Reconstruction of ultra-short laser pulses

Daniel Gerth

Johannes Kepler University, Linz

22.05.2012

D. Gerth

JKU Linz

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
 - Real data situation

Why study ultra-short laser pulses?

to create shorter, stronger pulses; to enhance optical systems; medicine, material processing, etc.

Development of pulse durations:

Problem: measurements limited by electronics (order 10^{-12} s) Solution: sample pulse by itself

D. Gerth

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
 - Real data situation

SD-SPIDER=

 $\underline{\underline{S}} elf-\underline{\underline{D}} efraction \ \underline{\underline{S}} pectral \ \underline{\underline{P}} hase \ \underline{\underline{I}} nterferometry \ for \ \underline{\underline{D}} irect \\ \underline{\underline{E}} lectric-field \ \underline{\underline{R}} econstruction$

- introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin
- theory presented at Conference on Lasers and Electro-Optics, 2010
- reasons for introduction: applicable for ultraviolet radiation, good signal strength

Basics of nonlinear optics:

Polarization \tilde{P} caused by an electric field \tilde{E} ,

$$\tilde{P}(t) = \epsilon_0 [\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \dots]$$
(1)

may act as source of electromagnetic radiation:

$$\nabla \times (\nabla \times E) + \frac{n^2}{c^2} \partial_t^2 E = -\mu_0 \partial_t^2 P_{\mathsf{NL}}(E)$$
(2)

Refraction index n and Kerr-effect:

$$n(\omega) = n_0 + n_2 |E(\omega)|^2,$$
 (3)

i.e. each frequency is refracted differently

D. Gerth	JKU Linz	5 / 27

Basics of nonlinear optics:

Polarization \tilde{P} caused by an electric field \tilde{E} ,

$$\tilde{P}(t) = \epsilon_0 [\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \dots]$$
(1)

may act as source of electromagnetic radiation:

$$\nabla \times (\nabla \times E) + \frac{n^2}{c^2} \partial_t^2 E = -\mu_0 \partial_t^2 P_{\mathsf{NL}}(E)$$
(2)

Refraction index \boldsymbol{n} and Kerr-effect:

$$n(\omega) = n_0 + n_2 |E(\omega)|^2,$$
 (3)

i.e. each frequency is refracted differently

D. Gerth	JKU Linz	5 / 27

Principle:

Problem: measured signal is an autoconvolution of the fundamental pulse

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
(4)

$$Fx = y$$
 $0 \le t \le 1, 0 \le s \le 2$ (5)

continuous, complex valued kernel (in physical formulation)

$$K(\omega, \hat{\omega}) = \frac{\mu_0 cL}{2} \frac{\omega}{n(\omega)} \chi^{(3)}(\omega, -\omega_{cw}, \hat{\omega}, \omega + \omega_{cw} - \hat{\omega})$$
$$\overline{\mathcal{E}}^{cw} e^{i(\Delta \vec{k}_{\xi} \xi + \Delta \vec{k}_{\eta} \eta + \Delta \vec{k}_{\zeta} \frac{L}{2})} sinc(\Delta \vec{k}_{\zeta} \frac{L}{2})$$
(6)

fundamental pulse:
$$x(t) = |x(t)|e^{i\varphi_x(t)} \in \mathbb{C}$$

measured SD-pulse: $y(s) = |y(s)|e^{i\varphi_y(s)} \in \mathbb{C}$

to be reconstructed: $arphi_x(t) = arphi_0 + \int_{-\infty}^{\iota} GD(au) d au$

D. Gerth	JKU Linz	8 / 27

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
(4)

$$Fx = y$$
 $0 \le t \le 1, 0 \le s \le 2$ (5)

continuous, complex valued kernel (in physical formulation)

$$K(\omega, \hat{\omega}) = \frac{\mu_0 cL}{2} \frac{\omega}{n(\omega)} \chi^{(3)}(\omega, -\omega_{cw}, \hat{\omega}, \omega + \omega_{cw} - \hat{\omega})$$
$$\overline{\mathcal{E}}^{cw} e^{i(\Delta \vec{k}_{\xi} \xi + \Delta \vec{k}_{\eta} \eta + \Delta \vec{k}_{\zeta} \frac{L}{2})} sinc(\Delta \vec{k}_{\zeta} \frac{L}{2})$$
(6)

fundamental pulse: $x(t) = |x(t)|e^{i\varphi_x(t)} \in \mathbb{C}$ measured SD-pulse: $y(s) = |y(s)|e^{i\varphi_y(s)} \in \mathbb{C}$

to be reconstructed: $\varphi_x(t) = \varphi_0 + \int_{-\infty}^t GD(\tau) d\tau$

$$F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt = y(s)$$
(4)

$$Fx = y$$
 $0 \le t \le 1, 0 \le s \le 2$ (5)

continuous, complex valued kernel (in physical formulation)

$$K(\omega, \hat{\omega}) = \frac{\mu_0 cL}{2} \frac{\omega}{n(\omega)} \chi^{(3)}(\omega, -\omega_{cw}, \hat{\omega}, \omega + \omega_{cw} - \hat{\omega})$$
$$\overline{\mathcal{E}}^{cw} e^{i(\Delta \vec{k}_{\xi} \xi + \Delta \vec{k}_{\eta} \eta + \Delta \vec{k}_{\zeta} \frac{L}{2})} sinc(\Delta \vec{k}_{\zeta} \frac{L}{2})$$
(6)

fundamental pulse:
$$x(t) = |x(t)|e^{i\varphi_x(t)} \in \mathbb{C}$$

measured SD-pulse: $y(s) = |y(s)|e^{i\varphi_y(s)} \in \mathbb{C}$

to be reconstructed: $\varphi_x(t) = \varphi_0 + \int_{-\infty}^t GD(\tau) d\tau$

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
 - Real data situation

at first only φ_y and |x| available Does |y| have to be measured too?

 \Rightarrow available data |y|, φ_y , |x|

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability

Mathematical Analysis

- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
 - Real data situation

$$Fx = y, \qquad F: L^2[0,1] \mapsto L^2[0,2]$$
 (7)

- F(x) continuous
- Fréchet-derivative

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

- F(x) in general non-compact
- Fréchet-derivative always compact
- F(x) everywhere locally ill-posed

<u>Def.</u>: We define an operator of type (7) to be locally ill-posed in x_0 if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0)$ satisfying the condition

$F(x_n) \to F(x_0)$ in Y as $n \to \infty$, but $x_n \nrightarrow x_0$ in X.

$$Fx = y, \qquad F: L^2[0,1] \mapsto L^2[0,2]$$
 (7)

•
$$F(x)$$
 continuous

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

- F(x) in general non-compact
- Fréchet-derivative always compact

•
$$F(x)$$
 everywhere locally ill-posed

<u>Def.</u>: We define an operator of type (7) to be locally ill-posed in x_0 if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0)$ satisfying the condition

$$F(x_n) \to F(x_0)$$
 in Y as $n \to \infty$, but $x_n \nrightarrow x_0$ in X.

Injectivity:

For $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem.

For k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.

 \Rightarrow noninjectivity, but since $x_1=-x_2$ means $x_1=|x_2|e^{i(arphi_{x_2}-\pi)}$ both solutions are equivalent for this problem.

Injectivity:

For $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem.

For k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.

 \Rightarrow noninjectivity, but since $x_1=-x_2$ means $x_1=|x_2|e^{i(arphi_{x_2}-\pi)}$ both solutions are equivalent for this problem.

Injectivity:

For $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem.

For k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.

 \Rightarrow noninjectivity, but since $x_1 = -x_2$ means $x_1 = |x_2|e^{i(\varphi_{x_2}-\pi)}$ both solutions are equivalent for this problem.

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis

Numerical treatment

- 1. Discretization
- 2. Regularization
- 3. Choice of the starting phase
- 4. Choice of the regularization parameter
- Results for simulated data
 - Real data situation

Equation:
$$y(s) = \int_{0}^{s} k(s,t)x(s-t)x(t)dt$$

 $supp(x) = [t_l, t_u], supp(y) = [2t_l - t_{cw}, 2t_u - t_{cw}]$
discretization using rectangular rule

$$y(s_m) = \sum_{j=1}^{N} k(s_m, t_j) x(s_m + t_{cw} - t_j) x(t_j) \Delta t$$

with $\Delta t = \frac{t_u - t_l}{N-1}$, $t_j = t_l + (j-1)\Delta t$, $s_m = 2t_j + (m-1)\Delta t$ $y_m := y(s_m)$, $x_n := x(t_n)$, $k_{m,n} := k(s_m, x_n)$

Equation:
$$y(s) = \int_{0}^{s} k(s,t)x(s-t)x(t)dt$$

 $supp(x) = [t_l, t_u], supp(y) = [2t_l - t_{cw}, 2t_u - t_{cw}]$
discretization using rectangular rule

$$y(s_m) = \sum_{j=1}^{N} k(s_m, t_j) x(s_m + t_{cw} - t_j) x(t_j) \Delta t$$

with $\Delta t = \frac{t_u - t_l}{N-1}$, $t_j = t_l + (j-1)\Delta t$, $s_m = 2t_j + (m-1)\Delta t$ $y_m := y(s_m)$, $x_n := x(t_n)$, $k_{m,n} := k(s_m, x_n)$

in matrix-form $\underline{y} = \underline{F(x)}\underline{x}\text{,}$ with

$\underline{y}/\Delta t = \underline{F}\,\underline{x}/\Delta t =$

Decomposition, with \circ as element-by-element multiplication: $\underline{F} = \underline{K} \circ \underline{X}$

$$\begin{array}{l} \text{in matrix-form } \underline{y} = \underline{F(x)}\underline{x}, \text{ with} \\ \\ \underline{y}/\Delta t = \underline{F}\underline{x}/\Delta t = \\ \begin{pmatrix} k_{1,1}x_1 & 0 & \dots & 0 & 0 \\ k_{2,1}x_2 & k_{2,2}x_1 & \dots & 0 & 0 \\ & \ddots & \ddots & & \vdots \\ k_{N-1,1}x_{N-1} & k_{N-1,2}x_{N-2} & \dots & k_{N-1,N-1}x_1 & 0 \\ k_{N,1}x_N & k_{N,2}x_{N-1} & \dots & k_{N,N-1}x_2 & k_{N,N}x_1 \\ 0 & k_{N+1,1}x_N & \dots & k_{N+1,N-1}x_3 & k_{N+1,N-1}x_2 \\ \vdots & \ddots & \ddots & \\ 0 & 0 & \dots & k_{2N-2,N-1}x_N & k_{2N-2,N}x_{N-1} \\ 0 & 0 & \dots & 0 & k_{2N-1,N}x_N \end{array} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \\ x_N \end{pmatrix}$$

Decomposition, with \circ as element-by-element multiplication: $\underline{F} = \underline{K} \circ \underline{X}$

Decomposition, with \circ as element-by-element multiplication: $\underline{F} = \underline{K} \circ \underline{X}$

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=0}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix $\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$

advantage: time-consuming calculation of the matrices <u>K</u> and <u>K'</u> has to be performed only once for each measurement setup

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=0}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix $\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$

advantage: time-consuming calculation of the matrices <u>K</u> and <u>K'</u> has to be performed only once for each measurement setup

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=0}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix $\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$

advantage: time-consuming calculation of the matrices <u>K</u> and <u>K'</u> has to be performed only once for each measurement setup</u>

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=0}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix $\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$

advantage: time-consuming calculation of the matrices \underline{K} and $\underline{K'}$ has to be performed only once for each measurement setup

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis

Numerical treatment

- 1. Discretization
- 2. Regularization
- 3. Choice of the starting phase
- 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

Iterative linearized Tikhonov-type Regularization $\begin{array}{l} x_k = \\ \arg \min ||y^{\delta} - F(x_{k-1}) - F'(x_{k-1})(x-x_{k-1})||^2 + \alpha_k ||L(x-x_{k-1})||^2 \\ \text{with } Lz = z'' \text{ as approximation of the second derivative} \end{array}$

Iteration rule:

 $\underline{x}_{k+1} = \underline{x}_k + (\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\diamond} - \underline{F}(\underline{x}_k)).$ (8) $\alpha_k = \alpha = const$

starting value $x_0 = |x^{\delta}| e^{(i arphi_{\mathsf{Start}})}$

iteration stops if $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \geq q ||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2, \ 0 < q < 1, \text{ e.g. } q = 0.9999$

Iterative linearized Tikhonov-type Regularization $\begin{aligned} x_k &= \\ \arg \min ||y^\delta - F(x_{k-1}) - F'(x_{k-1})(x-x_{k-1})||^2 + \alpha_k ||L(x-x_{k-1})||^2 \\ \text{with } Lz &= z'' \text{ as approximation of the second derivative} \end{aligned}$

Iteration rule:

$$\underline{x}_{k+1} = \underline{x}_k + (\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k)).$$
(8)
$$\alpha_k = \alpha = const$$

starting value $x_0 = |x^{\delta}|e^{(i\varphi_{\text{Start}})}$

iteration stops if $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q ||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, e.g. q = 0.9999

Iterative linearized Tikhonov-type Regularization $\begin{aligned} x_k &= \\ \arg \min ||y^\delta - F(x_{k-1}) - F'(x_{k-1})(x-x_{k-1})||^2 + \alpha_k ||L(x-x_{k-1})||^2 \\ \text{with } Lz &= z'' \text{ as approximation of the second derivative} \end{aligned}$

Iteration rule:

$$\underline{x}_{k+1} = \underline{x}_k + (\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k)).$$
(8)
$$\alpha_k = \alpha = const$$

starting value $x_0 = |x^{\delta}|e^{(i\varphi_{\text{Start}})}$

iteration stops if $||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q ||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$, 0 < q < 1, e.g. q = 0.9999

Iterative linearized Tikhonov-type Regularization $\begin{aligned} x_k &= \\ \arg \min ||y^\delta - F(x_{k-1}) - F'(x_{k-1})(x-x_{k-1})||^2 + \alpha_k ||L(x-x_{k-1})||^2 \\ \text{with } Lz &= z'' \text{ as approximation of the second derivative} \end{aligned}$

Iteration rule:

$$\underline{x}_{k+1} = \underline{x}_k + (\underline{F}'(\underline{x}_k)^* \underline{F}'(\underline{x}_k) + \alpha_k \underline{L}^* \underline{L})^{-1} \underline{F}'(\underline{x}_k)^* (\underline{y}^{\delta} - \underline{F}(\underline{x}_k)).$$
(8)
$$\alpha_k = \alpha = const$$

starting value $x_0 = |x^{\delta}| e^{(i\varphi_{\mathsf{Start}})}$

iteration stops if
$$||\underline{y}^{\delta} - \underline{F}(\underline{x}_{k+1})||_2 \ge q||\underline{y}^{\delta} - \underline{F}(\underline{x}_k)||_2$$
, $0 < q < 1$, e.g. $q = 0.9999$

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis

Numerical treatment

- 1. Discretization
- 2. Regularization
- 3. Choice of the starting phase
- 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

idea:
$$\varphi_{\text{start}}(t) = \frac{1}{2}(P(\varphi_y(s))) - \varphi_k(s^*, t)$$

with kernel-phase $\varphi_k(s^*, t)$ for $s^* = 475THz$

D.	Gerth

problem for slightly changed fundamental phase

	Corth	
).	Gertii	

best result with kernel correction

 \Rightarrow set starting phase to constant zero

best result with kernel correction

 \Rightarrow set starting phase to constant zero

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis

Numerical treatment

- 1. Discretization
- 2. Regularization
- 3. Choice of the starting phase
- 4. Choice of the regularization parameter
- Results for simulated data
- Real data situation

no a-priori information $||y-y^{\delta}|| < \delta$ available, thus a-posteriori methods necessary

- L-curve not applicable
- quasioptimality ($||x_{\alpha_{i+1}} x_{\alpha_i}|| \rightarrow min$) failed
- absolute value method ($|||x^{\delta}| |x^*_{\alpha_{\ell}}||| o min$) very reliable

Physical Background

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter

Results for simulated data

Real data situation

reconstruction for $\delta = 0.1\%$

reconstruction for $\delta=1\%$

reconstruction for $\delta=5\%$

reconstruction for $\delta=0\%$

reconstruction for $\delta=1\%$

- 1. Motivation
- 2. SD-SPIDER method
- 3. Equation
- 4. Identifiability
- Mathematical Analysis
- Numerical treatment
 - 1. Discretization
 - 2. Regularization
 - 3. Choice of the starting phase
 - 4. Choice of the regularization parameter
 - Results for simulated data
 - Real data situation

unfortunately, no results available. Main reasons:

- measurements without magnitudes
- \blacksquare unknown factor in model \Rightarrow error in the computational model
- \blacksquare frequency domains of x and y do not match

Thank you for your attention!