Regularization of an autoconvolution problem in ultrashort laser pulse characterization

$\underline{\text{D. Gerth}}^{a,b},$ B. Hofmann^b, S. Birkholz^c, S. Koke^c, G. Steinmeyer^c

^a Johannes Kepler University, Linz, Austria ^bChemnitz University of Technology, Germany ^cMax Born Institute, Berlin, Germany

Shanghai, 2012-10-19

Gerth, Hofmann, Birkholz, Koke, Steinmeyer

JKU/TUC/MBI

Introduction

- □ SD-SPIDER method
- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

Overview

Introduction

- SD-SPIDER method
- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

Motivation

Why study ultra-short laser pulses? to create shorter, stronger pulses; to enhance optical systems; medicine, material processing, etc.

Problem: measurements limited by electronics (order 10^{-12} s) Development of pulse durations:

Motivation

Why study ultra-short laser pulses? to create shorter, stronger pulses; to enhance optical systems; medicine, material processing, etc.

Problem: measurements limited by electronics (order 10^{-12} s) Development of pulse durations:

Solution: sample pulse by itself

Gerth, Hofmann, Birkholz, Koke, Steinmeyer

Laser pulse representation

Time domain: electric field E(t), envelope A(t), intensity $I(t) = |A(t)|^2$

Fourier domain: amplitude $\mathcal{A}(\omega)$, phase $\varphi(\omega)$, spectrum $\mathcal{I}(\omega) = |\mathcal{A}(\omega)|^2$

Gerth, Hofmann, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	

Overview

Introduction

□ SD-SPIDER method

- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

 $\underline{\underline{S}elf}{\underline{\underline{D}efraction}} \underline{\underline{S}pectral} \underline{\underline{P}hase} \underline{\underline{I}nterferometry} \text{ for } \underline{\underline{D}irect} \underline{\underline{E}lectric-field} \underline{\underline{R}econstruction}$

 $\underline{\underline{S}} elf-\underline{\underline{D}} efraction \ \underline{\underline{S}} pectral \ \underline{\underline{P}} hase \ \underline{\underline{I}} nterferometry \ for \ \underline{\underline{D}} irect \\ \underline{\underline{E}} lectric-field \ \underline{\underline{R}} econstruction$

 introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany

 $\underline{\underline{S}} elf - \underline{\underline{D}} efraction \ \underline{\underline{S}} pectral \ \underline{\underline{P}} hase \ \underline{\underline{I}} nterferometry \ for \ \underline{\underline{D}} irect \\ \underline{\underline{E}} lectric-field \ \underline{\underline{R}} econstruction$

- introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany
- theory presented at "Conference on Lasers and Electro-Optics", 2010

 $\underline{\underline{S}} elf - \underline{\underline{D}} efraction \ \underline{\underline{S}} pectral \ \underline{\underline{P}} hase \ \underline{\underline{I}} nterferometry \ for \ \underline{\underline{D}} irect \\ \underline{\underline{E}} lectric-field \ \underline{\underline{R}} econstruction$

- introduced by the research group 'Solid State Light Sources' led by Dr. Günter Steinmeyer as subdivision of division C 'Nonlinear Processes in Condensed Matter' at Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany
- theory presented at "Conference on Lasers and Electro-Optics", 2010
- reasons for introduction: applicable for ultraviolet radiation, good signal strength because it uses third-order optical effects

basics of nonlinear optics

 \blacksquare Polarization \tilde{P} caused by an electric field $\tilde{E},$

$$\tilde{P}(t) = \epsilon_0 [\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \dots]$$

may act as source of electromagnetic radiation:

$$\nabla \times (\nabla \times E) + \frac{n^2}{c^2} \partial_t^2 E = -\mu_0 \partial_t^2 P_{\mathsf{NL}}(E)$$

basics of nonlinear optics

 \blacksquare Polarization \tilde{P} caused by an electric field $\tilde{E},$

$$\tilde{P}(t) = \epsilon_0 [\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \dots]$$

may act as source of electromagnetic radiation:

$$\nabla \times (\nabla \times E) + \frac{n^2}{c^2} \partial_t^2 E = -\mu_0 \partial_t^2 P_{\mathsf{NL}}(E)$$

 \blacksquare third-order term dominant: " $\chi^{(3)}\text{-medium"}$

basics of nonlinear optics

 \blacksquare Polarization \tilde{P} caused by an electric field $\tilde{E},$

$$\tilde{P}(t) = \epsilon_0 [\chi^{(1)} \tilde{E}(t) + \chi^{(2)} \tilde{E}^2(t) + \chi^{(3)} \tilde{E}^3(t) + \dots]$$

may act as source of electromagnetic radiation:

$$\nabla \times (\nabla \times E) + \frac{n^2}{c^2} \partial_t^2 E = -\mu_0 \partial_t^2 P_{\mathsf{NL}}(E)$$

 \blacksquare third-order term dominant: " $\chi^{(3)}\text{-medium"}$

 \blacksquare Refraction index n and Kerr-effect:

$$n(\omega) = n_0 + n_2 |E(\omega)|^2,$$

6/37

(each frequency is refracted slightly differently)

Gerth, Hofmann, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI

 $\chi^{(3)}\text{-media}$ allow a four-wave mixing process

Gerth, Hofmann, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	7/3

Principle

-

k-vector-diagram:

$$\begin{split} \vec{\Delta k}(\omega_{SD}, \omega_{\mathbf{p}}, \omega_{\mathbf{cw}}) \\ &= -\vec{k}_{cw}(\omega_{cw}) + \vec{k}_{p}(\omega_{\mathbf{p}}) + \vec{k}_{p}(\omega_{SD} + \omega_{cw} - \omega_{\mathbf{p}}) - \vec{k}_{SD}(\omega_{SD}, \omega_{cw}, \omega_{\mathbf{p}}). \end{split}$$

Gerth, Hofmann, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	9 / 37

k-vector-diagram:

$$\begin{split} \vec{\Delta k}(\omega_{SD}, \omega_{\mathbf{p}}, \omega_{\mathbf{cw}}) \\ &= -\vec{k}_{cw}(\omega_{cw}) + \vec{k}_{p}(\omega_{\mathbf{p}}) + \vec{k}_{p}(\omega_{SD} + \omega_{cw} - \omega_{\mathbf{p}}) - \vec{k}_{SD}(\omega_{SD}, \omega_{cw}, \omega_{\mathbf{p}}). \end{split}$$

energy conservation $\omega_{\rm p}+\omega_{\rm p}=\omega_{SD}+\omega_{cw}$ still holds

Gerth, Hofmann, I	Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	9 / 37

The autoconvolution effect

pulses considered as plane waves:

- The autoconvolution effect
 - pulses considered as plane waves:

 interference pattern creates refractive index grating (Kerr-effect)

- The autoconvolution effect
 - pulses considered as plane waves:

- interference pattern creates refractive index grating (Kerr-effect)
- \blacksquare a wave p_1 of each frequency creates an interference pattern with cw-wave

- The autoconvolution effect
 - pulses considered as plane waves:

- interference pattern creates refractive index grating (Kerr-effect)
- \blacksquare a wave p_1 of each frequency creates an interference pattern with cw-wave
- \hfill at each pattern, photons p_2 of each frequency are refracted

- The autoconvolution effect
 - pulses considered as plane waves:

- interference pattern creates refractive index grating (Kerr-effect)
- \blacksquare a wave p_1 of each frequency creates an interference pattern with cw-wave
- $\hfill\blacksquare$ at each pattern, photons p_2 of each frequency are refracted
- SD-signal is sum of all combinations

 *E*_p(ω_p)*E*_p(ω_{SD} + ω_{cw} ω_p)*E*_{cw}

Equation in physical formulation

$$\mathcal{E}_{SD}(\omega_{SD}) = \int_{0}^{\omega_{SD}+\omega_{cw}} \mathcal{K}(\omega_{SD},\omega_{p})\mathcal{E}_{p}(\omega_{p})\mathcal{E}_{p}(\omega_{SD}+\omega_{cw}-\omega_{p})d\omega_{p}$$

$$\operatorname{supp} \mathcal{E}_p = [\omega_{\mathsf{p}}^l, \omega_{\mathsf{p}}^u], \operatorname{supp} \mathcal{E}_{SD} = [2\omega_{\mathsf{p}}^l - \omega_{cw}, 2\omega_{\mathsf{p}}^u - \omega_{cw}],$$

Gerth, Hofmann	, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	11 / 37

Equation in physical formulation

$$\mathcal{E}_{SD}(\omega_{SD}) = \int_{0}^{\omega_{SD}+\omega_{cw}} \mathcal{K}(\omega_{SD},\omega_{p})\mathcal{E}_{p}(\omega_{p})\mathcal{E}_{p}(\omega_{SD}+\omega_{cw}-\omega_{p})d\omega_{p}$$

supp
$$\mathcal{E}_p = [\omega_p^l, \omega_p^u]$$
, supp $\mathcal{E}_{SD} = [2\omega_p^l - \omega_{cw}, 2\omega_p^u - \omega_{cw}]$, with kernel

$$\mathcal{K}(\omega_{SD},\omega_{\mathbf{p}}) = \frac{\mu_0 cL}{2} \frac{\omega_{SD}}{n(\omega_{SD})} \chi^{(3)}(\omega_{SD},-\omega_{cw},\omega_{\mathbf{p}},\omega_{SD}+\omega_{cw}-\omega_{\mathbf{p}})$$
$$\overline{\mathcal{E}}^{cw} e^{i(\Delta \vec{k}_{\xi}\xi + \Delta \vec{k}_{\eta}\eta + \Delta \vec{k}_{\zeta}\frac{L}{2})} sinc(\Delta \vec{k}_{\zeta}\frac{L}{2})$$

${\cal K}$ continuous, complex valued

Gerth,	Hofmann,	Birkholz,	Koke,	Steinmeyer

Equation in physical formulation

$$\mathcal{E}_{SD}(\omega_{SD}) = \int_{0}^{\omega_{SD}+\omega_{cw}} \mathcal{K}(\omega_{SD},\omega_{p})\mathcal{E}_{p}(\omega_{p})\mathcal{E}_{p}(\omega_{SD}+\omega_{cw}-\omega_{p})d\omega_{p}$$

supp
$$\mathcal{E}_p = [\omega_p^l, \omega_p^u]$$
, supp $\mathcal{E}_{SD} = [2\omega_p^l - \omega_{cw}, 2\omega_p^u - \omega_{cw}]$, with kernel

$$\mathcal{K}(\omega_{SD},\omega_{\mathbf{p}}) = \frac{\mu_0 cL}{2} \frac{\omega_{SD}}{n(\omega_{SD})} \chi^{(3)}(\omega_{SD},-\omega_{cw},\omega_{\mathbf{p}},\omega_{SD}+\omega_{cw}-\omega_{\mathbf{p}})$$
$$\overline{\mathcal{E}}^{cw} e^{i(\Delta \vec{k}_{\xi}\xi + \Delta \vec{k}_{\eta}\eta + \Delta \vec{k}_{\zeta}\frac{L}{2})} sinc(\Delta \vec{k}_{\zeta}\frac{L}{2})$$

${\cal K}$ continuous, complex valued unknown, so far neglected

Gerth, Hofmann, Birkholz, Koke, Steinmeyer

-

mathematical formulation

after transformation and renaming:

$$y(s) = F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt$$
$$y = F(x) \qquad 0 \le t \le 1, 0 \le s \le 2$$

Gerth, Hofmann, Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	12 / 37

mathematical formulation

after transformation and renaming:

$$y(s) = F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt$$
$$y = F(x) \qquad 0 \le t \le 1, 0 \le s \le 2$$
$$x \in L^{2}_{\mathbb{C}}[0,1], \ y \in L^{2}_{\mathbb{C}}[0,2], \ k \in L^{2}_{\mathbb{C}}([0,2] \times [0,1])$$

mathematical formulation

after transformation and renaming:

$$y(s) = F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt$$
$$y = F(x) \qquad 0 \le t \le 1, 0 \le s \le 2$$
$$x \in L^{2}_{\mathbb{C}}[0,1], \ y \in L^{2}_{\mathbb{C}}[0,2], \ k \in L^{2}_{\mathbb{C}}([0,2] \times [0,1])$$

fundamental pulse: $x(t) = A(t)e^{i\varphi(t)}$ measured SD-pulse: $y(s) = B(s)e^{i\psi(s)}$

available

Gerth,	Hofmann,	Birkholz,	Koke,	Steinmeyer
--------	----------	-----------	-------	------------

mathematical formulation

after transformation and renaming:

$$y(s) = F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt$$
$$y = F(x) \qquad 0 \le t \le 1, 0 \le s \le 2$$
$$x \in L^{2}_{\mathbb{C}}[0,1], \ y \in L^{2}_{\mathbb{C}}[0,2], \ k \in L^{2}_{\mathbb{C}}([0,2] \times [0,1])$$

fundamental pulse: $x(t) = A(t)e^{i\varphi(t)}$ measured SD-pulse: $y(s) = B(s)e^{i\psi(s)}$

available, possibly available

Gerth, Hofmann,	Birkholz,	Koke,	Steinmeyer
-----------------	-----------	-------	------------

mathematical formulation

after transformation and renaming:

$$y(s) = F[x](s) = \int_{0}^{s} k(s,t)x(t)x(s-t)dt$$
$$y = F(x) \qquad 0 \le t \le 1, 0 \le s \le 2$$
$$x \in L^{2}_{\mathbb{C}}[0,1], \ y \in L^{2}_{\mathbb{C}}[0,2], \ k \in L^{2}_{\mathbb{C}}([0,2] \times [0,1])$$

fundamental pulse: $x(t) = A(t)e^{i\varphi(t)}$ measured SD-pulse: $y(s) = B(s)e^{i\psi(s)}$

available, possibly available, unknown • $\varphi(t) = \varphi_0 + \int_{-\infty}^t GD(\tau)d\tau$ Does B(s) provide important information?

Does B(s) provide important information?

Yes, it does! Thus also B(s) available as measurement.

measurements (indicated by \cdot^{δ}) "close" to correct data, but not exact

$$\blacksquare \ A^\delta \to A, \ B^\delta \to B, \ \psi^\delta \to \psi \ \text{as} \ \delta \to 0$$

- measurements (indicated by \cdot^{δ}) "close" to correct data, but not exact
- $\blacksquare \ A^\delta \to A \text{, } B^\delta \to B \text{, } \psi^\delta \to \psi \text{ as } \delta \to 0$
- \blacksquare no information about size of error δ available

■ measurements (indicated by ·^δ) "close" to correct data, but not exact

$$\blacksquare \ A^\delta \to A, \ B^\delta \to B, \ \psi^\delta \to \psi \ \text{as} \ \delta \to 0$$

- \blacksquare no information about size of error δ available
- Statement of the problem: given A^{δ} , B^{δ} , ψ^{δ} and k(s,t), find φ such that

$$B^{\delta}(s)e^{i\psi^{\delta}(s)} = \int_0^s k(s,t)A^{\delta}(t)e^{i\varphi(t)}A^{\delta}(s-t)e^{i\varphi(s-t)}dt$$
Overview

Introduction

□ SD-SPIDER method

- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

Ill-posedness

$$Fx = y,$$
 $F: L^2[0,1] \mapsto L^2[0,2]$

An operator F is called *ill-posed*, if it violates at least one of

Hadamard's conditions:

- (a) for each given data y there exists a solution x
- (b) this solution is unique
- (c) the solution depends continuously on the data

Ill-posedness

$$Fx = y,$$
 $F: L^2[0,1] \mapsto L^2[0,2]$

An operator F is called *ill-posed*, if it violates at least one of

Hadamard's conditions:

- (a) for each given data y there exists a solution x
- (b) this solution is unique
- (c) the solution depends continuously on the data

(a) violated because $F(x) \in C_{\mathbb{C}}[0,2] \ \forall x \in L^2_{\mathbb{C}}[0,1]$

Gerth, Ho	fmann, B	Birkholz, I	Koke,	Steinmeyer
-----------	----------	-------------	-------	------------

• for $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem

- for $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem
- for k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.

- for $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem
- for k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.
- $\blacksquare \Rightarrow (b) \text{ is violated too!}$

- for $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem
- for k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.
- \Rightarrow (b) is violated too!
- but since $x_1 = Ae^{i\varphi}$, $x_1 = -x_2$ means $x_2 = Ae^{i(\varphi \pi)}$ and both solutions are equivalent for our problem.

- for $k(s,t) \equiv 1$ and k(s,t) = k(s): $F(x_1) = F(x_2)$ has two solutions $x_1 = x_2$ and $x_1 = -x_2$ by Titchmarsh's theorem
- for k(s,t) again $x_1 = x_2$ or $x_1 = -x_2$, additional solutions are an open problem.
- \Rightarrow (b) is violated too!
- but since $x_1 = Ae^{i\varphi}$, $x_1 = -x_2$ means $x_2 = Ae^{i(\varphi \pi)}$ and both solutions are equivalent for our problem.
- \blacksquare because of periodicity, $\varphi\equiv \varphi+2\pi$

(local) ill-posedness

- for the autoconvolution operator, compactness can not be proven in general
- nonlinear operator requires local analysis

(local) ill-posedness

- for the autoconvolution operator, compactness can not be proven in general
- nonlinear operator requires local analysis

Definition

We define an operator \mathcal{F} , $\mathcal{F} : \mathcal{X} \to \mathcal{Y}$ to be locally ill-posed in $x_0 \in \mathcal{X}$ if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_\rho(x_0) \subset X$ satisfying the condition

 $\mathcal{F}(x_n) \to \mathcal{F}(x_0)$ in \mathcal{Y} as $n \to \infty$, but $x_n \not\rightarrow x_0$ in \mathcal{X} .

(local) ill-posedness

- for the autoconvolution operator, compactness can not be proven in general
- nonlinear operator requires local analysis

Definition

We define an operator \mathcal{F} , $\mathcal{F} : \mathcal{X} \to \mathcal{Y}$ to be locally ill-posed in $x_0 \in \mathcal{X}$ if, for arbitrarily small $\rho > 0$ there exists a sequence $\{x_n\} \subset B_{\rho}(x_0) \subset X$ satisfying the condition

 $\mathcal{F}(x_n) \to \mathcal{F}(x_0)$ in \mathcal{Y} as $n \to \infty$, but $x_n \nrightarrow x_0$ in \mathcal{X} .

Theorem (Gorenflo & Hofmann '94, adapted in Gerth '11)

The autoconvolution operator F is everywhere locally ill-posed.

 \Rightarrow (c) is violated too! Regularization is necessary.

The Fréchet-derivative of F in a point x_0 is given by

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

The Fréchet-derivative of F in a point x_0 is given by

$$[F'(x_0)h](s) = \int_0^s (k(s,t) + k(s,s-t))x_0(s-t)h(t)dt$$

although F is in general non-compact, F' is always compact!

Overview

Introduction

- SD-SPIDER method
- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

• equation:
$$y(s) = \int_{0}^{s} k(s,t)x(s-t)x(t)dt$$

- $\blacksquare \ \operatorname{supp} x = [t_l, t_u], \ \operatorname{supp} y = [2t_l t_{cw}, 2t_u t_{cw}]$
- discretization using rectangular rule

$$y(s_m) = \sum_{j=1}^{N} k(s_m, t_j) x(s_m + t_{cw} - t_j) x(t_j) \Delta t$$

with
$$\Delta t = \frac{t_u - t_l}{N - 1}$$
, $t_j = t_l + (j - 1)\Delta t$, $s_m = 2t_j + (m - 1)\Delta t$
 $y_m := y(s_m)$, $x_n := x(t_n)$, $k_{m,n} := k(s_m, t_n)$

in matrix-form $\underline{y} = \underline{F}(\underline{x}) \underline{x}$, with

Gerth, Hofmann, Bi	kholz, Koke, Steinmeyer	JKU/TUC/MBI	20 / 37

$$\begin{array}{l} \text{in matrix-form } \underline{y} = \underline{F}(\underline{x}) \underline{x}, \text{ with} \\ \\ \underline{y} / \Delta t = \underline{F} \underline{x} / \Delta t = \\ \begin{pmatrix} k_{1,1} x_1 & 0 & \dots & 0 & 0 \\ k_{2,1} x_2 & k_{2,2} x_1 & \dots & 0 & 0 \\ & \ddots & \ddots & & \vdots \\ k_{N-1,1} x_{N-1} & k_{N-1,2} x_{N-2} & \dots & k_{N-1,N-1} x_1 & 0 \\ k_{N,1} x_N & k_{N,2} x_{N-1} & \dots & k_{N,N-1} x_2 & k_{N,N} x_1 \\ 0 & k_{N+1,1} x_N & \dots & k_{N+1,N-1} x_3 & k_{N+1,N-1} x_2 \\ \vdots & & \ddots & \ddots \\ 0 & 0 & \dots & k_{2N-2,N-1} x_N & k_{2N-2,N} x_{N-1} \\ 0 & 0 & \dots & 0 & k_{2N-1,N} x_N \end{array} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \\ x_N \end{pmatrix} \end{array}$$

$$\begin{array}{l} \text{in matrix-form } \underline{y} = \underline{F}(\underline{x}) \underline{x}, \text{ with} \\ \\ \underline{y} / \Delta t = \underline{F} \underline{x} / \Delta t = \\ \begin{pmatrix} k_{1,1} x_1 & 0 & \dots & 0 & 0 \\ k_{2,1} x_2 & k_{2,2} x_1 & \dots & 0 & 0 \\ & \ddots & \ddots & & \vdots \\ k_{N-1,1} x_{N-1} & k_{N-1,2} x_{N-2} & \dots & k_{N-1,N-1} x_1 & 0 \\ k_{N,1} x_N & k_{N,2} x_{N-1} & \dots & k_{N,N-1} x_2 & k_{N,N} x_1 \\ 0 & k_{N+1,1} x_N & \dots & k_{N+1,N-1} x_3 & k_{N+1,N-1} x_2 \\ \vdots & & \ddots & \ddots & \\ 0 & 0 & \dots & k_{2N-2,N-1} x_N & k_{2N-2,N} x_{N-1} \\ 0 & 0 & \dots & 0 & k_{2N-1,N} x_N \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{N-1} \\ x_N \end{pmatrix} \end{array}$$

Decomposition, with \circ as element-by-element multiplication: $\underline{F} = \underline{K} \circ \underline{X}$

analogously: Fréchet-derivative

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=1}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

Gerth,	Hofmann,	Birkholz, Koke, Steinmeyer	JKU/TUC/MBI	21/37

analogously: Fréchet-derivative

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=1}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix $\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$

analogously: Fréchet-derivative

$$[\underline{F'(x_0)}\underline{h}]_m = \sum_{j=1}^N (k(s_m, t_j) + k(s_m, s_m + t_{cw} - t_j))x_0(s_m + t_{cw} - t_j)h(t_j)\Delta t$$

resulting matrix
$$\underline{F'(x_0)} = (\underline{K} + \underline{K'}) \circ \underline{X_0}$$

advantage: time-consuming calculation of the matrices \underline{K} and $\underline{K'}$ has to be performed only once for each measurement setup

Overview

Introduction

- SD-SPIDER method
- Mathematical Analysis
- Discretization
- Regularization
- Numerical results

- A Levenberg-Marquardt-Type approach
 - we let the complete pulse x be unknown, whereas y is given
 Iteration rule:

$$\underline{x}^{\delta}_{(l+1)} := \underline{x}^{\delta}_{(l)} + \gamma \left(\underline{F}'(\underline{x}^{\delta}_{(l)})^* \underline{F}'(\underline{x}^{\delta}_{(l)}) + \alpha \underline{L}^* \underline{L} \right)^{-1} \underline{F}'(\underline{x}^{\delta}_{(l)})^* (\underline{y}^{\delta} - \underline{F}(\underline{x}^{\delta}_{(l)})$$

for $l=0,\ldots,l^*\text{,}$ aimed at minimizing

$$\|\underline{y}^{\delta} - \underline{F}(\underline{x}_{(l)}) - \underline{F}'(\underline{x}_{(l)})(\underline{x} - \underline{x}_{(l)})\|^2 + \alpha \|\underline{L}(\underline{x} - \underline{x}_{(l)})\|^2,$$

 $\underline{L}(\underline{x})$ approximating the second derivative of x

- A Levenberg-Marquardt-Type approach
 - we let the complete pulse x be unknown, whereas y is given
 Iteration rule:

$$\underline{x}^{\delta}_{(l+1)} := \underline{x}^{\delta}_{(l)} + \gamma \left(\underline{F}'(\underline{x}^{\delta}_{(l)})^* \underline{F}'(\underline{x}^{\delta}_{(l)}) + \alpha \underline{L}^* \underline{L} \right)^{-1} \underline{F}'(\underline{x}^{\delta}_{(l)})^* (\underline{y}^{\delta} - \underline{F}(\underline{x}^{\delta}_{(l)})$$

for $l=0,\ldots,l^*\text{,}$ aimed at minimizing

$$\|\underline{y}^{\delta} - \underline{F}(\underline{x}_{(l)}) - \underline{F}'(\underline{x}_{(l)})(\underline{x} - \underline{x}_{(l)})\|^2 + \alpha \|\underline{L}(\underline{x} - \underline{x}_{(l)})\|^2,$$

 $\underline{L}(\underline{x})$ approximating the second derivative of x

- Questions:
 - how to choose \underline{x}_0 ?
 - how to choose l*?
 - how to choose α?

Choice of
$$\underline{x}_0 = A_0 e^{i\varphi_0}$$

obviously, $A_0:=A^\delta$ first idea for phase: $\varphi_0(t)\equiv 0$

idea: calculate good guess. Observe

$$B^{\delta}(s)e^{i\psi^{\delta}(s)} = \int_{0}^{s} |k(s,t)| A^{\delta}(t) A^{\delta}(s-t)e^{i(\varphi(t)+\varphi(s-t)+\phi_{\mathsf{kernel}})} dt$$

$$\Rightarrow$$
 set $\varphi_0(t) = \frac{1}{2}(\mathcal{P}_{s \mapsto t}(\psi(s))) - \phi_{\text{kernel}}(s^*, t)$ for s^* fixed

problem for slightly changed fundamental phase

best result with kernel correction

best result with kernel correction

 \Rightarrow set starting phase to constant zero

When to stop the iteration?

An example iteration:

(l)	$ \underline{F}(\underline{x}_{(l)}^{\delta}) - \underline{y}^{\delta} $	$ \underline{x}_{(l)}^{\delta} - A^{\delta} $
1	9.5819e-01	0.5252
20	2.4115e-02	0.7916
40	2.0682e-02	0.7937
60	1.5369e-02	0.6077
100	1.3792e-03	0.1964
120	1.1022e-03	0.1701
140	9.4595e-04	0.1623
143	9.2340e-04	0.1622
144	9.1606e-04	0.1623
150	8.7480e-04	0.1632
250	3.1613e-04	0.2020

When to stop the iteration?

An example iteration:

(1)	$ \underline{F}(\underline{x}_{(l)}^{\delta}) - \underline{y}^{\delta} $	$ \underline{x}_{(l)}^{\delta} - A^{\delta} $
1	9.5819e-01	0.5252
20	2.4115e-02	0.7916
40	2.0682e-02	0.7937
60	1.5369e-02	0.6077
100	1.3792e-03	0.1964
120	1.1022e-03	0.1701
140	9.4595e-04	0.1623
143	9.2340e-04	0.1622
144	9.1606e-04	0.1623
150	8.7480e-04	0.1632
250	3.1613e-04	0.2020
\Rightarrow ch	oose l^* such	that $ \underline{x}_{(l)}^{\delta} $

Choice of $\boldsymbol{\alpha}$

• no a-priori information $||y - y^{\delta}|| < \delta$ available, thus a-posteriori methods necessary

Choice of $\boldsymbol{\alpha}$

- no a-priori information $||y-y^{\delta}|| < \delta$ available, thus a-posteriori methods necessary
- calculate solutions for various α , e.g. $\alpha_n = \alpha_0 q^n$, 0 < q < 1, $n = 0, \ldots, n_{max}$ and take "best" solution

Choice of α

- \blacksquare no a-priori information $||y-y^{\delta}||<\delta$ available, thus a-posteriori methods necessary
- calculate solutions for various α , e.g. $\alpha_n = \alpha_0 q^n$, 0 < q < 1, $n = 0, \ldots, n_{max}$ and take "best" solution
- L-curve not applicable, quasioptimality $(||x_{\alpha_{i+1}} x_{\alpha_i}|| \rightarrow min)$ failed

Choice of α

- no a-priori information $||y-y^{\delta}|| < \delta$ available, thus a-posteriori methods necessary
- calculate solutions for various α , e.g. $\alpha_n = \alpha_0 q^n$, 0 < q < 1, $n = 0, \ldots, n_{max}$ and take "best" solution
- L-curve not applicable, quasioptimality $(||x_{\alpha_{i+1}} x_{\alpha_i}|| \rightarrow min)$ failed
- $\blacksquare \mbox{ instead, make use of } A^{\delta} \mbox{ again: } choose \ \alpha^* \mbox{ such that }$

$$|||\underline{x}_{\alpha^*}^{\delta}| - A^{\delta}|| = \min_n |||\underline{x}_{\alpha_n}^{\delta}| - A^{\delta}||$$
Overview

Introduction

- SD-SPIDER method
- Mathematical Analysis
- Discretization
- Regularization

Numerical results

A very smooth fundamental pulse

SD-pulse, 5% relative noise added

reconstruction, $\alpha = 5.86 \cdot 10^6$

A more oscillating pulse

noise-free SD-pulse

reconstruction, $\alpha = 2.17$

reconstruction, 1% relative noise in data

Real data situation

unfortunately, no results available. Main reasons:

- measurements without magnitudes
- unknown factor in model \Rightarrow error in the model
- \blacksquare frequency domains of x and y do not match

- D. Gerth, B. Hofmann, S. Birkholz, S. Koke, and
 G. Steinmeyer Regularization of an autoconvolution problem in ultrashort laser pulse characterization, submitted
- D. Gerth, *Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulses*, Diploma thesis, Chemnitz University of Technology, Chemnitz, 2011, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85485.
- R. Gorenflo, B. Hofmann, On autoconvolution and regularization, Inverse Problems 10 (1994), pp. 353–373.
- S. Koke, S. Birkholz, J. Bethge, C. Grebing, G. Steinmeyer, *Self-diffraction SPIDER*, Conference on Laser and Electro Optics (CLEO), San Jose, CA, 2008.

- D. Gerth, B. Hofmann, S. Birkholz, S. Koke, and
 G. Steinmeyer Regularization of an autoconvolution problem in ultrashort laser pulse characterization, submitted
- D. Gerth, *Regularization of an autoconvolution problem occurring in measurements of ultra-short laser pulses*, Diploma thesis, Chemnitz University of Technology, Chemnitz, 2011, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-85485.
- R. Gorenflo, B. Hofmann, On autoconvolution and regularization, Inverse Problems 10 (1994), pp. 353–373.
- S. Koke, S. Birkholz, J. Bethge, C. Grebing, G. Steinmeyer, *Self-diffraction SPIDER*, Conference on Laser and Electro Optics (CLEO), San Jose, CA, 2008.

Thank you for your attention! Are there any questions?

Gerth, Hofmann, Birkholz, Koke, Steinmeye	JKU/TUC/MBI	37 / 37