Regularization of an autoconvolution problem in ultrashort laser pulse characterization

D. Gerth ${ }^{\text {a,b }}$, B. Hofmann ${ }^{\text {b }}$, S. Birkholz ${ }^{\text {c }}$, S. Koke ${ }^{\text {c }}$, G. Steinmeyer ${ }^{\text {c }}$

${ }^{\text {a }}$ Johannes Kepler University, Linz, Austria

${ }^{\mathrm{b}}$ Chemnitz University of Technology, Germany
${ }^{\mathrm{c}}$ Max Born Institute, Berlin, Germany
Shanghai, 2012-10-19

JOHANNES KEPLER UNIVERSITY LINZ
\square Introduction
\square SD-SPIDER method
\square Mathematical Analysis
\square Discretization
\square Regularization
\square Numerical results

Overview

\square Introduction

SD-SPIDER method
Mathematical Analysis
Discretization
Regularization
Numerical results

Motivation

Why study ultra-short laser pulses?
to create shorter, stronger pulses; to enhance optical systems; medicine, material processing, etc.

Problem: measurements limited by electronics (order $10^{-12} \mathrm{~s}$) Development of pulse durations:

Motivation

Why study ultra-short laser pulses?
to create shorter, stronger pulses; to enhance optical systems; medicine, material processing, etc.

Problem: measurements limited by electronics (order $10^{-12} \mathbf{s}$) Development of pulse durations:

Solution: sample pulse by itself

Laser pulse representation

Time domain: electric field $E(t)$, envelope $A(t)$, intensity $I(t)=|A(t)|^{2}$

Fourier domain: amplitude $\mathcal{A}(\omega)$, phase $\varphi(\omega)$, spectrum $\mathcal{I}(\omega)=|\mathcal{A}(\omega)|^{2}$

Overview

\square SD-SPIDER method

Mathematical Analysis

Discretization

Regularization

Numerical results

- SD-SPIDER=

Self-Defraction Spectral Phase Interferometry for Direct Electric-field Reconstruction

- SD-SPIDER=

Self-Defraction Spectral Phase Interferometry for Direct Electric-field Reconstruction
■ introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany

- SD-SPIDER=

Self-Defraction Spectral Phase Interferometry for Direct Electric-field Reconstruction
■ introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany

- theory presented at "Conference on Lasers and Electro-Optics", 2010
- SD-SPIDER=

Self-Defraction Spectral Phase Interferometry for Direct Electric-field Reconstruction
■ introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany

- theory presented at "Conference on Lasers and Electro-Optics", 2010
- reasons for introduction: applicable for ultraviolet radiation, good signal strength because it uses third-order optical effects

basics of nonlinear optics

- Polarization \tilde{P} caused by an electric field \tilde{E},

$$
\tilde{P}(t)=\epsilon_{0}\left[\chi^{(1)} \tilde{E}(t)+\chi^{(2)} \tilde{E}^{2}(t)+\chi^{(3)} \tilde{E}^{3}(t)+\ldots\right]
$$

may act as source of electromagnetic radiation:

$$
\nabla \times(\nabla \times E)+\frac{n^{2}}{c^{2}} \partial_{t}^{2} E=-\mu_{0} \partial_{t}^{2} P_{\mathrm{NL}}(E)
$$

basics of nonlinear optics

- Polarization \tilde{P} caused by an electric field \tilde{E},

$$
\tilde{P}(t)=\epsilon_{0}\left[\chi^{(1)} \tilde{E}(t)+\chi^{(2)} \tilde{E}^{2}(t)+\chi^{(3)} \tilde{E}^{3}(t)+\ldots\right]
$$

may act as source of electromagnetic radiation:

$$
\nabla \times(\nabla \times E)+\frac{n^{2}}{c^{2}} \partial_{t}^{2} E=-\mu_{0} \partial_{t}^{2} P_{\mathrm{NL}}(E)
$$

■ third-order term dominant: " $\chi{ }^{(3)}$-medium"

basics of nonlinear optics

- Polarization \tilde{P} caused by an electric field \tilde{E},

$$
\tilde{P}(t)=\epsilon_{0}\left[\chi^{(1)} \tilde{E}(t)+\chi^{(2)} \tilde{E}^{2}(t)+\chi^{(3)} \tilde{E}^{3}(t)+\ldots\right]
$$

may act as source of electromagnetic radiation:

$$
\nabla \times(\nabla \times E)+\frac{n^{2}}{c^{2}} \partial_{t}^{2} E=-\mu_{0} \partial_{t}^{2} P_{\mathrm{NL}}(E)
$$

■ third-order term dominant: " $\chi{ }^{(3)}$-medium"

■ Refraction index n and Kerr-effect:

$$
n(\omega)=n_{0}+n_{2}|E(\omega)|^{2}
$$

(each frequency is refracted slightly differently)
$\chi^{(3)}$-media allow a four-wave mixing process

Principle

k-vector-diagram:

$\overrightarrow{\Delta k}\left(\omega_{S D}, \omega_{\mathrm{p}}, \omega_{\mathrm{cw}}\right)$

$$
=-\vec{k}_{c w}\left(\omega_{c w}\right)+\vec{k}_{p}\left(\omega_{\mathrm{p}}\right)+\vec{k}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right)-\vec{k}_{S D}\left(\omega_{S D}, \omega_{c w}, \omega_{\mathrm{p}}\right) .
$$

k-vector-diagram:

$\overrightarrow{\Delta k}\left(\omega_{S D}, \omega_{\mathrm{p}}, \omega_{\mathrm{cw}}\right)$

$$
=-\vec{k}_{c w}\left(\omega_{c w}\right)+\vec{k}_{p}\left(\omega_{\mathrm{p}}\right)+\vec{k}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right)-\vec{k}_{S D}\left(\omega_{S D}, \omega_{c w}, \omega_{\mathrm{p}}\right) .
$$

energy conservation $\omega_{\mathrm{p}}+\omega_{\mathrm{p}}=\omega_{S D}+\omega_{c w}$ still holds

The autoconvolution effect

- pulses considered as plane waves:

The autoconvolution effect

- pulses considered as plane waves:

- interference pattern creates refractive index grating (Kerr-effect)

The autoconvolution effect

- pulses considered as plane waves:

■ interference pattern creates refractive index grating (Kerr-effect)

- a wave p_{1} of each frequency creates an interference pattern with cw-wave

The autoconvolution effect

- pulses considered as plane waves:

- interference pattern creates refractive index grating (Kerr-effect)
- a wave p_{1} of each frequency creates an interference pattern with cw-wave
- at each pattern, photons p_{2} of each frequency are refracted

The autoconvolution effect

- pulses considered as plane waves:

■ interference pattern creates refractive index grating (Kerr-effect)

- a wave p_{1} of each frequency creates an interference pattern with cw-wave
■ at each pattern, photons p_{2} of each frequency are refracted
- SD-signal is sum of all combinations

$$
\mathcal{E}_{p}\left(\omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) \mathcal{E}_{c w}
$$

Equation in physical formulation

$$
\begin{aligned}
& \mathcal{E}_{S D}\left(\omega_{S D}\right)=\int_{0}^{\omega_{S D}+\omega_{c w}} \mathcal{K}\left(\omega_{S D}, \omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) d \omega_{\mathrm{p}} \\
& \operatorname{supp} \mathcal{E}_{p}=\left[\omega_{\mathrm{p}}^{l}, \omega_{\mathrm{p}}^{u}\right], \operatorname{supp} \mathcal{E}_{S D}=\left[2 \omega_{\mathrm{p}}^{l}-\omega_{c w}, 2 \omega_{\mathrm{p}}^{u}-\omega_{c w}\right]
\end{aligned}
$$

Equation in physical formulation

$$
\mathcal{E}_{S D}\left(\omega_{S D}\right)=\int_{0}^{\omega_{S D}+\omega_{c w}} \mathcal{K}\left(\omega_{S D}, \omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) d \omega_{\mathrm{p}}
$$

$\operatorname{supp} \mathcal{E}_{p}=\left[\omega_{\mathrm{p}}^{l}, \omega_{\mathrm{p}}^{u}\right], \operatorname{supp} \mathcal{E}_{S D}=\left[2 \omega_{\mathrm{p}}^{l}-\omega_{c w}, 2 \omega_{\mathrm{p}}^{u}-\omega_{c w}\right]$, with kernel

$$
\begin{array}{r}
\mathcal{K}\left(\omega_{S D}, \omega_{\mathrm{p}}\right)=\frac{\mu_{0} c L}{2} \frac{\omega_{S D}}{n\left(\omega_{S D}\right)}
\end{array} \chi^{(3)}\left(\omega_{S D},-\omega_{c w}, \omega_{\mathrm{p}}, \omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) .
$$

\mathcal{K} continuous, complex valued

Equation in physical formulation

$$
\mathcal{E}_{S D}\left(\omega_{S D}\right)=\int_{0}^{\omega_{S D}+\omega_{c w}} \mathcal{K}\left(\omega_{S D}, \omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{\mathrm{p}}\right) \mathcal{E}_{p}\left(\omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) d \omega_{\mathrm{p}}
$$

$\operatorname{supp} \mathcal{E}_{p}=\left[\omega_{\mathrm{p}}^{l}, \omega_{\mathrm{p}}^{u}\right], \operatorname{supp} \mathcal{E}_{S D}=\left[2 \omega_{\mathrm{p}}^{l}-\omega_{c w}, 2 \omega_{\mathrm{p}}^{u}-\omega_{c w}\right]$, with kernel

$$
\begin{array}{r}
\mathcal{K}\left(\omega_{S D}, \omega_{\mathrm{p}}\right)=\frac{\mu_{0} c L}{2} \frac{\omega_{S D}}{n\left(\omega_{S D}\right)}
\end{array} \chi^{(3)}\left(\omega_{S D},-\omega_{c w}, \omega_{\mathrm{p}}, \omega_{S D}+\omega_{c w}-\omega_{\mathrm{p}}\right) .
$$

\mathcal{K} continuous, complex valued
unknown, so far neglected

mathematical formulation

- after transformation and renaming:

$$
\begin{aligned}
y(s) & =F[x](s)=\int_{0}^{s} k(s, t) x(t) x(s-t) d t \\
y=F(x) \quad & 0 \leq t \leq 1,0 \leq s \leq 2
\end{aligned}
$$

mathematical formulation

- after transformation and renaming:

$$
\begin{aligned}
y(s) & =F[x](s)=\int_{0}^{s} k(s, t) x(t) x(s-t) d t \\
y & =F(x) \quad 0 \leq t \leq 1,0 \leq s \leq 2 \\
■ x \in L_{\mathbb{C}}^{2}[0,1], y & \in L_{\mathbb{C}}^{2}[0,2], k \in L_{\mathbb{C}}^{2}([0,2] \times[0,1])
\end{aligned}
$$

mathematical formulation

- after transformation and renaming:

$$
\begin{aligned}
y(s) & =F[x](s)=\int_{0}^{s} k(s, t) x(t) x(s-t) d t \\
y & =F(x) \quad 0 \leq t \leq 1,0 \leq s \leq 2
\end{aligned}
$$

■ $x \in L_{\mathbb{C}}^{2}[0,1], y \in L_{\mathbb{C}}^{2}[0,2], k \in L_{\mathbb{C}}^{2}([0,2] \times[0,1])$

$$
\begin{aligned}
\text { fundamental pulse: } x(t) & =A(t) e^{i \varphi(t)} \\
\text { measured SD-pulse: } y(s) & =B(s) e^{i \psi(s)}
\end{aligned}
$$

available

mathematical formulation

- after transformation and renaming:

$$
\begin{aligned}
y(s) & =F[x](s)=\int_{0}^{s} k(s, t) x(t) x(s-t) d t \\
y & =F(x) \quad 0 \leq t \leq 1,0 \leq s \leq 2
\end{aligned}
$$

■ $x \in L_{\mathbb{C}}^{2}[0,1], y \in L_{\mathbb{C}}^{2}[0,2], k \in L_{\mathbb{C}}^{2}([0,2] \times[0,1])$

$$
\begin{aligned}
\text { fundamental pulse: } x(t) & =A(t) e^{i \varphi(t)} \\
\text { measured SD-pulse: } y(s) & =B(s) e^{i \psi(s)}
\end{aligned}
$$

available, possibly available

mathematical formulation

- after transformation and renaming:

$$
\begin{aligned}
y(s) & =F[x](s)=\int_{0}^{s} k(s, t) x(t) x(s-t) d t \\
y & =F(x) \quad 0 \leq t \leq 1,0 \leq s \leq 2
\end{aligned}
$$

■ $x \in L_{\mathbb{C}}^{2}[0,1], y \in L_{\mathbb{C}}^{2}[0,2], k \in L_{\mathbb{C}}^{2}([0,2] \times[0,1])$

$$
\begin{aligned}
\text { fundamental pulse: } x(t) & =A(t) e^{i \varphi(t)} \\
\text { measured SD-pulse: } y(s) & =B(s) e^{i \psi(s)}
\end{aligned}
$$

available, possibly available, unknown

- $\varphi(t)=\varphi_{0}+\int_{-\infty}^{t} G D(\tau) d \tau$

Does $B(s)$ provide important information?

Does $B(s)$ provide important information?

Yes, it does! Thus also $B(s)$ available as measurement.

■ measurements (indicated by.δ) "close" to correct data, but not exact

- $A^{\delta} \rightarrow A, B^{\delta} \rightarrow B, \psi^{\delta} \rightarrow \psi$ as $\delta \rightarrow 0$

■ measurements (indicated by $\cdot \delta$) "close" to correct data, but not exact

- $A^{\delta} \rightarrow A, B^{\delta} \rightarrow B, \psi^{\delta} \rightarrow \psi$ as $\delta \rightarrow 0$

■ no information about size of error δ available

- measurements (indicated by $\cdot{ }^{\delta}$) "close" to correct data, but not exact
- $A^{\delta} \rightarrow A, B^{\delta} \rightarrow B, \psi^{\delta} \rightarrow \psi$ as $\delta \rightarrow 0$
- no information about size of error δ available
- Statement of the problem: given $A^{\delta}, B^{\delta}, \psi^{\delta}$ and $k(s, t)$, find φ such that

$$
B^{\delta}(s) e^{i \psi^{\delta}(s)}=\int_{0}^{s} k(s, t) A^{\delta}(t) e^{i \varphi(t)} A^{\delta}(s-t) e^{i \varphi(s-t)} d t
$$

Overview

\square
SD-SPIDER method
Mathematical Analysis

Discretization
Regularization

Numerical results

III-posedness

$$
F x=y, \quad F: L^{2}[0,1] \mapsto L^{2}[0,2]
$$

An operator F is called ill-posed, if it violates at least one of

Hadamard's conditions:

(a) for each given data y there exists a solution x
(b) this solution is unique
(c) the solution depends continuously on the data

III-posedness

$$
F x=y, \quad F: L^{2}[0,1] \mapsto L^{2}[0,2]
$$

An operator F is called ill-posed, if it violates at least one of

Hadamard's conditions:

(a) for each given data y there exists a solution x
(b) this solution is unique
(c) the solution depends continuously on the data
(a) violated because $F(x) \in C_{\mathbb{C}}[0,2] \forall x \in L_{\mathbb{C}}^{2}[0,1]$

Injectivity

■ for $k(s, t) \equiv 1$ and $k(s, t)=k(s): F\left(x_{1}\right)=F\left(x_{2}\right)$ has two solutions $x_{1}=x_{2}$ and $x_{1}=-x_{2}$ by Titchmarsh's theorem

Injectivity

■ for $k(s, t) \equiv 1$ and $k(s, t)=k(s): F\left(x_{1}\right)=F\left(x_{2}\right)$ has two solutions $x_{1}=x_{2}$ and $x_{1}=-x_{2}$ by Titchmarsh's theorem
■ for $k(s, t)$ again $x_{1}=x_{2}$ or $x_{1}=-x_{2}$, additional solutions are an open problem.

Injectivity

■ for $k(s, t) \equiv 1$ and $k(s, t)=k(s): F\left(x_{1}\right)=F\left(x_{2}\right)$ has two solutions $x_{1}=x_{2}$ and $x_{1}=-x_{2}$ by Titchmarsh's theorem
■ for $k(s, t)$ again $x_{1}=x_{2}$ or $x_{1}=-x_{2}$, additional solutions are an open problem.
■ \Rightarrow (b) is violated too!

Injectivity

■ for $k(s, t) \equiv 1$ and $k(s, t)=k(s): F\left(x_{1}\right)=F\left(x_{2}\right)$ has two solutions $x_{1}=x_{2}$ and $x_{1}=-x_{2}$ by Titchmarsh's theorem
■ for $k(s, t)$ again $x_{1}=x_{2}$ or $x_{1}=-x_{2}$, additional solutions are an open problem.
$\square \Rightarrow(\mathrm{b})$ is violated too!
■ but since $x_{1}=A e^{i \varphi}, x_{1}=-x_{2}$ means $x_{2}=A e^{i(\varphi-\pi)}$ and both solutions are equivalent for our problem.

Injectivity

■ for $k(s, t) \equiv 1$ and $k(s, t)=k(s): F\left(x_{1}\right)=F\left(x_{2}\right)$ has two solutions $x_{1}=x_{2}$ and $x_{1}=-x_{2}$ by Titchmarsh's theorem
■ for $k(s, t)$ again $x_{1}=x_{2}$ or $x_{1}=-x_{2}$, additional solutions are an open problem.
$\square \Rightarrow(\mathrm{b})$ is violated too!
■ but since $x_{1}=A e^{i \varphi}, x_{1}=-x_{2}$ means $x_{2}=A e^{i(\varphi-\pi)}$ and both solutions are equivalent for our problem.
■ because of periodicity, $\varphi \equiv \varphi+2 \pi$

(local) ill-posedness

■ for the autoconvolution operator, compactness can not be proven in general
■ nonlinear operator requires local analysis

(local) ill-posedness

■ for the autoconvolution operator, compactness can not be proven in general

- nonlinear operator requires local analysis

Definition

We define an operator $\mathcal{F}, \mathcal{F}: \mathcal{X} \rightarrow \mathcal{Y}$ to be locally ill-posed in $x_{0} \in \mathcal{X}$ if, for arbitrarily small $\rho>0$ there exists a sequence $\left\{x_{n}\right\} \subset B_{\rho}\left(x_{0}\right) \subset X$ satisfying the condition

$$
\mathcal{F}\left(x_{n}\right) \rightarrow \mathcal{F}\left(x_{0}\right) \text { in } \mathcal{Y} \text { as } n \rightarrow \infty \text {, but } x_{n} \nrightarrow x_{0} \text { in } \mathcal{X} .
$$

(local) ill-posedness

■ for the autoconvolution operator, compactness can not be proven in general

- nonlinear operator requires local analysis

Definition

We define an operator $\mathcal{F}, \mathcal{F}: \mathcal{X} \rightarrow \mathcal{Y}$ to be locally ill-posed in $x_{0} \in \mathcal{X}$ if, for arbitrarily small $\rho>0$ there exists a sequence $\left\{x_{n}\right\} \subset B_{\rho}\left(x_{0}\right) \subset X$ satisfying the condition

$$
\mathcal{F}\left(x_{n}\right) \rightarrow \mathcal{F}\left(x_{0}\right) \text { in } \mathcal{Y} \text { as } n \rightarrow \infty \text {, but } x_{n} \nrightarrow x_{0} \text { in } \mathcal{X} .
$$

Theorem (Gorenflo \& Hofmann '94, adapted in Gerth '11)

The autoconvolution operator F is everywhere locally ill-posed.
$\Rightarrow(c)$ is violated too! Regularization is necessary.

Fréchet-derivative

The Fréchet-derivative of F in a point x_{0} is given by

$$
\left[F^{\prime}\left(x_{0}\right) h\right](s)=\int_{0}^{s}(k(s, t)+k(s, s-t)) x_{0}(s-t) h(t) d t
$$

Fréchet-derivative

The Fréchet-derivative of F in a point x_{0} is given by

$$
\left[F^{\prime}\left(x_{0}\right) h\right](s)=\int_{0}^{s}(k(s, t)+k(s, s-t)) x_{0}(s-t) h(t) d t
$$

although F is in general non-compact, F^{\prime} is always compact!

Overview

Discretization\square Regularization
Numerical results

■ equation: $y(s)=\int_{0}^{s} k(s, t) x(s-t) x(t) d t$
$■ \operatorname{supp} x=\left[t_{l}, t_{u}\right], \operatorname{supp} y=\left[2 t_{l}-t_{c w}, 2 t_{u}-t_{c w}\right]$

■ equation: $y(s)=\int_{0}^{s} k(s, t) x(s-t) x(t) d t$
$■ \operatorname{supp} x=\left[t_{l}, t_{u}\right], \operatorname{supp} y=\left[2 t_{l}-t_{c w}, 2 t_{u}-t_{c w}\right]$
■ discretization using rectangular rule

$$
y\left(s_{m}\right)=\sum_{j=1}^{N} k\left(s_{m}, t_{j}\right) x\left(s_{m}+t_{c w}-t_{j}\right) x\left(t_{j}\right) \Delta t
$$

with $\Delta t=\frac{t_{u}-t_{l}}{N-1}, t_{j}=t_{l}+(j-1) \Delta t, s_{m}=2 t_{j}+(m-1) \Delta t$
$y_{m}:=y\left(s_{m}\right), x_{n}:=x\left(t_{n}\right), k_{m, n}:=k\left(s_{m}, t_{n}\right)$
in matrix-form $\underline{y}=\underline{F}(\underline{x}) \underline{x}$, with
in matrix-form $\underline{y}=\underline{F}(\underline{x}) \underline{x}$, with
$\underline{y} / \Delta t=\underline{F} \underline{x} / \Delta t=$
$\left(\begin{array}{ccccc}k_{1,1} x_{1} & 0 & \ldots & 0 & 0 \\ k_{2,1} x_{2} & k_{2,2} x_{1} & \ldots & 0 & 0 \\ & \ddots & \ddots & & \vdots \\ k_{N-1,1} x_{N-1} & k_{N-1,2} x_{N-2} & \ldots & k_{N-1, N-1} x_{1} & 0 \\ k_{N, 1} x_{N} & k_{N, 2} x_{N-1} & \ldots & k_{N, N-1} x_{2} & k_{N, N} x_{1} \\ 0 & k_{N+1,1} x_{N} & \ldots & k_{N+1, N-1} x_{3} & k_{N+1, N-1} x_{2} \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \ldots & k_{2 N-2, N-1} x_{N} & k_{2 N-2, N} x_{N-1} \\ 0 & 0 & \ldots & 0 & k_{2 N-1, N} x_{N}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N}\end{array}\right)$
in matrix-form $\underline{y}=\underline{F}(\underline{x}) \underline{x}$, with
$\underline{y} / \Delta t=\underline{F} \underline{x} / \Delta t=$
$\left(\begin{array}{ccccc}k_{1,1} x_{1} & 0 & \ldots & 0 & 0 \\ k_{2,1} x_{2} & k_{2,2} x_{1} & \ldots & 0 & 0 \\ & \ddots & \ddots & & \vdots \\ k_{N-1,1} x_{N-1} & k_{N-1,2} x_{N-2} & \ldots & k_{N-1, N-1} x_{1} & 0 \\ k_{N, 1} x_{N} & k_{N, 2} x_{N-1} & \ldots & k_{N, N-1} x_{2} & k_{N, N} x_{1} \\ 0 & k_{N+1,1} x_{N} & \ldots & k_{N+1, N-1} x_{3} & k_{N+1, N-1} x_{2} \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \ldots & k_{2 N-2, N-1} x_{N} & k_{2 N-2, N} x_{N-1} \\ 0 & 0 & \ldots & 0 & k_{2 N-1, N} x_{N}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N}\end{array}\right)$

Decomposition, with \circ as element-by-element multiplication:
$\underline{F}=\underline{K} \circ \underline{X}$
analogously: Fréchet-derivative

$$
\left[\underline{F^{\prime}}\left(\underline{x_{0}}\right) \underline{h}\right]_{m}=\sum_{j=1}^{N}\left(k\left(s_{m}, t_{j}\right)+k\left(s_{m}, s_{m}+t_{c w}-t_{j}\right)\right) x_{0}\left(s_{m}+t_{c w}-t_{j}\right) h\left(t_{j}\right) \Delta t
$$

analogously: Fréchet-derivative
$\left[\underline{F^{\prime}}\left(\underline{x_{0}}\right) \underline{h}\right]_{m}=\sum_{j=1}^{N}\left(k\left(s_{m}, t_{j}\right)+k\left(s_{m}, s_{m}+t_{c w}-t_{j}\right)\right) x_{0}\left(s_{m}+t_{c w}-t_{j}\right) h\left(t_{j}\right) \Delta t$
resulting matrix $\underline{F^{\prime}\left(x_{0}\right)}=\left(\underline{K}+\underline{K^{\prime}}\right) \circ \underline{X_{0}}$
analogously: Fréchet-derivative

$$
\left[\underline{F^{\prime}}\left(\underline{x_{0}}\right) \underline{h}\right]_{m}=\sum_{j=1}^{N}\left(k\left(s_{m}, t_{j}\right)+k\left(s_{m}, s_{m}+t_{c w}-t_{j}\right)\right) x_{0}\left(s_{m}+t_{c w}-t_{j}\right) h\left(t_{j}\right) \Delta t
$$

resulting matrix $\underline{F^{\prime}\left(x_{0}\right)}=\left(\underline{K}+\underline{K^{\prime}}\right) \circ \underline{X_{0}}$
advantage: time-consuming calculation of the matrices \underline{K} and \underline{K}^{\prime} has to be performed only once for each measurement setup

Overview

\square SD-SPIDER method
\square Mathematical Analysis

- Discretization
\square Regularization
Numerical results

A Levenberg-Marquardt-Type approach

- we let the complete pulse x be unknown, whereas y is given
- Iteration rule:

$$
\underline{x}_{(l+1)}^{\delta}:=\underline{x}_{(l)}^{\delta}+\gamma\left(\underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)^{*} \underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)+\alpha \underline{L}^{*} \underline{L}\right)^{-1} \underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)^{*}\left(\underline{y}^{\delta}-\underline{F}\left(\underline{x}_{(l)}^{\delta}\right)\right.
$$

for $l=0, \ldots, l^{*}$, aimed at minimizing

$$
\left\|\underline{y}^{\delta}-\underline{F}\left(\underline{x}_{(l)}\right)-\underline{F}^{\prime}\left(\underline{x}_{(l)}\right)\left(\underline{x}-\underline{x}_{(l)}\right)\right\|^{2}+\alpha\left\|\underline{L}\left(\underline{x}-\underline{x}_{(l)}\right)\right\|^{2}
$$

$\underline{L}(\underline{x})$ approximating the second derivative of x

A Levenberg-Marquardt-Type approach

- we let the complete pulse x be unknown, whereas y is given
- Iteration rule:

$$
\underline{x}_{(l+1)}^{\delta}:=\underline{x}_{(l)}^{\delta}+\gamma\left(\underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)^{*} \underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)+\alpha \underline{L}^{*} \underline{L}\right)^{-1} \underline{F}^{\prime}\left(\underline{x}_{(l)}^{\delta}\right)^{*}\left(\underline{y}^{\delta}-\underline{F}\left(\underline{x}_{(l)}^{\delta}\right)\right.
$$

for $l=0, \ldots, l^{*}$, aimed at minimizing

$$
\left\|\underline{y}^{\delta}-\underline{F}\left(\underline{x}_{(l)}\right)-\underline{F}^{\prime}\left(\underline{x}_{(l)}\right)\left(\underline{x}-\underline{x}_{(l)}\right)\right\|^{2}+\alpha\left\|\underline{L}\left(\underline{x}-\underline{x}_{(l)}\right)\right\|^{2}
$$

$\underline{L}(\underline{x})$ approximating the second derivative of x

- Questions:

■ how to choose \underline{x}_{0} ?
■ how to choose l^{*} ?
■ how to choose α ?

Choice of $\underline{x}_{0}=A_{0} e^{i \varphi_{0}}$

obviously, $A_{0}:=A^{\delta}$
first idea for phase: $\varphi_{0}(t) \equiv 0$

$(\delta=0, \alpha=0)$
idea: calculate good guess. Observe

$$
\begin{aligned}
& B^{\delta}(s) e^{i \psi^{\delta}(s)}=\int_{0}^{s}|k(s, t)| A^{\delta}(t) A^{\delta}(s-t) e^{i\left(\varphi(t)+\varphi(s-t)+\phi_{\text {kernel }}\right)} d t \\
\Rightarrow & \text { set } \varphi_{0}(t)=\frac{1}{2}\left(\mathcal{P}_{s \mapsto t}(\psi(s))\right)-\phi_{\text {kernel }}\left(s^{*}, t\right) \text { for } s^{*} \text { fixed }
\end{aligned}
$$

problem for slightly changed fundamental phase

best result with kernel correction

best result with kernel correction

\Rightarrow set starting phase to constant zero

When to stop the iteration?

An example iteration:

(l)	$\\| \underline{\underline{E}\left(x_{(l)}^{\delta}\right)-\underline{y}^{\delta} \\|}$	$\left\\|\left\|\underline{x}_{(l)}^{\delta}\right\|-A^{\delta}\right\\|$
1	$9.5819 \mathrm{e}-01$	0.5252
20	$2.4115 \mathrm{e}-02$	0.7916
40	$2.0682 \mathrm{e}-02$	0.7937
60	$1.5369 \mathrm{e}-02$	0.6077
100	$1.3792 \mathrm{e}-03$	0.1964
120	$1.1022 \mathrm{e}-03$	0.1701
140	$9.4595 \mathrm{e}-04$	0.1623
143	$9.2340 \mathrm{e}-04$	0.1622
144	$9.1606 \mathrm{e}-04$	0.1623
150	$8.7480 \mathrm{e}-04$	0.1632
250	$3.1613 \mathrm{e}-04$	0.2020

When to stop the iteration?

An example iteration:

(l)	$\left\\|\underline{E}\left(x_{(l)}^{\delta}\right)-\underline{y}^{\delta}\right\\|$	$\left\\|\left\|x_{(l)}^{\delta}\right\|-A^{\delta}\right\\|$
1	$9.519 \mathrm{e}-01$	0.5252
20	$2.4115 \mathrm{e}-02$	0.7916
40	$2.0682 \mathrm{e}-02$	0.7937
60	$1.5369 \mathrm{e}-02$	0.6077
100	$1.3792 \mathrm{e}-03$	0.1964
120	$1.1022 \mathrm{e}-03$	0.1701
140	$9.4595 \mathrm{e}-04$	0.1623
143	$9.2340 \mathrm{e}-04$	0.1622
144	$9.1606 \mathrm{e}-04$	0.1623
150	$8.7480 \mathrm{e}-04$	0.1632
250	$3.1613 \mathrm{e}-04$	0.2020

\Rightarrow choose l^{*} such that $\left|\left|\underline{x}_{(l)}^{\delta}\right|-\underline{A}^{\delta} \|\right.$ is minimal

Choice of α

- no a-priori information $\left\|y-y^{\delta}\right\|<\delta$ available, thus a-posteriori methods necessary

Choice of α

- no a-priori information $\left\|y-y^{\delta}\right\|<\delta$ available, thus a-posteriori methods necessary
■ calculate solutions for various α, e.g. $\alpha_{n}=\alpha_{0} q^{n}, 0<q<1$, $n=0, \ldots, n_{\max }$ and take "best" solution

Choice of α

- no a-priori information $\left\|y-y^{\delta}\right\|<\delta$ available, thus a-posteriori methods necessary
■ calculate solutions for various α, e.g. $\alpha_{n}=\alpha_{0} q^{n}, 0<q<1$, $n=0, \ldots, n_{\max }$ and take "best" solution
- L-curve not applicable, quasioptimality $\left(\left\|x_{\alpha_{i+1}}-x_{\alpha_{i}}\right\| \rightarrow \min \right)$ failed

Choice of α

- no a-priori information $\left\|y-y^{\delta}\right\|<\delta$ available, thus a-posteriori methods necessary
■ calculate solutions for various α, e.g. $\alpha_{n}=\alpha_{0} q^{n}, 0<q<1$, $n=0, \ldots, n_{\max }$ and take "best" solution
- L-curve not applicable, quasioptimality $\left(\left\|x_{\alpha_{i+1}}-x_{\alpha_{i}}\right\| \rightarrow \min \right)$ failed
- instead, make use of A^{δ} again: choose α^{*} such that

$$
\left|\left|\left|\underline{x}_{\alpha^{*}}^{\delta}\right|-A^{\delta} \|=\min _{n}\right|\right|\left|\underline{x}_{\alpha_{n}}^{\delta}\right|-A^{\delta}| |
$$

Overview

Numerical results

A very smooth fundamental pulse

SD-pulse, 5\% relative noise added

reconstruction, $\alpha=5.86 \cdot 10^{6}$

A more oscillating pulse

noise-free SD-pulse

reconstruction, $\alpha=2.17$

reconstruction, 1% relative noise in data

Real data situation

unfortunately, no results available. Main reasons:

- measurements without magnitudes
- unknown factor in model \Rightarrow error in the model
- frequency domains of x and y do not match
D. Gerth, B. Hofmann, S. Birkholz, S. Koke, and
G. Steinmeyer Regularization of an autoconvolution problem in ultrashort laser pulse characterization, submitted
D. Gerth, Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulses, Diploma thesis, Chemnitz University of Technology, Chemnitz, 2011, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85485.
- R. Gorenflo, B. Hofmann, On autoconvolution and regularization, Inverse Problems 10 (1994), pp. 353-373.

囯 S. Koke, S. Birkholz, J. Bethge, C. Grebing, G. Steinmeyer, Self-diffraction SPIDER, Conference on Laser and Electro Optics (CLEO), San Jose, CA, 2008.
D. Gerth, B. Hofmann, S. Birkholz, S. Koke, and
G. Steinmeyer Regularization of an autoconvolution problem in ultrashort laser pulse characterization, submitted
D. Gerth, Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulses, Diploma thesis, Chemnitz University of Technology, Chemnitz, 2011, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85485.

- R. Gorenflo, B. Hofmann, On autoconvolution and regularization, Inverse Problems 10 (1994), pp. 353-373.
(i) S. Koke, S. Birkholz, J. Bethge, C. Grebing, G. Steinmeyer, Self-diffraction SPIDER, Conference on Laser and Electro Optics (CLEO), San Jose, CA, 2008.

Thank you for your attention! Are there any questions?

