Grundlagen

Mathematik I für Chemiker

Daniel Gerth

Überblick Komplexe Zahlen

Dieses Kapitel erklärt:

- Was komplexe Zahlen sind
- Wie man mit ihnen rechnet

Daniel Gerth (JKU) Grundlagen 2 / 30

Inhaltsverzeichnis

- Momplexe Zahlen
 - Die Polarform einer komplexen Zahl
 - Die komplexe Exponentialfunktion

Ziele erreicht?

Komplexe Zahlen

Motivation

Erinnern Sie sich an die Zahlbereichserweiterungen? Unser Ziel war dabei, bestimmte Gleichungstypen uneingeschränkt lösen zu können.

Z. B. hatte x+3=2 in $\mathbb N$ keine Lösung. Erweitert man den Zahlbereich zu $\mathbb Z$, so lässt sich eine Lösung angeben (x=-1).

In den **reellen** Zahlen sind quadratische Gleichungen nicht immer lösbar: $x^2=1$ hat in $\mathbb R$ zwei Lösungen $x_{1,2}=\pm 1,$

Daniel Gerth (JKU) Grundlagen 4 / 30

Komplexe Zahlen

Motivation

Erinnern Sie sich an die Zahlbereichserweiterungen? Unser Ziel war dabei, bestimmte Gleichungstypen uneingeschränkt lösen zu können.

Z. B. hatte x+3=2 in $\mathbb N$ keine Lösung. Erweitert man den Zahlbereich zu $\mathbb Z$, so lässt sich eine Lösung angeben (x=-1).

In den **reellen** Zahlen sind quadratische Gleichungen nicht immer lösbar: $x^2 = 1$ hat in $\mathbb R$ zwei Lösungen $x_{1,2} = \pm 1$, dagegen hat $x^2 = -1$ in $\mathbb R$ keine Lösung.

Um diesen "Mangel" zu beheben, kann man eine weitere Zahlbereichserweiterung durchführen. Der initiale Schritt ist dabei das Hinzufügen einer neuen Zahl i, sie $i^2=-1$ erfüllt.

Definition 1.1 (Komplexe Zahlen)

Eine komplexe Zahl z ist ein Ausdruck der Form

$$z = a + ib \text{ mit } a, b \in \mathbb{R}.$$

Die Zahl i (mit der Eigenschaft $i^2 = -1$) heißt imaginäre Einheit.

Hierbei heißt a := Re z Realteil und b := Im z Imaginärteil von z.

Zwei komplexe Zahlen sind genau dann gleich, wenn sowohl die Realteile als auch die Imaginärteile übereinstimmen, d.h.

$$z_1 = z_2 : \Leftrightarrow \operatorname{Re} z_1 = \operatorname{Re} z_2 \wedge \operatorname{Im} z_1 = \operatorname{Im} z_2.$$

Die Menge aller komplexen Zahlen wird mit $\mathbb C$ bezeichnet.

Bemerkung: Jede reelle Zahl $a\in\mathbb{R}$ lässt sich mit der komplexen Zahl z=a+i0 identifizieren. In diesem Sinne gilt $\mathbb{R}\subset\mathbb{C}$. Weiters schreiben wir

$$a+i0=a+0i=a$$
 sowie $0+ib=ib=bi$.

Komplexe Zahlen der Form a + i0 (bzw. 0 + ib) heißen (rein) reell (bzw. imaginär).

 ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □ > ✓ □

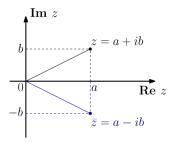
 Daniel Gerth (JKU)
 Grundlagen
 5 / 30

Definition 1.2

Sei $z=a+ib\;(a,b\in\mathbb{R})$ eine komplexe Zahl. Dann heißt

- $\bar{z} := a ib$ die zu z konjugiert komplexe Zahl.
- $|z| := \sqrt{a^2 + b^2}$ der Betrag von z.

Gaußsche Zahlenebene



Eine komplexe Zahl z veranschaulicht man sich als Punkt der Gaußschen Zahlebene mit der Koordinaten (Re z, Im z).

Satz 1.3 (Rechnenoperationen in \mathbb{C})

Für
$$z=a+ib,\ w=c+id\in\mathbb{C}\ (a,b,c,d\in\mathbb{R})$$
 definiert man

$$\begin{array}{rcl} z+w &:=& (a+c)+i(b+d),\\ z-w &:=& (a-c)+i(b-d),\\ zw &:=& (ac-bd)+i(ad+bc),\\ \frac{z}{w} &:=& \frac{ac+bd}{c^2+d^2}+i\frac{bc-ad}{c^2+d^2} \quad (w\neq 0). \end{array}$$

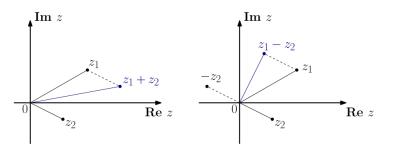
Diese Operationen sind so definiert, dass man die gewohnten Vorstellungen von den reellen Zahlen unter Beachtung von $i^2 = -1$ direkt übertragen kann.

Die Division lässt sich als "Erweitern" mit dem Konjugiert-Komplexen des Nenners auffassen:

$$\frac{z}{w} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(a+ib)(c-id)}{c^2+d^2} = \frac{z\bar{w}}{|w|^2}.$$

Man gebe zu $z_1=1,\ z_2=-i,\ z_3=-3+2i,\ z_4=1+i$ Real- und Imaginärteil an und zeichne die zugehörigen Punkte in der Gaußschen Zahlenebene. Man berechne $z_3+z_4,\ z_3-z_4,\ z_3\cdot z_4$ sowie $z_3/z_4.$

Addition und Subtraktion in der Gaußschen Zahlenebene



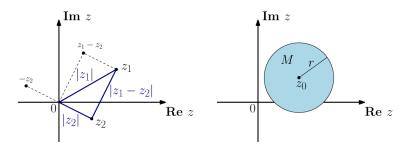
Beachten Sie die Analogie zur Vektorrechnung!

Daniel Gerth (JKU) Grundlagen 8 / 30

Geometrische Interpretation des Betrags

In der Gaußschen Zahlenebene charakterisiert

- |z| den Abstand einer Zahl z zum Koordinatenursprung;
- $|z_1-z_2|=|z_2-z_1|$ den Abstand zwischen z_1 und z_2 in der Gaußschen Zahlenebene;
- die Menge $M=\{z\in\mathbb{C}:\ |z-z_0|\leq r\}$ für r>0 und $z_o\in\mathbb{C}$ eine Kreisscheibe um z_0 mit Radius r.



$\mathbb C$ als Zahlkörper

Mit der eingeführten Addition und Multiplikation bildet $\mathbb C$ einen Zahlkörper. Konsequenzen sind:

$\mathbb C$ als Zahlkörper

Mit der eingeführten Addition und Multiplikation bildet $\mathbb C$ einen Zahlkörper. Konsequenzen sind:

Die arithmetischen Gesetze der reellen Zahlen (vgl. S. 26) gelten auch für komplexe Zahlen.

Satz 1.4

Die Rechenregeln für reelle Zahlen (Satz ??) sowie die binomischen Formeln und deren Verallgemeinerungen (Satz ??) gelten auch für komplexe Zahlen.

Die gewöhnt schreiben wir dabei für $z \in \mathbb{C}, \ n \in \mathbb{N}$

$$z^n := z \cdot z \dots z$$
 (*n* Faktoren), $z^0 := 1, z^{-n} := \frac{1}{z^n} (z \neq 0).$

Finden Sie die komplexen Lösungen der Gleichung

$$z^{2}(z+1)(z-4+i) = 0.$$

《中》《圖》《意》《意》

Rechnenregeln für z und \bar{z}

Satz 1.5 (Rechnenregeln für z und \bar{z})

Für $z, w \in \mathbb{C}$ gelten

- \bullet $\bar{\bar{z}}=z,$
- $\bullet \ \overline{z \pm w} = \bar{z} \pm \bar{w}, \quad \overline{zw} = \bar{z}\bar{w}, \quad \overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\bar{w}},$
- $z\bar{z} = |z|^2$, $|\bar{z}| = |z|$,
- Re $z = \frac{1}{2}(z + \bar{z})$, Im $z = \frac{1}{2i}(z \bar{z})$.
- $z = \bar{z} \Leftrightarrow z \in \mathbb{R}$.

Beweisen Sie einige dieser Regeln.

11 / 30

Daniel Gerth (JKU) Grundlagen

Rechnenregeln für Beträge

Satz 1.6 (Rechnenregeln für Beträge)

Für $z,w\in\mathbb{C}$ gelten

- $|z| \ge 0$, wobei $|z| = 0 \Leftrightarrow z = 0$,
- |z| = |-z|,
- $\bullet |zw| = |z||w|,$
- Dreiecksungleichung

$$|z+w| \le |z| + |w|.$$

Warum lassen sich die Regeln

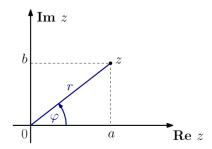
- $\bullet |a| = c \Rightarrow a = c \text{ oder } a = -c,$
- $\bullet |a| \le c \Leftrightarrow -c \le a \le c,$

für $a \in \mathbb{R}, \ c \ge 0$ **nicht** auf komplexe Zahlen anwenden?

Daniel Gerth (JKU) Grundlagen 12 / 30

Die Polarform einer komplexen Zahl

Eine komplexe Zahl $z \neq 0$ ist auch über ihre Polarkoordinaten in der Gaußschen Zahlebene eindeutig charakterisiert:



Dabei ist

- r = |z| der Abstand von z zu 0,
- φ der "Drehwinkel" des Ortsvektors zu z, gemessen von der reellen Achse im Gegenuhrzeigersinn.

<ロト (間) (注) (注) (注) (

Die Polarform einer komplexe Zahl

Mir den klassischen Definitionen von Sinus und Kosinus am Einheitskreis gilt also für z=a+ib :

$$z = r \cos \varphi + i \cdot r \sin \varphi = |z|(\cos \varphi + i \sin \varphi).$$

Definition 1.7 (Polarform)

Für
$$z=a+ib\;(a,b\in\mathbb{R}),\;z\neq0,\;$$
 heißt $\varphi=\arg(z)\;$ Argument von $z,\;$ falls
$$|z|\cos\varphi=a,\qquad |z|\sin\varphi=b. \tag{1}$$

Die Darstellung

$$z = |z|(\cos\varphi + i\sin\varphi)$$

heißt Polarform von z.

Das Argument ist nur bis auf ganzzahlige Vielfache von 2π festgelegt. Man wählt häufig $\varphi\in[0,2\pi)$, um Eindeutigkeit zu erhalten, und spricht dann man vom **Hauptwert** des Arguments.

Umwandlungsarbeiten

- Von der Polarform $z=|z|(\cos\varphi+i\sin\varphi)$ zur kartesischen Form gelangt man durch Ausmultiplizieren.
- Von der kartesischen Form z=a+ib zur Polarform gelangt man mit $|z|=\sqrt{a^2+b^2}$ und (1).

Zur Bestimmung des Arguments kann man auch

$$\tan \varphi = \frac{b}{a} \ (a \neq 0)$$

benutzen, muss dabei aber auf Quadrantenbeziehungen achten (der Fall a=0 ist trivial).

Wie lautet die Polarform von 2i, -1, -3 + 2i?

Daniel Gerth (JKU) Grundlagen 15 / 30

Die komplexe Exponentialfunktion

Die Zahl $e^{i\varphi}$ $(\varphi\in\mathbb{R})$ spielt im Zusammenhang mit der Polarform eine wichtige Rolle. Da uns noch keine Potenzreihen zur Verfügung stehen, definieren wir sie vorläufig mittels

Definition 1.8

Eulersche Formel

$$e^{i\varphi} := \cos \varphi + i \sin \varphi \quad (\varphi \in \mathbb{R}).$$

Damit kann man jede komplexe Zahl $z \neq 0$ schreiben als

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi} \quad (\varphi = \arg(z)).$$

Diese Darstellung nennt man Eulersche, Exponential- oder einfach wieder Polardarstellung von z.

Im Einklang mit den Potenzgesetzen schreiben wir ferner $e^z=e^ae^{ib}$ für eine beliebige komplexe Zahl $z=a+ib(a,b\in\mathbb{R}).$ Auch dies wollen wir vorläufig als Definition verstehen.

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

Die komplexe Exponentialfunktion

Es lässt sich zeigen, dass die komplexe Exponentialfunktion ähnlichen Gesetzen genügt, wie die reelle:

Satz 1.9

Für $z, w \in \mathbb{C}, n \in \mathbb{N}$ gelten:

$$e^{z+w} = e^z \cdot e^w, \quad e^{z-w} = \frac{e^z}{e^w}, \quad (e^z)^n = e^{nz},$$

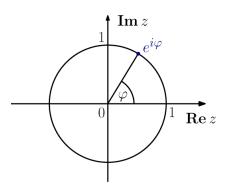
insbesondere also für φ , $\psi \in \mathbb{R}$:

$$e^{i(\varphi+\psi)} = e^{i\varphi}e^{i\psi}, \quad e^{i(\varphi-\psi)} = \frac{e^{i\varphi}}{e^{i\psi}}, \quad (e^{i\varphi})^n = e^{in\varphi}.$$

Daniel Gerth (JKU) Grundlagen 17 / 30

Eulersche Formel

Die Eulersche Formel $e^{i\varphi}:=\cos\varphi+i\sin\varphi\quad (\varphi\in\mathbb{R})$ liefert den Schlüssel für folgende Beobachtung:



Daniel Gerth (JKU)

Multiplikation und Division in der Polarform

Für zwei komplexe Zahlen $z,\ w \neq 0$ mit den Polardarstellung

$$z = |z|e^{i\varphi} = |z|(\cos\varphi + i\sin\varphi)$$

$$w = |w|e^{i\psi} = |w|(\cos\psi + i\sin\psi)$$

erhält man

$$z \cdot w = |z||w|e^{i\varphi}e^{i\psi}$$

$$= |zw|e^{i(\varphi+\psi)}$$

$$= |zw|(\cos(\varphi+\psi) + i\sin(\varphi+\psi)),$$

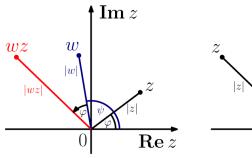
$$\frac{z}{w} = \frac{|z|e^{i\varphi}}{|w|e^{i\psi}}$$

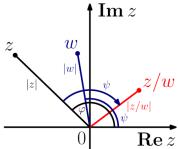
$$= \left|\frac{z}{w}\right|e^{i(\varphi-\psi)}$$

$$= \left|\frac{z}{w}\right|(\cos(\varphi-\psi) + i\sin(\varphi-\psi)),$$

 $\mathsf{d.h.}\ \arg(zw) = \arg(z) + \arg(w)\ \mathsf{und}\ \arg(\tfrac{z}{w}) = \arg(z) - \arg(w).$

Geometrische Darstellung von Multiplikation und Division





Daniel Gerth (JKU) Grundlagen 20 / 30

Potenzen und Wurzeln

Für eine komplexe Zahl $z \neq 0$ mit Polardarstellung $z = |z|e^{i\varphi}$ und $n \in \mathbb{N}$ gilt weiterhin

$$z^{n} = |z|^{n} (e^{i\varphi})^{n} = |z|^{n} e^{in\varphi} = |z|^{n} (\cos(n\varphi) + i\sin(n\varphi)).$$

Bei der Ermittlung der Lösungen von $w^n=z$ zu einer gegebenen komplexen Zahl $z=|z|e^{i\varphi}$ ist zu beachten, dass $\varphi\mapsto e^{i\varphi}$ im Gegensatz zum reellen Zahl $2\pi-$ periodisch ist, d.h.

$$e^{i\varphi} = e^{\varphi + 2k\pi}, \quad (k \in \mathbb{Z}).$$

Somit liefert die (formale) Anwendung der Potenzgesetze

$$w^n = |z|e^{i\varphi} \quad \Leftrightarrow \quad w = |z|^{\frac{1}{n}} e^{i\frac{\varphi + 2k\pi}{n}} = \sqrt[n]{|z|} e^{i(\frac{\varphi}{n} + \frac{2k\pi}{n})}.$$

Auch die Periode 2π wird also durch n geteilt, wodurch n verschiedene "n-te Wurzeln" von z entstehen.

Wir fassen unsere Vorüberlegung folgendermaßen zusammen:

Satz 1.10 (Potenzieren und Radizieren in \mathbb{C})

Sei $n \in \mathbb{N}$, dann gilt

 $\bullet \ \ \textit{Die} \ n-\textit{te} \ \textit{Potenz} \ \textit{von} \ z = |z|e^{i\varphi} = |z|(\cos\varphi + i\sin\varphi), \ \ \varphi \in \mathbb{R} \ \ \textit{ergibt sich zu}$

$$z^n = |z|^n e^{in\varphi} = |z|^n (\cos(n\varphi) + i\sin(n\varphi)).$$

Insbesondere gilt die de Moivresche Formel

$$(\cos \varphi + i \sin \varphi)^n = (\cos(n\varphi) + i \sin(n\varphi)).$$

 Für jede Zahl $z=|z|e^{i\varphi}$ hat die Gleichung $w^n=z$ genau n verschiedene Lösungen

$$w_k = \sqrt[n]{|z|}e^{i(\frac{\varphi}{n} + \frac{2k\pi}{n})} = \sqrt[n]{|z|}\left(\cos\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right) + i\sin\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right)\right)$$

mit k = 0, ..., n - 1.

| 4 □ ▷ 4 ② ▷ 4 분 ▷ 4 분 ▷ 분 → 9 (○ Daniel Gerth (JKU) | Grundlagen | 22 / 30

Geometrische Darstellung der n—ten Wurzeln

Die n-ten Wurzeln von $|z|e^{i\varphi}$ liegen auf einem Kreis mit Radius $\sqrt[n]{|z|}$ um den Nullpunkt und bilden ein regelmäßiges n-Eck.

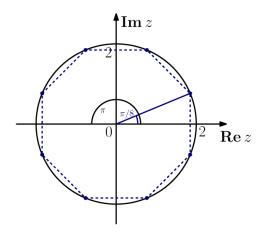


Illustration am Beispiel der 8—ten Wurzeln von $-256=256e^{i\pi}$.

Exkurs: Mehrfachwinkelformeln und Additionstheoreme

Mit Hilfe der Eulerschen und der de Moivreschen Formel lassen sich Beziehungen für trigonometrische Funktionen zeigen, z. B.

```
\begin{split} \sin(x\pm y) &= \sin x \cos y \pm \cos x \sin y, \\ \cos(x\pm y) &= \cos x \cos y \mp \sin x \sin y, \\ \sin 2x &= 2\sin x \cos x, \\ \cos 2x &= \cos^2 x - \sin^2 x \quad (\sin^n x := (\sin x)^n, \text{ analog für } \cos), \\ \sin 3x &= 3\sin x - 4\sin^3 x, \\ \cos 3x &= 4\cos^3 x - 3\cos x. \end{split}
```

Beweisen Sie einige dieser Beziehungen.

Daniel Gerth (JKU) Grundlagen 24 / 30

Exkurs: Komplexe Polynome

Bei der Bestimmung n—ter Wurzeln wurden Gleichungen der Form $z^n-a=0$ gelöst. Wir wollen die Frage der Lösbarkeit algebraischer Gleichungen allgemeiner untersuchen. Folgende Terminologie:

Eine Abbildung der Form

$$p: \mathbb{C} \to \mathbb{C}, \quad p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

mit festen Zahlen (Koeffizienten) $a_0, a_1, \ldots, a_n \in \mathbb{C}$ heißt komplexes Polynom vom Grad deg(p) = n.

Eine Zahl $w \in \mathbb{C}$ heißt **Nullstelle** von p, falls p(w) = 0.

Daniel Gerth (JKU) Grundlagen 25 / 30

Abspalten von Linearfaktoren. Nullstellen

Besitzt ein Polynom p vom Grad $n\geq 1$ eine Nullstelle w, so lässt sich p ohne Rest durch (z-w) teilen, d.h. es gibt ein Polynom q von Grad n-1 mit

$$p(z) = (z - w)q(z), \quad z \in \mathbb{C}.$$

Existenz von Nullstellen

Anders als in \mathbb{R} gilt in den komplexen Zahlen folgende Aussage:

Satz 1.11 (Fundamentalsatz der Algebra)

Jedes Polynom vom Grad $n \ge 1$ besitzt mindestens eine **komplexe** Nullstelle.

Daniel Gerth (JKU)

Zerlegung in Linearfaktoren

Von jedem Polynom p mit Grad $n \geq 1$ kann man also einen Linearfaktor abspalten. Ist der verbleibende Rest mindestens vom Grad 1, kann man dies natürlich erneut tun usw... Wir halten fest:

Folgerung 1.12

Das Polynom $p:\mathbb{C}\to\mathbb{C}$ sei gegeben durch

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0.$$

Dann existieren komplexe Zahlen w_1, \ldots, w_n mit

$$p(z) = a_n(z - w_1)(z - w_2) \dots (z - w_n).$$
 (2)

Jedes komplexe Polynom hat also sogar n Nullstellen (Vielfachheiten mitgezählt) und zerfällt vollständig in Linearfaktoren.

27 / 30

Daniel Gerth (JKU) Grundlagen

Die Berechnung der Nullstellen gemäß Satz 1.11 und Folgerung 1.12 ist schwierig und erfolgt i. d. R. numerisch. Ausnahmen bilden n-te Wurzeln oder quadratische Gleichungen mit **reellen** Koeffizienten:

Satz 1.13

Die komplexen Lösungen der quadratischen Gleichung

$$z^2 + pz + q = 0, \quad p, q, \in \mathbb{R}$$

sind gegeben durch

$$\begin{split} z_{1,2} &= -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}, \quad \text{ falls } \frac{p^2}{4} - q \geq 0. \\ z_{1,2} &= -\frac{p}{2} \pm i \sqrt{\frac{p^2}{4} - q}, \quad \text{ falls } \frac{p^2}{4} - q < 0. \end{split}$$

Verifizieren Sie den zweiten Fall durch Modifikation der bekannten Herleitung der p-q-Formel. Geben Sie die komplexen Lösungen von $z^2-4z+5=0$ an.

←□ → ←□ → ←□ → ←□ → □

Das Auftreten konjugiert komplexer Zahlen in der $p-q-{\sf Formel}$ lässt sich verallgemeinern:

Satz 1.14

Sind die Koeffizienten des Polynoms

$$p: \mathbb{C} \to \mathbb{C}, \quad p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$$

allesamt **reell**, so sind die Nullstellen reell $(\lambda_j \in \mathbb{R})$ oder treten in konjugiert komplexen Paaren $(a_j \pm b_j, \ a_j, b_j \in \mathbb{R})$ auf. Es existiert eine Zerlegung der Form

$$p(z) = a_n \prod_{j=1}^{k} (z - \lambda_j) \prod_{j=1}^{m} ((z - a_j)^2 + b_j^2),$$
(3)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

wobei k+2m=n. Jedes **reelle Polynom** lässt sich also als Produkt von Linearfaktoren und quadratischen Polynomen schreiben.

Geben Sie Zerlegung von $p(z) = z^3 + z$ gemäß (2) und (3) an.

Ziele erreicht?

Sie sollten nun (bzw. nach Abschluss der Übungen / Tutorien)

- sicher mit reellen Zahlen, Gleichungen und Ungleichungen umgehen können,
- sicher mit komplexen Zahlen umgehen können (Arithmetik in kartesischer und Polarform, Potenzen und Wurzeln, einfache Gleichungen, Veranschaulichungen in der Gaußschen Zahlenebene),
- Überblickswissen über den Aufbau mathematischer Theorie im allgemeinen besitzen,
- eine grobe Vorstellung vom axiomatischen Aufbau von Zahlenbereichen haben,
- einfache bis mäßig schwierige logische Zusammenhänge und Schlüsse erfassen können,
- erste Vorstellungen entwickelt haben, wozu man das bisher vermittelte Wissen in den Naturwissenschaften braucht.

Sie sind sich nicht sicher oder meinen "nein"? Dann werden Sie aktiv!