, 2009)

Let $1 \leq p < \infty$ and $s \in \mathbb{R}$. Let U be the random function

$$U(t) = \sum_{\lambda \in \Lambda} 2^{-\varsigma|\lambda|} X_{\lambda}^{\alpha} \psi_{\lambda}(t), \quad t \in \mathbb{R}^{d},$$

where the coefficients $(X^\alpha_\lambda)_{\lambda\in\Lambda}$ are independent identically distributed real-valued random variables with probability density function

$$\pi_X(\tau) = c_p^{\alpha} \exp(-\frac{\alpha |\tau|^p}{2}), \quad c_p^{\alpha} = \left(\frac{\alpha}{2}\right)^{\frac{1}{p}} \frac{p}{2\Gamma(\frac{1}{p})}, \quad \tau \in \mathbb{R}.$$

Then we say U is distributed according to a $B_p^s\text{-prior},$ $U\propto \exp(-\frac{\alpha}{2}||U||_{B_p^s}^p).$

"Problem": $\mathbb{P}(U \in B_p^s(\mathbb{R}^d)) = 0$

"Problem":
$$\mathbb{P}(U \in B_p^s(\mathbb{R}^d)) = 0$$

Theorem (adapted from Lassas/Saksman/Siltanen, 2009)

Let U be a B_p^s -random function defined as before, $2 < \alpha < \infty$ and take $r \in \mathbb{R}$. Then the following three conditions are equivalent: (i) $||U||_{B_p^r(\mathbb{R}^d)} < \infty$ almost surely, (ii) $\mathbb{E} \exp\left(||U||_{B_p^r(\mathbb{R}^d)}^p\right) < \infty$, (iii) $r < s - \frac{d}{p}$.

same result as [LSS 2009], but here \mathbb{R}^d instead of \mathbb{T}^d considered

How to avoid this phenomenon?

"finite model" (MI)

"infinite model" (MII)

How to avoid this phenomenon?

- "finite model" (MI)
 - \blacksquare consider discretization level $n<\infty$ fixed, finite index set Λ_n \blacksquare Then

$$X_n(t) := \sum_{\lambda \in \Lambda_n} 2^{-\varsigma|\lambda|} X_{\lambda}^{\alpha} \psi_{\lambda}(t) \Rightarrow ||X_n||_{B_p^s}^p = \sum_{\lambda \in \Lambda_n} |X_{\lambda}^{\alpha}|^p < \infty$$

• and
$$\mathbb{P}(||X_n||_{B_p^s} > \varrho) = \frac{\Gamma(\frac{n}{p}, \frac{\alpha \varrho^p}{2})}{\Gamma(\frac{n}{p})} \leq \frac{1}{\varrho} \sqrt[p]{\frac{2n}{\alpha p}}$$

"infinite model" (MII)

How to avoid this phenomenon?

- "finite model" (MI)
 - \blacksquare consider discretization level $n<\infty$ fixed, finite index set Λ_n \blacksquare Then

$$X_n(t) := \sum_{\lambda \in \Lambda_n} 2^{-\varsigma|\lambda|} X_{\lambda}^{\alpha} \psi_{\lambda}(t) \Rightarrow ||X_n||_{B_p^s}^p = \sum_{\lambda \in \Lambda_n} |X_{\lambda}^{\alpha}|^p < \infty$$

• and
$$\mathbb{P}(||X_n||_{B_p^s} > \varrho) = \frac{\Gamma(\frac{n}{p}, \frac{\alpha \varrho^p}{2})}{\Gamma(\frac{n}{p})} \leq \frac{1}{\varrho} \sqrt[p]{\frac{2n}{\alpha p}}$$

- "infinite model" (MII)
 - forget about discretization level n
 - \blacksquare define X(t) in $B^r_p(\mathbb{R}^d)$ with $s < r \frac{d}{p}$, then

$$\mathbb{E}(||X||_{B_p^s(\mathbb{R}^d)}) = \left(\frac{2}{\alpha p} \left(c_{\lambda}^1 + c_{\lambda}^2 \sum_{j=0}^{\infty} 2^{-j((r-s)p-d)}\right)\right)^{\frac{1}{p}} < \infty$$

$$\text{ and } \mathbb{P}(||X||_{B_p^s} > \varrho) \le \frac{1}{\rho} \mathbb{E}(||X||_{B_p^s(\mathbb{R}^d)})$$

Recall

$$\pi_{post}(x|y^{\sigma}) = \frac{\pi_{pr}(x)\pi_{\varepsilon}(y^{\sigma}|x)}{\pi_{y^{\sigma}}(y^{\sigma})}.$$

 $\begin{array}{l} \pi_{\varepsilon}(y^{\sigma}|x) \text{ gaussian noise, } \pi_{pr}(x) \text{ Besov-Space prior} \\ \Rightarrow \pi_{post}(x|y^{\sigma}) \propto \exp(-\frac{1}{2\sigma^2}||Ax - y^{\sigma}||^2) \cdot \exp(-\frac{\alpha}{2}||T_n^*x||_{B_p^s}^p) \end{array}$

Recall

$$\pi_{post}(x|y^{\sigma}) = \frac{\pi_{pr}(x)\pi_{\varepsilon}(y^{\sigma}|x)}{\pi_{y^{\sigma}}(y^{\sigma})}$$

 $\begin{array}{l} \pi_{\varepsilon}(y^{\sigma}|x) \text{ gaussian noise, } \pi_{pr}(x) \text{ Besov-Space prior} \\ \Rightarrow \pi_{post}(x|y^{\sigma}) \propto \exp(-\frac{1}{2\sigma^2}||Ax - y^{\sigma}||^2) \cdot \exp(-\frac{\alpha}{2}||T_n^*x||_{B_p^s}^p) \end{array}$

we are interested in the maximum a-priori solution

$$x_{\mathsf{map}} = \underset{x \in \mathbb{R}^n}{\mathsf{argmax}} \quad \pi_{post}(x|y^{\sigma})$$

or equivalently

$$x_{\alpha}^{\mathsf{map}} = \underset{x \in \mathbb{R}^{n}}{\mathsf{argmin}} \quad ||Ax - y^{\sigma}||^{2} + \alpha \sigma^{2} ||T_{n}^{*}x||_{B_{p}^{s}(\mathbb{R}^{d})}^{p}$$
(3)

Recall

$$\pi_{post}(x|y^{\sigma}) = \frac{\pi_{pr}(x)\pi_{\varepsilon}(y^{\sigma}|x)}{\pi_{y^{\sigma}}(y^{\sigma})}$$

 $\begin{array}{l} \pi_{\varepsilon}(y^{\sigma}|x) \text{ gaussian noise, } \pi_{pr}(x) \text{ Besov-Space prior} \\ \Rightarrow \pi_{post}(x|y^{\sigma}) \propto \exp(-\frac{1}{2\sigma^2}||Ax - y^{\sigma}||^2) \cdot \exp(-\frac{\alpha}{2}||T_n^*x||_{B_p^s}^p) \end{array}$

we are interested in the maximum a-priori solution

$$x_{\mathsf{map}} = \underset{x \in \mathbb{R}^n}{\mathsf{argmax}} \quad \pi_{post}(x|y^{\sigma})$$

or equivalently

$$x_{\alpha}^{\mathsf{map}} = \underset{x \in \mathbb{R}^{n}}{\mathsf{argmin}} \quad ||Ax - y^{\sigma}||^{2} + \underbrace{\alpha \sigma^{2}}_{\hat{\alpha}} ||T_{n}^{*}x||_{B_{p}^{s}(\mathbb{R}^{d})}^{p}$$
(3)

same functional as in deterministic case, but $||y-y^\sigma|| \leq \delta$ does not hold

- stochastic setting requires different measure for convergence
- convergence in expectation may be too strict
- instead, we use the *Ky* Fan metric

Definition

Let x_1 and x_2 be random variables in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a metric space (χ, d_{χ}) . The distance between x_1 and x_2 in the *Ky Fan metric* is defined as

 $\rho_K(x_1, x_2) := \inf\{\epsilon > 0 : \mathbb{P}(d_{\chi}(x_1(\omega), x_2(\omega)) > \epsilon) < \epsilon\}.$

- stochastic setting requires different measure for convergence
- convergence in expectation may be too strict
- instead, we use the *Ky* Fan metric

Definition

Let x_1 and x_2 be random variables in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a metric space (χ, d_{χ}) . The distance between x_1 and x_2 in the *Ky Fan metric* is defined as

 $\rho_K(x_1, x_2) := \inf\{\epsilon > 0 : \mathbb{P}(d_{\chi}(x_1(\omega), x_2(\omega)) > \epsilon) < \epsilon\}.$

allows combination of deterministic and stochastic quantities

- stochastic setting requires different measure for convergence
- convergence in expectation may be too strict
- instead, we use the *Ky* Fan metric

Definition

Let x_1 and x_2 be random variables in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a metric space (χ, d_{χ}) . The distance between x_1 and x_2 in the *Ky Fan metric* is defined as

$$\rho_K(x_1, x_2) := \inf\{\epsilon > 0 : \mathbb{P}(d_{\chi}(x_1(\omega), x_2(\omega)) > \epsilon) < \epsilon\}.$$

allows combination of deterministic and stochastic quantitiesmetric for convergence in probability

Ky Fan error estimate

Theorem (Neubauer, Pikkarainen, 2008)

Let y^{σ} be a random variable with values in \mathbb{R}^m . Assume that the distribution of y^{σ} is $\mathcal{N}(y, \sigma^2 I)$ with $\sigma > 0$. Then it holds in $(\mathbb{R}^m, ||\cdot||)$ that

$$\rho_K(y^{\sigma}, y) \le \min\left\{1, \sqrt{2}\sigma\sqrt{m - \ln^-\left(\sigma^2 2\pi m^2 \left(\frac{e}{2}\right)^m\right)}\right\}.$$

where $f^{-}(h) := \min\{0, f(h)\}.$

Ky Fan error estimate

Theorem (Neubauer, Pikkarainen, 2008)

Let y^{σ} be a random variable with values in \mathbb{R}^m . Assume that the distribution of y^{σ} is $\mathcal{N}(y, \sigma^2 I)$ with $\sigma > 0$. Then it holds in $(\mathbb{R}^m, ||\cdot||)$ that

$$\rho_K(y^{\sigma}, y) \le \min\left\{1, \sqrt{2}\sigma\sqrt{m - \ln^-\left(\sigma^2 2\pi m^2 \left(\frac{e}{2}\right)^m\right)}\right\}$$

where $f^{-}(h) := \min\{0, f(h)\}.$

in practice $\operatorname{ln-term}$ mostly inactive, then

$$\rho_K(y^{\sigma}, y) \le \min\left\{1, \sqrt{2}\sigma\sqrt{m}\right\},$$

c.f.
$$\mathbb{E}(||y^{\sigma} - y||) \approx \sigma \sqrt{m}$$

Introduction

- □ A Convergence Theorem
- Convergence Rates
- Numerical Examples

Let x^{\dagger} be the unique solution of the equation Ax = y with minimum value of $\Phi(\cdot)$.

Theorem (adapted from Hofinger, '06)

Let $\alpha, \sigma > 0$, $1 \le p \le 2$ and N(A) = 0 for p = 1. Assume $w_{\lambda} \ge c > 0 \ \forall \lambda \in \Lambda$. Let x_{α}^{map} be the solution of (3). If $\alpha = \alpha(\sigma)$ is chosen such that $\hat{\alpha} = \alpha\sigma^2 \to 0$ and $\frac{|\ln \sigma|}{\alpha} \to 0$ as $\sigma \to 0$, then

$$\lim_{\sigma \to 0} \rho_K(x_\alpha^{map}, x^{\dagger}) = 0.$$

Let x^{\dagger} be the unique solution of the equation Ax = y with minimum value of $\Phi(\cdot)$.

Theorem (adapted from Hofinger, '06)

Let $\alpha, \sigma > 0$, $1 \le p \le 2$ and N(A) = 0 for p = 1. Assume $w_{\lambda} \ge c > 0 \ \forall \lambda \in \Lambda$. Let x_{α}^{map} be the solution of (3). If $\alpha = \alpha(\sigma)$ is chosen such that $\hat{\alpha} = \alpha\sigma^2 \to 0$ and $\frac{|\ln \sigma|}{\alpha} \to 0$ as $\sigma \to 0$, then

$$\lim_{\sigma \to 0} \rho_K(x_\alpha^{map}, x^{\dagger}) = 0.$$

as long as $\sigma^2 2\pi m^2 \left(\frac{e}{2}\right)^m > 1,$ then $\alpha \to \infty$ is sufficient

Let x^{\dagger} be the unique solution of the equation Ax = y with minimum value of $\Phi(\cdot)$.

Theorem (adapted from Hofinger, '06)

Let $\alpha, \sigma > 0, 1 \leq p \leq 2$ and N(A) = 0 for p = 1. Assume $w_{\lambda} \geq c > 0 \ \forall \lambda \in \Lambda$. Let x_{α}^{map} be the solution of (3). If $\alpha = \alpha(\sigma)$ is chosen such that $\hat{\alpha} = \alpha\sigma^2 \to 0$ and $\frac{|\ln \sigma|}{\alpha} \to 0$ as $\sigma \to 0$, then

$$\lim_{\sigma \to 0} \rho_K(x_\alpha^{map}, x^{\dagger}) = 0.$$

as long as $\sigma^2 2\pi m^2 \left(\frac{e}{2}\right)^m > 1$, then $\alpha \to \infty$ is sufficient main idea for the proof: use Ky Fan metric and split $\Omega = \Omega_{det}(\sigma) \cup \Omega_{unbound}(\sigma)$

Overview

Introduction

A Convergence Theorem

- Convergence Rates
- Numerical Examples

Deterministic Convergence Rate, Daubechies et al, 2004

Assume **A** fulfils, for all $h \in L^2$

$$A_l^2 \sum_{\lambda} 2^{-2|\lambda|\beta} |\langle h, \psi_{\lambda} \rangle|^2 \le ||Ah||^2 \le A_u^2 \sum_{\lambda} 2^{-2|\lambda|\beta} |\langle h, \psi_{\lambda} \rangle|^2.$$
 (4)

and $||\mathbf{x}^{\dagger}||_{B_p^s} \leq \varrho$, $\varrho > 0$. Then

$$\sup\{||\mathbf{x}_{\alpha}^{\mathsf{map}} - \mathbf{x}|| : \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}, ||\mathbf{A}\mathbf{x} - \mathbf{y}|| \le \delta, ||\mathbf{x}||_{B_{p}^{s}} \le \varrho\}$$
$$< C\left(\frac{\delta + \delta'}{A_{l}}\right)^{\frac{\varsigma}{\beta + \varsigma}} (\varrho + \varrho')^{\frac{\beta}{\beta + \varsigma}}$$

with $\delta' = (\delta^2 + \hat{\alpha} \varrho^p)^{\frac{1}{2}}$ and $\varrho' = (\varrho^p + \frac{\delta^2}{\hat{\alpha}})^{\frac{1}{p}}$.

Theorem

Let all previous assumptions hold. Set $a_m := \ln\left(\frac{2^m}{2\pi m^2}\right)$. Then as $\sigma \to 0$, x_{α}^{map} converges with the parameter choice $\alpha = \alpha(\sigma, \varrho, \beta, \varsigma, p, m, n)$ fulfilling

$$\begin{split} f(\alpha) &:= \min\left\{1, 2\left(\frac{\sqrt{2}}{A_l}\sigma\sqrt{a_m - 2\ln\sigma + \frac{\alpha\varrho^p}{2}}\right)^{\frac{\varsigma}{\beta+\varsigma}} \left(\left(\varrho^p + \frac{2}{\alpha}(a_m - 2\ln\sigma)\right)^{1/p}\right)^{\frac{\beta}{\beta+\varsigma}}\right\} \\ &- \frac{\Gamma(\frac{m}{2}, m)}{\Gamma(\frac{m}{2})} - \mathbb{P}(||x.||_{B_p^s} > \varrho) = 0 \end{split}$$

to the unique solution x^\dagger and

$$\rho_{K}(x_{\alpha}^{map}, x^{\dagger}) = \mathcal{O}\left(\left(\sigma\sqrt{1 + |\ln\sigma| + \alpha\varrho^{p}}\right)^{\frac{\varsigma}{\beta+\varsigma}} \left(\left(\varrho^{p} + \frac{1 + |\ln\sigma|}{\alpha}\right)^{1/p}\right)^{\frac{\beta}{\beta+\varsigma}}\right).$$
where $\mathbb{P}(||x_{n}||_{B_{p}^{s}} > \varrho) = \frac{\Gamma(\frac{n}{p}, \frac{\alpha\varrho^{p}}{2})}{\Gamma(\frac{n}{p})} \text{ or } \mathbb{P}(||x||_{B_{p}^{s}} > \varrho) = \frac{\mathbb{E}||x||_{B_{p}^{s}}}{\varrho}$

Introduction

A Convergence Theorem

Convergence Rates

Numerical Examples

We consider a convolution problem

$$[Ax](s) = [k * x](s) = \int_{\mathbb{R}^d} k(s-t)x(t)dt, \quad s \in \mathbb{R}^d$$
 (5)

using a kernel

$$\widehat{k}(\xi) = \frac{c_{\kappa,\beta}}{(1+\kappa|\xi|^2)^{\beta/2}}, \quad \xi \in \mathbb{R}^d, \quad c_{\kappa,\beta} \text{ s.t. } ||\widehat{k}||_{L_2(\mathbb{R}^d)} < 1$$

• thus (4) is fulfilled with chosen
$$\beta$$

• $p = 1, d = 1$

Iteration [Daubechies, De Mol, Defrise 2004]:

With
$$x_0 = 0$$
,
 $x_{k+1} = S_{\mathbf{w},p} \left(x_k + A^* (y^{\sigma} - Ax_k) \right), \qquad k = 1, 2, \dots$
where $S_{\mathbf{w},p}(h) := \sum_{\lambda \in \Lambda} S_{w_{\lambda},p}(\langle h, \psi_{\lambda} \rangle) \psi_{\lambda}$ is defined
component-wise $(p = 1)$ via
 $S_{w,1}(\xi) := \begin{cases} \xi - \frac{\omega}{2} & \text{if } \xi \geq \frac{\omega}{2} \\ 0 & \text{if } |\xi| < \frac{\omega}{2} \end{cases}$

$$\begin{cases} \nabla \omega, 1(\xi) & \cdot - \\ \xi + \frac{\omega}{2} & \text{if } \xi \le -\frac{\omega}{2} \end{cases}$$

converges since ||A||<1

Parameter choice rule illustrated

$$\sigma = 0.01, m = 2500, \varsigma = 0.5, \beta = 1, \varrho = 2.16$$

example of a solution

Figure : (MI), $\sigma = 0.01$, exact ρ , s = 1, $\beta = 1$. $\alpha = 45.85$ $\Rightarrow \hat{\alpha} = \alpha \sigma^2 = 0.004585$ Numerical Examples

comparison of (MI) and (MII), m, n fixed, $\sigma \rightarrow 0$

all plots averaged over 20 individual simulations

Figure : α plotted against σ , n = m = 2500, $\beta = 1$, exact ϱ

comparison of (MI) and (MII), m, n fixed, $\sigma \rightarrow 0$

Figure : number of recovered nonzero coefficients plotted against $\sigma,$ n=m=2500, $\beta=1,$ exact ϱ

comparison of (MI) and (MII), m, n fixed, $\sigma \rightarrow 0$

Figure : predicted and observed convergence rates plotted against $\sigma,$ n=m=2500, $\beta=1,$ exact ϱ

comparison of (MI) and (MII), σ fixed, m, n variable

Figure : α plotted against n, $\sigma = 0.01$, $\beta = 1$, exact ϱ

comparison of (MI) and (MII), σ fixed, m, n variable

Figure : number of recovered nonzeros plotted against $n,\,\sigma=0.01,\,\beta=1,$ exact ϱ

comparison of (MI) and (MII), σ fixed, m, n variable

Figure : reconstruction error plotted against n, $\sigma = 0.01$, $\beta = 1$, exact ϱ

A 2D convolution example

$$\sigma = 0.1, \ \beta = 1, \ \alpha = 130.5, \ \hat{\alpha} = 1.3$$

Figure : true solution - measurements - recovered solution

exactly the 68 original coefficients were reconstructed

- G., R. Ramlau, A stochastic convergence analysis for Tikhonov-Regularization with sparsity constraints, submitted
- M. Lassas, E. Saksman, S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 2009.
- I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math. 57, 2004.
- A. Neubauer, H.K. Pikkarainen, *Convergence results for the Bayesian inversion theory*, J. Inverse III-Posed Probl. 16, 2008.
- J. Kaipio, E. Somersalo, *Statistical and computational inverse problems*, Springer-Verlag, New York, 2005.

Thank you for attention! Are there questions?