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ht-equally well have the group act on a previously chosen veriex,
taiiing a plane tiling that can contain different tiles. This-kind of iling

sonal, whereas the other kind is called isohedral, Using a classifica-
on an adjacency relation which is dual to that defined for isohedral
we. obtain again 93 types of iSogonal tilings; of these, two are not
able by unmarked tilings (it is a bit more difficult, but still possible, to
He: marking of vertices in the same way as for tiles). Thus there.are 91
ed) isogonal tilings.

.Eﬂ of its neighbors, This classification’ arises naturally. tlie more 50 whe
wverify that it is finer than a classification base MQ& or the _aama.mm
arry combination of these three criteria; it divides all tilings into 93 pat
(se [B, 1.7.7.8]). - -

1.H.4 Remark on Tile Markings

Em_.o and elsewhere in the book: we have used markings, or drawings, ‘o
.E.mm.., to reveal their orientation. It is reasonable {0 #sk if we could have
without them, by considering only the forms of the tiles. It'is ofteri possib
draw the. tiles with an irregular shape that bars certain wwEBﬁ.a.nw. In.
from-the 93 tiling patterns mentioned above, only 12 cannot be Rnammmam

means of unmarked tiles. So if one is interested only in the shape of the fi
there are only 81 patterns lefi. - . -

Only tiles and vertices can give rise to classifications; the edges are
ded by the same number of tiles (hamely, two), and bounded by the
mber of vertices {again two).

e 2. Find representations of the five crystallographic -subgroups of
. . ) by means of unmarked isogonal tilings.

Mxo_.n._mm 1. ﬂmzm representations by means: of unmarked tilings for the .
arystallographic groups that are contained.in Is* (£ (see 1.G).
1.H5 oblems

RIANGLES AND QUADRILATERALS ({B, 1:9.14}), Does any trian-

Finally, we remark that the connection bstween the notion of a cryst R , : ;
: & the plane? Any convex quadrilateral? Any quadrilateral?

graphic group and that of a tiling is not canonical. We have defined. the groip
by means of the plane tiling it generates when we make it act on a well-defined
previousty chesen tile; in this process, there is no réason why all the ver
should be isometric, or even why they should all have the same structure.
say that two vertices are isometric if there is an isometry taking a neigh
hood of one’onto 4 neighborkood of the other. In the figure below, S, an
are not isometric, ) -

SNDAMENTAL DOMAIN OF A TILING ([B, H...w.“_..m_..v. Let- & < Is(E)

bgroip of the group of isometries of an affine Euclidean plane; we'
neall orbits of G are discrete subgroups of E. For a fixed a € E, show
(7and the set P defined by

P={xcE: d(x,a)xd(x,g(a))Vg e Q_

the axioms of a crystallographic-group.

*HE FIVE ORIENTATION-PRESERVING CRYSTALLOGRAPHIC
)YUPS (IB. 1.9.4]). For each of the five crystallographic groups contaiing’
proper motions, find the following: the order of the stabilizers; the
tare of the group; the different types of orbits; a presentation for the
oup: (cf, [B, L8.7]).

‘HE ROBINSON NON-PERIODICAL TILING ([B, 1.9.16]). Show that
frhithe six tiles below it.is possible-to tile the plane. Show also that any tiling
hithese tiles can never be periodic, Le. its group of isometries.cannot contain
on-titvial translation. _

Figure 1.H.A5.



‘Figuré 1.4

All fields of scalars will be commutative,

\fine Spaces; Affine Group ([B, 2.1, 2.3])

fiine space X is nothing more than a vector space under the action of the
nerated by the linear mE.SBcEEmEm and the translations; this group
the affine group of X and is dengted by GA(X). Its elements are the
automorphisms of X, or again Eo affine maps of X into ilself. The
§of X-aré cailed points.

arounts to eliminating the privileged role previously played by the
of X, and making all points of X equal There are of course more
cated definitions of the notion of affine spaces; see [B, 2.1.1, 2.1.6}.
ther side of the coin is that now the-eléments of X are not vectors
re; but merely points, so they canaot be mmmma or multiplied by scalars
ser! Tlhie calculations which are. still possible to perform in X (we shall
gu ,.& the affing space X from the vector space that gave rise to it, which
I'deriote by X) are the following: for x, y € X we can take the midpoint
/2 of x, v in X (if the field has characteristic different from 2); and for

—

& we can find the vector y —x = uQ in X. Andif x, y, z are on the same
d.x # y we can calcilate the ratio xz/xy, which is a scalar,

esull, we can .m_mo.nﬂmo:m o&n&m:oum of the type x = a + A%, where
drein X, the vector # is in \ﬂ and A is a scdlar.

ut moimmmr. we cail mx somie ¢ € X and consider X as a -vector space
. foAr . il T Ammritnd hu ¥V A

11,
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with, X has a canonical topology, so we can talk about open sets,
mipact sets and so on (see for instance problem 2.2). Differential
applies in-such-spaces (see preblem 2.4).

ant.notion is that of a half-space; if ¥ is a hyperplane of X; its
X\Y has exactly two connected components, which are called
{f=spaces determined by Y. Their closures are the corresponding
aces. This notion is fundamental in the study of convexity: see

positive scalar, a (finite-dimensional real) affine space possesses a
casure, ‘called the Lebesgue measure. For example, if p is such a
ing-from the measture i on. ¥, we have the following definition for
d of a compact K in X with non-emipty interior: If x5 denotes the
tic-function of K and p(K)= [¢Xx# is the measure of X under 4,
shown that the vector integral

Xy
Xo

Figure 2. E.

>d mn.ﬁn map is determined by its values on a simplex; in particular, . : ——r
two-simplices in. a finite-dimensional X, there is an automorphism t ?A.h.v = \. X OX
onto the other, _ __ reX
h that the point

: N | .
a+{p(K)) "L(a)

mmm.mﬁ of ae X. This point is called the cenfroid of K, see problem.

2.F The Fundamental Theorem of Affine Geometry
([B, 2.6])
finite-dimensional vector space, and consequently a finite-dimensional
pice. can be oriented; this essentially amounts to chioosing a basis and
ng it to be positive. Any other basis obtained from the first one by a
tomorphism of positive determinant is also positive. There are exactly
ssible orientations, and neither is “canenical”; the-choice is arbitrary.
cther or.not the real affine space X is oriented, we can always consider
aps / & GL(.X) having positive detérminant: det f > 0. We.say that they
orientation (whichever one we ¢hoose) and denote by GA"Y(X) the
group of GA(X) formed by such maps. Its complement is denoted by
), and contains all maps f such that det /<0,

This is the only delicate result following from the preceding not
concerns the sei-theoretical bijections between two affine spaces X, X
taken a priori over ihe.same field) that map lines into lines. Observe fi
this condition is vacuous in dimension 1 and that, in the complex ca
satisfied for maps which are not affine (for instance, (z;,4,)= (5], 5
-resulf says exactly that those two cases typify the only possible exceptio

More precisely, if X and X are defined over the fields K and X',
A= X' is called semi-affine if the vectorialization f:X,— X' of
semi-linear, i.e. if there is field isomorphism ¢; X — K’ such that

TOx+pp)=a(X) flx)+a(p)fy)

for every x, y € X, and every X, p & K.
.....H,Ew fundamental theorem of affine geometry says that if 73 X —-
_.ucnn.aoz that maps lines into lines, and if ‘moregver X and X have sani
dimension 5 with # = 2, then f is semi-affine,

lems

- THEOREMS OF CEVA AND MENELAUS ([B, 2:8.1, 2.8.2]). Let
} be a triangle in an affine plane, and let a’€(b,¢), b {c,a),
a:hy be three points on the sides of this triangle. Prove that the three
LUy, (b, By, (c mwv are concurrent (or parallel) if and only if we have

mm m = —1 (Theorem of Ceva)

at-bach

2.G Finite-dimensional Real Affine Spaces ([B, 2.7]

From now on X will be a finite-dimensional affine spacé over the field
H.Ei.u.m.a. These spaces (especially in dimension 1,2 and 3) are those studi
m__mmmwo& geometry, They are especially rich and interesting as they relate to

P P



17

as'sarne equiafline length as f ¢ ¢ for any f & SA(X), where we
€ GA(X): jdetf|=1} (see 2.B).
we can reparametrize ¢ by its equiaffine length if for every ¢ we
% &N #0. The equiaffine curvatire is the number K =
when ¢ is parametrizeéd by its equiaffine length; show that this
. is inrvariant by SA(X): Find the equiaffine length and curvature
tllipse, a parabola or a hyperbola in X (always fixing a basis). In the
that a curve in the Euclidean plane is determined wp to an isometry
the curvature as a function of the arclength (see for exampie M. P. do
Differential Geometry of Curves and Surfaces, Prentice-Hall 1976, p. 22,
Spivak, Differential Geometry, Publish or Pérish 1970, vol. 2, p. 1-1),
curve in X is determined, up to an element of SACX), by giving
fiine curvature as 4 function of ifs equiaffine arclength.

2.2 CONNRCTEDNESS OF COMPLEMENTS OF SUBSPACES (B
Show that if X is a finite-dimensional real affine space and Y is a subspa
complement X\Y is connected if dim ¥ < X —2. Is X\ Y simply conne
(See 18.A).

2.3 ASSOCIATIVE PROPERTIES OF CENTROIDS ([B, 2.8.11j). m‘n
a compact subset of a finite-dimensional real affine space such that K
H be a hyperplane of X and X/, X" its two closed half-spaces. We assume

also that H is .mcov. that

K'#¢and K" +o,
where K'= KN X’ and K" =K X". Show (cf. 3.A) that ceni( K’
weighted average of cent(KX’) and cent(K ) with weights g(K '} and g
or, in the terminology of 3.A, the barycenter of the~
{(cent(K "), p(K ")), (cent{ K ), w(K ”'))}. Deduce that if in addition X'
vex, then cent(K } € K.

Figure 2.3.

2.4 EQUIAFFINE LENGTH AND CURVATURE (B, 2.8.12]), Let
rea) affine plane, and fix a basis. for X. We can then define-the determi
(&, 7) of any two vectors in X relative to this basis by writing the 2
whaose columns are #, i in this basis. Let ¢: [¢, b]— X be a differentiab
of class C* in X. The eguiaffine length of ¢ (in X, reldtive to this basis
redl number

h?oxmS._mxﬁ.w.%bmﬁ
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fit Gﬁc.e.mﬂ.mumnn

fang of a triang]

U CENTERS OF MASS ([B, 3.7.16}). In a real affine space,
OIRLS X; ... Xy, (P 2 2). For i=1,2,..., p denote by X, the

of the (%1, ;};5 Then define by recurrence the center of mass
of the (x, Lﬁ:. for all k1. Prove that every sequence (x; Jren
Tat can you say about the limit of these sequences for different

3.C Barycentric Coordinates ([B, 3.6])

Let { %}y, b€ a simplex (cf. 2.B) in an affine space Xof finite di

n. Then every x in X can be uniquely written as.x = LA x; with T;\;:

n1 scalars which are thus uniquely determined are called the barycen UR.SIDED PLATE ({B, 3.7.13 and 3.7.14]). Determine the ceniroid of the

noq«&ﬁwnw& of x AE En.m_BE.ox c.nEm considered). . - ; % of consisting of three homogeneous pieces of wire of same linear
In the case-when X =R, the set {Ax +(1-A)» Az 0} om._umda.. ing on the three sides of a iriangle. Give a geometrical construction

the pair {x, y) with positive mass is called the segment defined by x an : .

is denated by [x, y]. We will encounter this notion again, as well as t

general case of many positive masses, when we study convexity (11.A):

3.D A Universal Space ([B, 3.1, 3.2])

The: preceding notions can be made more forimal by the E:oacﬂ
véctor space X attached to the ‘affine space X; we define it as the unj
peints with a given non-zero mass (i.e. the product X X K*) and the'y
X (cf. 2. A). In this space we can perform vector calculations; for inst
elements of X ooﬂomwo:a to the case Z;A; = 0. The essential thing is tha
canonically embedded in X as the maun hyperplane formed by points
mass 1 (ef. 2.). And the direction X of this hyperplane (in the sense o
indeed the vector space which gives rise to X.

Figure 3.2: 1.

tetrical ¢construction for the center of mass of a homogeneous plate
¢ of a guadrilatéral. Compare this point ‘with the centroid of the

ERS OF THE BARYCENTRIC SUBDIVISIONS OF SIM-
3.7.8)). Let = be a simplex in a Euclidean affiné space of
. its diameler d is the Jargest distance between any two of its
w that all simplices of the barycentric subdivision of 2 have
5 than or equal o nd/(n +1); deduce that when we iterate the
f baryeentric subdivision, the diameter of all simplices tends. towards

3.E Polynomuals ({B, .w.mc

Starting from the classical notion of a homogeneous polynomial of
over a vector space, and using the vector -space uw. we define for an afli
the notion of a polyriomial of degree less than or equal to k over X. Cor
it is possible to transform 4 palynomial of degree Iess than-or equai't
X into a polynomial of .n._amna.o k over X, by Introducing 4 bomogent
variable (which is of ‘coursé: the mass). Moreover, 4 polynomial i
possesses a symbol f, which is a homogeneous polynomial over X and
sponds to the highesi-degree term of /. In a less v&mﬁ_cn way, weca
& polynomial of degree less than -or equal to k is something whic!

arbitrary vectorialization of X, consists of a sum of homogeneous polyn

T DEFINITION OF POLYNOMIAL MAPS ([B, 3.7.11]). Lei X
space and W a vector space. Find a direct definition (i.c. not using
1 space) for the space #,(X; W) of polynomial maps of degree &
y W. Show %mﬁ your definition makes sense.

IT CALCULATION OF THE POLAR FORM OQF A POLY-
3.7.150). The polar form of a polynomiial map f of degree %,
zvector space ¥ imto another vector space W, is the unique A-linear
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Show that it is given by the fornia

Py m) = XD R JO )

Cj=1 lxijg,, sk

tive Spaces

3.6 THE EULER IDENTITY ([B, 3.7.12}). Recall that a real-valued.
is said to be of class C” if it can be differentiated n times, and’
derivative is continuous, Let X be a real vettor space and 1 X—=Ra
such that f(Ax)= Nf(x) for all x € X and A & R. Show that the deriva
of f satisfies the Euler identity:

Fl)(x)=kf(x) ¥xeX.
‘Write and prove an analogous. form for the p-th derivative of f, whe
class C* and again homogeneous of degre¢ k. Deduce that if f 1s of
and homogeneous of degree k, it is necessarily a polynormial. :

All fields considered hére are commutative.

Affifie spaces have the serious inconvenience that certain
theorems have exceptional cases; for instance when linies
become parallel, Projective spaces were created by Desargues in
39 1o remedy this situation. The affine space is completed
) “points at iafinity which correspond to the directions of
ght lines., Then one needs to know how to come back to the
tiginal affine space. This program js carried out here in ‘two
téps: Chapters 4and 5.

Definition ([B, 4.1])
space is the space-of lines (i.e. one-dimensional vector subspaces)
r-space. If E is the vector space, we will denote by P(E) the
fojective space, formed by the lines of E. Algebraically, P(E) is
of the complement E\0 of the ofigin in £ by the equivalence
y-if and only if there is a non-zero scalar & such that y =kx”,
on of P(E)is one less than the dimension of E.

S Wa wd DAY= PRI and eall this snace the p-dimen-
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Problems

4.1 A MODEL FOR P¥Z,) ({B, 4.9.9]). Find a model, in the-
dimensional space, for the configuration. formed by the points,
‘planes of P*(Z,). Draw pictures.

4.2 ORIENTABILITY OF REAL PROJECTIVE SPACES (first me
4.9.4)). For a Teal projective space of finite dimension », find the sign
Jacobian of the transition maps

Ao vy, B)

(defined on the overlap R™\ v} {®)).

43 OWHmZ.H>er.HH< OF E.H..wwou.m.ﬁﬂe,m SPACES (secon
([B;, 4.9.5]. Find out whether P"(R} is orentable by studying th

nectedness of the projective group GP(P"(R)).

44 HYPERPLANES AND DUALITY ([B, 4:9.10), Let {H,} be:
hyperplanes in the projective space P{E) of finite dimension »; find
between dim(,; H,) in P(E)and dim({U;H,)} in P{E*).

iy

Figure 4.6,

4.5 NUMBER OF POINTS AND OF SUBSPACES IN A PRO
SPACE OVER. A FINITE FIELD ([B, 4.9.11])..Let X be a field
elements, and P{E) a projective space of dimension.» over K. Sho
cardinality of the set'of p-dimensional subspaces of P(E) is equal 1¢

mmﬁz._.._. - ”_.umw__ﬁa.vw — ku . T...aa.+_. — .ﬁﬁuv

(P (kP =) - (kP = )

Show that the order of the projective group GP(E) is

.ﬁwn.:..:. iwwﬁ.mﬁz,*.u.a! .ﬁﬂv A Ahw.a;‘p — Nn.:iu..vﬂ.ﬂ:.

4.6 MOBIUS TETRAHEDRA ([B, 4.9.12 and 5.5.3]). Construet, i
dimensional projéctive space, two tetrahedrd {a, b,¢,d ) and {a
‘'such that each vertex of the first belongs to a face of the sécond and *
ie. a € (b’ ¢, d’) etc. and a’ € (b, ¢, d) etc.)

Construct such tetrahedra in a-very simiple way by sending as muan
to infinity as possible (cf. 5.13). _
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fiine-Projective Relationsh
‘oblems

1 THEOREM OF PAPPUS WHEN THERE ARE PARALLEL LINES (B,
:2]). Draw the figures for the theorem of Pappus (cf. 5.D) when there are
oiats at infinity. .

o Illulll[lﬂl

.2 POINTS QUTSIDE YOUR DRAWING PAPER; RULER TOO SHORT
aw, 5.5.4 AND 5.5.5)). Suppose you are given a piece of paper with one point
markeéd and segments of two Lines which intersect outside the paper. Using
only a m:mhmfmmmn {ruler), draw the line thai joins the given point. with the
nfersection point of the two lines.

Figure 5.D.1.

THEOREM OF DESARGUES.  Let s, a,b,¢,a, b, ¢’ be points in an_affi
space such that s, a,a’ (resp. 5,b,b" and's, &, ¢’y are aligned. Then if the 1
points {(a, by {a’ &, (b,cSN{B, ¢y, (e, a)N{c’, a"y exist, they lie on 1h
same line,

Figure 5.2. 1. Figure 5.2,

Now suppose you are given. two. points, but your ruler is ioo. short to
‘connect them, Draw the liné joining the points,

53 HEXAGONAL WEBS ([B, 5.5.8 AND 5.5.9]). We shall define a web in a
reéal affine planeé P a8 the following set of data: an open set A in P, and for
gach point ¢ in.A4 three distinct lines 4, (a)(i=1,2,3) in P which. go through
and which depend continnously on’ a.- mro& :Hmﬁ for b on d{a) n_omn..m:c:m:
to @, we can define six poits (b,); . 4 as follows:

b=dy(D)Ndy(a),  by=di(b)Ndy(a), by=ds(B:)1d,(a),

by=d;(b3)Nds(a), by=d\(b)Ndsla),  by=dy(b)Ndy(a).

A web is said to be hexagonal if b;= b for all sufficiently close # and b.

Let ( p;);=1.2,3 be three points of P, not on the same line, and let A be the
.acEEnEoE om the three lines which connect each pair of points P We define
& web by setting d(a)={a, p;) for every a € 4. Show that this web is
hexagonal. .

Figure 5.D.2.



~ More generally, consider a conic section C and a point p not situated
the conic. Assign to any point in the complement of C'U p. the two tangent
C through x and the line xp. Show that the web: thus obtained is hexagonal.

5. Summari

rojective Lines, Cross-Ratios,
Jomographies

£

6.A Cross-ratids ([B, 6.1, 6.2, 6.3])

To any four distinct points {4,);.; 234 On & projective line (considered by
itself or inside a projective space), we associate a scalar, denoted by [4;]=
{dy, a3, 85,04}, -and called the cross-ratio of these four points. For points on an
affine line D; the cross-ratio is defined to be the same as on the completion
D =D Ugo, (ef. 5.A),

'The cross-ratio 15 4 projective invariant, in the sense that if (2;);2103.4

..ﬁnmﬁ.Anu..mup.m.m_.bmmwmoﬁﬁomam.on..mmzabc.mmw.bg,.mzmb. .&ooxwmﬁmnnm&
a homography f: D — D’ taking ¢, 10 aj. i =1,2,3,4, is equivalent to [¢,] = [a]].
In particular, cxoss-ratios are-invariant under homographies.

There are several equivalent ways of defining cross-ratios. The first one is by
putting [a, b, ¢, d}= f(d), where f(d) is the element of X given by the unique
homogeaphy f:D — K =KUcwo (¢f. 5.A and 4E) from our line into K
satisfying f(a) =0, f(b)=0and f(c)=1

Second way: For D = DUy, where D' 'is an affing line, put

, in particular{a, b, ¢, 0 u_. Hmmw\mwv

@/
da/qb

[a,b,c,d]=

The following three relations describe the behavior of -cross-ratios under
permutations of thé four points:

[a,b.c,d]=[b,a,c,d] V=g, b,d, ¢}l [a boe,d)+[a,¢b.d]=1.
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the convention being that folds:

..mm.oov.ﬂw and Aimvﬂoo.

EE., am,s_zu.aa.:mﬁq days dag n_.m.u#aa,&u.? A4 .&L =1.

Show that'a necessary and sufficient ¢ondition for the existence of a wo.aomww-
3 taking the (a;),.; s into new points (af),_,_, 5 is that the following two
equalities be-satisfied:

E.M.Y dyy, dyge mmL = T&m“ diz, diy, a.mm_

{unléss y =0, in which case f{ce) = co),

Ii the field X is algebraically closed, f is studied by means of is fi
points. If there is only one of these, we put it at infinity; then £ is a translai
of the affine line obtained by taking Emm:«.mémﬁ_ Otherwise, let ¢, b be
two distinct fixed points; then f satisfies [, b, m, f(m)}= constant for all

‘This womm.ﬁm& ﬂm_:m 18 A/, where A and p are the two eigenvalues of [y, oy dyn. dos] = [ diys dbe, 5]
matrix of f, namely where we have put.d}, = (a}, a]). Generalize for the case of a projective space-
of arbitrary-dimension, ﬁ
5 EIGENVALUES OF A EOZOQW,k&wE% (B, 6.8.7)). .HL.Q f bea woﬁomm
ipky with two distinct fixed points g, b; show that the pair {k,1/k}, ESR.
=[a, b, m, f(m)] for every m, depends only on f and niot on the choige of
he order of a, &, If f has mattix M = ﬁ ww show that {k,1/k } are theé roots
of the equation

(08— By)ic? —(a® +2By + 87 )k + (ab = fv) =0,
. 6.6 CLASSIFICATION OF COMPLEX HOMOGRAPHIES (:3 .m..m..mcn The.
- data are those of 6.5, ahd mioredver K = C. We say that f is %&:n ;. m:o
complex number & (or'1/k) has absolute value 1, hyperbolic .:n k is positive
real. and loxodromic otherwise. Show that, normalizing M(f) by ab —Br=1,
we can characterize these three cases by using the trace ¢ of f, given by
=0+ 8§

An involution of a profective line is by defirition a homography differerit f
the identity, whose square. is the identity, The analytical condition fo
homography is .

trace( d) =+ §= 0.

An invglition is determined by its value on two points. Every homograph
the product of at mostthree involutions. If X is algebraijcally closed and .
are.the two fixed points of an invofution, then [a, b, m, f(m)]=—1 for eve
m (cf. 3.B).

Problems

- _ 1 elliptic PN t is real and. || <2;
6.1 RELATION BETWEEN THE CROSS-RATIOS OF FIVE POINTS {
6:8.1D. Let x,y,z,u,0 be five points on the saime projective line, Show
the following always holds:

f hyperbolic <« fisrealand [{]>2;
f loxadromic & f is.not real.

I, p,u,0][ v, 2, u, v]lz, 2, u,v] =1,
62 RICATTI DIFFERENTIAL EQUATIONS (B, 6.8.12]). If a4, bc:la,

- R are continuous functions, we ‘consider the differeritial equation {called
Ricatti equation): y(r)=a(1)y®+b(1)y+ c(1); show that it y(i=1,2,

are four sohitions of this equation, the cross-ratio [¥:()] is independent of

6.3 DUALITY IN A TETRAHEDRON ([B, 6.8.217), Let T be a ietrahedr
in & three-dimensional projective space. and let D be a line, Show that :
cross-ratio of the four intersection points of D with the faces of T is equa
the cross-ratio of the four planes passiing through D and the vertices of T .

64 FIVE-POINT SETS ON A PROJECTIVE PLANE (IB, 6.8.17]). L
(a;)imi,_ 5 be points on a projéctive’ plane, so ‘that the first four form
projective base. We: denore. by d;: the line ¢a..a.). Show that the fallawin

Study, for the three cases considered, the nature of the iterates 7"(n € Z),
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A'VECTOR Hmogmﬂm@"}.ﬁﬁ‘)&.m. POSSESSES AN INVARIANT LINE
'LANE ([B, 8.12.2)). To prove that f € O(E) always leaves some line or
ane invariant, consider $ome x € S(E) such that f(x)— x| is minimal, and
how that x, f(x), f(x) le.in the same plane:

8.J Otientation, Vector wwomso S:
([B, 8.11])

In this section we consider an vriented n-dimensional Buclidean. vecto
Such a space possesses a canonical volume form A &> defined by thec
that it is an exterior ‘n-form (i, an alternating multilinear a-formy,
value A z(e,,..., ¢,) on any positive orthonormal basis is 1. In dimensioi
form is often called the mixed product and is denoted simply by A z(x
.H.H. Y .Nw . ) k

The wvector product of n—1 vectors xy,...,%,., in E is the ¥
Xy X o+ X X,.; in E defined by the following duality relation:

”USQUHZQ AN ANGLE BY # ([B, 8.12.7]). Show that, for every n € N*
ad every a € li(E), the eguation nx =« has exactly # solutions in T{E).
w the solutions on a circle for a few values of g, with n =2,3,4, 5.

FIND THREE LINES WHOSE BISECTORS ARE GIVEN ([B, 8:12.20)).
We call a bisector of two lines.4, B 'in a Euclidean vector space any bisector of
-and B in the plane generated 3 the two lines (cf. 8.F).
et S, T, U be three lines in a 3-dimensional Euclidean vector space: Find
three lines 4, B, C such that line S is a.bisector of A, B, line T is & bisector of
¢, and line U is a bisector of C, 4. Study'the possible generalizations of this
problem: replacing lines by half-lines, corisidering mofe than three lines, or
nsidering Emroﬂ dimensional spaces:

5 >CQOKOWE.Eme OF H (|B, 8.12.11]). Show that every automorphism
of H is of the form a— #(a)+ p{P(a)), whete p & 0*(3).

(e Xx, fy) = Ap(®pe s ey, y)  forall y€ B

The vector ?.on:ﬂ is zero if and only if the x,; are linearly a%a g
Otherwise, it is orthogonal to all the X, and added to them it forms a. ositif
basis; finally, its norm is given by

li%, % -0 X .k..:.r“w._._u. = QHM_H.DA..HT R H____.;Mu...

6 VECTOR PRODUCTS IN R® (B, 8.12.9]). For every a, b,c < R®, prove

where Gram{xy,..., %) denotes, in general, the determinant
(%00 %) d B . wn..”mo:oé_sm formulas:

(ENE (xofxy) - -

__ M ax{bX¢)=(alc)b—(alb)e, (1)

. _ : vl e . . y
QHEAHH.:J.Rﬁ.u I.Qm;ﬁunmmung.vv - . : H.Q.XW_.»QX .n.w_w X n..w i AQ“ ..m_._.u nvw._ AMV
H.xm_‘aL ?_n_‘.e.uu N (axb)x{axe)=(a,b, cla. (3)

Show that R®, endowed with thie operations of addition and vector product, is
41 anticommutative m_mngm which, instead of being associative, satisfies the.
Jacobi-identity

Finally, observe the following relation, very useful in calculating volum
Gram{xy,...,x, )= (Ap{x, ... 1, 0%

aX{bxc)tbX(exa)+eX{axb)=0.
Problems Such an algebra is called a -Lie algébra.:

H p,g¢,r denote the projections from R® onte the three coordinate planes,
8.1 AN IRREDUCIBLE GROUP CAN LEAVE INVARIANT AT A ‘show that
ONE BUCLIDEAN STRUCTURE ([B, 812.1]. Let' £ be a finite-d
sional real veéctor space, ¢ and ¢ two Euclidean. structures on m..
G ¢ GL(E) a subgroup of the linear group of F; we assume G is irredy
(cf. [B,8.12.2]). Show that if G C.O(E, @)YO(E, ¥) (ie. if every element
leaves @ and v invaridnt, cf. 13.E), then ¢ and + are proportional.

lla % b||? = Gram( p(a), p(b))+Gram{q{u), g(5))+Gram(r(a), r(b)).

Find a geometrical interpretation for this result {see the definition of the Gram
determinant in 8.J).
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8. Summaries

Study the equation x X @ =5 (for a and b given); find whether there is

solution and whether it is unique.

v

Figure 8.6.

Chapter 9
Euclidean Affine Spaces

9.A Definitions ([B, 9.1])

We consider a real affine space X of finite dimension (which is always der
by 1), and whose underlying vector subspace X (see 2.A) is endowed wi
Euclidean structure; we say that X is a Euclidean affine space. The stan
example is R", considered as an affine space.

We make X into a metric space by taking the distance function d(x, y) =
which is generally written simply d(x, y) = xy. The triangle inequality is i
which means that xz =xy + yz implies that y belongs to the segment |
(cf. 3.C). A Euclidean affine space possesses a canonical topological struc
(see 2.G), whose compact sets are the closed sets bounded in the metric d

The group of isometries of X, i.e. the bijections of X such that f(x)f(y)
for every x, y in X, is denoted by Is(X). We have the following fundame
fact: an isometry is necessarily an affine map, or, more precisely,

Is(X)={feGA(X)and \Lmotmi (cf. 2.B).

We can then define (see 2.G) Is*(X)=Is(X)NGA*(X); the element
Is™ (X) are called (proper) motions, and those of Is~( X) are sometimes c:
improper motions.

9.B Subspaces ([B, 9.2])
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CONVEXITY OF PASCAL LIMACONS (B, 9:14.18]). Given z e%w
A .ﬁo.ﬁr we call a Paseal limagon the curve oHEn& 3 Eo._mn.nbm & MH.
it to all the tangents to the circle (in general, a curve n_uHEumm b..oMH mh%mnwm-
this procedure is called its “pedal curve™). .m..ﬂ% En.noaﬁnﬁﬂw.._m%a clenis-
of Pascal limagons as a function of the.position of the point relative to

le.

Then we can talk about the <oE§m.bmﬁ.Q o

.QT«AV H,\unk.w..wat.u

where x . is the characteristic function of X, . .
The reader can find in [B, 9.12; 9.13) some important results about voliip
the Stein symrmetrization and Em._Mmo&mﬁoﬁn.msﬂam:&,

Problems

.m..k__uh,ur} » O an affine plane has ‘the Droperty that every straigh
containing two_of the x; also contains a third, then all the points are 9
same line,

9.1 SYLVESTER’S THEOREM. (IB, 9.14.25]), Prove that if'a set of » _

92 BISECTORS (B, 9.14.3)). Let D, D’ be two non-parallel line
Euclidean plane’ X show that {x& X:d(x, D)= d(x, D)} is. formed
two bisectors of D, D’. What is this set when X is. higher-dimensional?

9.3 LIGHT POLYGONS (B, 9.14.33]). Let C be a plane curvein a Enclides
plane, of class C* (cf, 3.6) and strictly convex. Show that for any integer ;>
there is at least.one resided Jight wm%w..qx.mumoicon.mn Ciie a polygon fo
vertex' of which the exterior bisector of the two' sides meeting at this
coincides with the tasigent to. Cat this point.

Figure 9.6, 1.

9.4 FINDING THE CENTER OF A SIMILARITY (/B, 9.14, 40)). Give
points a, b, u’, 5 in R, constract the centers of the similarities taking ¢
and b to &,

95 INSCRIBING A SQUARE IN A TRIANGLE (B, 9.14.16]). Give
triangle, inscribe a square inside it: see figure below.

—0

Figure 5.5.1.
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Chapter 11
Convex Sets

-diately conclude that through each point in the boundary of a
vex'seét § there passes at least one supporting hyperplone of S i.e. a
aneH intersecting the boundary of § and such that S is entirely
td in-one of the closed subspaces defined by H (cf. 2.G).
we can' study. the following polarity operation for the convex sets
vith 10.B and 14.E); We assume X “is a Buclidean vector space with
/& associate to every subset 4 of X its. polar reciprocal A%, defined

A*={ye X:(x|y) <1 foreveryxe 4 }.

tespondence 4 - 4* is a good duality wheneyer 4 is a compact convex
ntaining @ in jts interior; we have (A4*)* = 4 and the support hypes-
of 4 are the polar hyperplanes of the points of 4*, relative to the unit
S(0,1).
ally, -the Hahn-Banach theorem implies Helly’s theorem: For X a
nsional) affine spacg, let .# be a family of convex compact subsets of
at the intersection of ‘any & +1 elements of i is non-empty,-then the
tion of all the élemients of F is non-empty. as well. .

1LA Definition; First Properties ([B, 1.1 11.2] oundary Points of a Convex Set ([B, 11.6))

A mcw.mm.ﬂ. § of X is calied conpex if the segrnen [x, Y1(ek. 3.0) is coiif
,M.H.oﬂm,@w x, M & §. A-weaker condition is that defining star-shapedssis
star-siaped with center g < Xif[a, x]c S fore eryx & .

‘the same as intervals, : TR XSS T R ooty

An mmw.:wmQ intersection of convex sets js convex; in parti
A of X gives risé t6 2 smallest-convex set containing i, which we'll

&(A) and call convex pyll of 4, The convex hull £(4} of 4 is charag

the set of barycentérs of families {(x,, A )} each x; is i . mS
. . arycen| X)), where each X; 18I AR blems

A; =0. A theorem of Caratheodory asserts that this holds even if we |

families of at most 4+ 1 elements, |

If §is COnvex, o are its closure § and its ‘interior S, The g;

convex set is that of the smajle t affine subspace ¢§ ining it:
: Lis 1 pace {5 cont ;
dim § = ¢ is he same as saying that § has &

n be-classified in ‘many ways; one of the most usefil is the following: A
~in the boundary of a convex set 4 is called extremal if whenover
+2)/2with y, z € 4 we have y = z. The theorem of Krein and Milinan
4t a convex compact set is the convex hull of its extremal points,

PARTITION OF THE PLANE INTO CONVEX SETS {[B, 11.9.22)).
dll partitions of the plane into two convex sets.

mxﬁ.ﬂ.mgh POINTS IN TWO DIMENSIONS ((B, 11.9.8]). Prove that
tremal points of a-convex set in the plane form a closed set.

AILBERT GEOMETRY (B, 11.9.8)). Lét 4 be a convex compact set of
whose interior is non-empty. Given two distinct points x, y of A, put
)= floglx, y, u, 0]|, where u, ¢ are the two points where the line (x, p)
meety-the boundary of 4, and1{,,.,.,.] denotes the cross-ratio (ef. 6.A or [B, &),
Show.that d: 4 x 4 >R, défined by the equation above and d(x, x) = 0,

= 4, s a metric. Show that this metric is excellent (9.G). Study the relation
°n- the strict triadgle inequality {9.A) and the nature of the boundary

11.B Hwo Hahn-Banach Theorem. Supporting
Hyperplanes ([B, 11.4, 11.5))

The mm.r:.m.w.mdmo:..&.nﬁaa States the following: Ley 4 be-a non-emp
‘convex set in X, and let L be an affine subspace of ¥ such that A
Then there s a hyperplane of X which contains L and does nnt mest.

e
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11.4 THE LUCAS THEOREM ([B, 11,9.21]), Let P be a polynomial’

complex coefficients, and let P’ be its derivative. Show that in the affine
C, all the roots of P belong to the convex huli of the roots of P. When

degree three and distinet roots 4; b, ¢, show that there is an ellipse inscribe

the triangle {a, b; ¢} and whose foci are the roots u, v of P'.
11.5 STAR-SHAPED SETS ({B, 11.9.20]), Given a subset 4 of an affine

X, consider the set N(A) of points a such that A4 is star-shaped with cen

Show that N(A4) is-convex. Find N(4) for a number of shapes of A.

STMH
P

_Hvo_ﬁo.wmm ; Compact Convex Sets

12.A Polytopes ([B, 12.1, 12.2, 12.3})

- We'll be working in a d-dimensional teal afline space X, for 4 finite. A
polvtope is a convex compact set with non-empty interior, which can be
- redlized as the intersection of & firite nimber of closed half-spaces of X (¢f.
. 2.G). We shall assumné there are no superfluous half-spices in the inlefsection.
For d =2 we use the word polygon.

The faces of a polytope P are the intersections of its boundary with the
. hyperplanes that define P, A face is itself a polytope (of dimension o —1)
inside the hyperplane which contains it. We define by induction the k-faces of
P-as the faces of all the (& +1)-faces of Py 1-faces are called Ewm.q and 0-faces
are called vertices.

From now on X is Ruclidean affine.

Give a polytope P, we can define its volume £(P) and its area A(P); the
area is the sum of the volumes of all the faces (considered as (4 — 1)-polytopes).

12.B Convex Compact Sets ([B, 12.9, 12.10, 12.11])

A convex compact set whose interior is ion-gmpty can be approximated, in the
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onstruction of: the' regilar icosahedron; another one ooﬁmm&m W:Enw.&%

S itagons on 4 cube ([B. 13 3]), and finally one can Jeave
placing regular pentagons on a cube (B, 12.5 - one can Jeave
%mnwnm%_.m ?EWQ and just give the coordinaies for the vertices:

WO nOHORS possess very nide
we put

prop

BIC )= {xe X:dlx, ¢y <), r £ 1),(£1,0, £7),(+ 7, £.1,0), where r=(/5 +1)/2. ”
Then
A= A oblems
Next, the isoperimetric inequality: lowing a
: . ; JON (B, 121241 . ify the following two con-
%€(c) _(&(c) 1 REGULAR PENTAGON ([B, 12:12.4]). Justify the following tw

a(d) =\ B(d) : ctions for the regular peatagon:
which holds for EVery convex compact set with non-empty interior; hér
{resp. B(d)) denote the area. (resp. the volume) of the unit sphereiin
Moreover, equality only holds if C is a sphere, .

Notice that thé two above results can be generalized for subsets of X whid
are “nice” enough though not convex: for example differentiable manifalg
problem 12.3).,

12.C Regular Polytopes ( (B, 124, 12.5, 12.6})

-group of order 2x; it acts simply transitively (cf, 1.D} on the pair
vertex and a side that ends at this edge, See problem 12.1. .

The easiest way 1o generalize this notion for 4 = 3 is the foliowing: ¢
the d-tuples (£, £ F, ) such that the F are j-faces and K
1<i<d~1 Then the wo__.ﬁ.oﬁa.m 1S regidar if its isometry group G
transitively on ‘the set of such d-tuples, in which case the action is als
transitive {cf. 1.D). A regular polytope can always be inscribed in a sph

The following are examples of regular polytopes: the cocube Cop

vertices are te, (f=1,. d}in an orthonormal basis of X: it has 24
and 24 faces. The cube. Cub, has as vertices the 2¢ Ppoints whose ¢cag
are given by (+£1,..., + 1) (in an onrgonﬁm_.cma&. and it has 24 fac
the regular simplex, Sit,, which, considered  the hyperplane L4+,
as vertices the.d+1 points ¢; of an orthonormal basis; it also has d +

It can be shown that for @'z 5 these are the only regular polytopes {u;
mmﬁzmug of ‘course): On the other hand, for 4 =3 there-are two excep
regular polytopes, the dodecabiedron and. the icosahedron (Figure 1.F), an
d = 4 there are three exceptions, The existence of these exceptional polyio
not obvious; the problem can be reduced:to the case d = 3, Prgblem 191g

Figure 12.1.2.

Figure 12.1.3.
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122 ORDER OF THE GROUP OF > REGUL _
12.12.107). Show that, for a regular polyhedron (i.e. a m dimensional poly

the order of its group of isometriés is. equal to four times. the numbé;
edges,

12.3 THEOREMS OF GULDIN (B, 12.12.10.9]). Consider a COIMpac
of a plane P in the 3-dimensional Euclidean space E. Show that the voliim
the compact set of C of E, generated by rotating X around a line
which does nat titersect K, is given by the formula

2.4 VOLUME OF POLA RECIPROCALS OF ELLIPSOIDS ([B, 12.122]).
how that if £ is an &Eumoa in thé Buclidéan vector space X, containing 0 in
nterier, then its polar reciprocal E* (see 11.B) isan %Gmoa ‘with. the same
perty. Their volumes, satisfy £ (E) Z{E*) = (8(d))?, and equality fakes
ace if and only if O is the center of £ (for the definition of 8(d), see 12.B or
. 9.12.4]).

25 THE BLASCHKE ROLLING THEOREM ({B, 12:124]). Let C bea
nmipact convex set in the plane whose boundary is-a biregular curve (cf. M.

srger and B. Gostiaux, Géométrie Différentielle, Armand Colin, 1972, p. 309)
f class C% Let 4 (resp. 4) be'a point on the boundacy of C where the.
rvature is maximal (resp. minimal).-Show that the osculating circle v at a
n roll all around the boundary, always staying inside C, and the boundary.
n roll all around the osculating circle-T" at 4. Is-this still true if we ﬁmmﬁ.mnm Y
the largest circle contained in Ceor T by the smallest circle containing: C7.

L (CY=2m-d(g, D) Lo(K),

where g-=cent(K) -denotés the centroid of X (see 2.G).

If the @05&5 of K is considered as a homogeneous wire and
center of mass of this wire {in the usual sense), show that the srea of C is
by the formula

W (C)=2a-d(h, D)L (K),

(Both areas are understood in the sense of differentiable manifolds.)
Find applications of this formula, as’ well -as special cases of 4o€Bm
areas already known,

Figie 12.5. 1.

Figure 12.3.1.
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adratic Forms

of E containing the elements  such that’ 0 =N
: aining th ments p such A, yy=0-for every x & E. Th
have Tank(g ?&SQESEH dim E. Wé say that q 1s nor-degenerate
rank is equal 1o #, and degenerate ‘otherwise. . :
An important .&.m; erence between the general and the Buclidean case
Fﬂ.u..m the restriction of a non-degenerate form g 10 a subspace can be d
m.ﬁ. A mEum.E..om Fof E is called singular (resp. mo:-h.nh&aé i
aomo.mﬁmﬁ (resp. non-degenerate); it is-called a null subspace if gfn=
4 1s identically zero over F. . S
The isotropic cone of ¢ is the subset g~ (0) of E; its elements are

ST is an orthogonal “‘diréct sum; according to 13.D they correspond
ctly to non-singular subspaces S, Involutions are also called symmetries ot
eflections (through S), .

$ in the Buclidean case, we can show that every element of Q(E) is'the
oductof at most # refiections through hyperplanes, but the proof in this'case
much more difficult (Cartan-Dieudonné); see problem 13.5. One essential

1ap from F into F’ such that |, = 7 *(g|;). Then f can be extended to an
ement of O(E), o

useful too! for the results above is the. followinig: let F .be a subspace of
“and suppose its radical rad(F) has dimension 5. Let G be such that
rad(F)~= F, and let.{x;},., , be a basis for rad(F). Then there are s
nes P; in £ such that each P, contains x, and is an Artin space under qlp.
ce 13.B), the P, and G aré pairwise orthogonal, and the orthogonal direct
im F=G®P® - &P, is non-singular (we say thai F is a non-singular
npletion of F). This lemma shows immediately that the null subspaces of £
ve dimension at most #/2; mereover, if £ has a null subspace of dimension
/2, then E is necessarily an Artin space Art,,. See also problem 13.1.
The Witt theorem shows in addition that the maxintal null subspaces of a
ir (£, q) are.all conjugate under elements of O(E), and in particular have
\e same dimension.

. . o . e . - !
isotropic vectors, An anisotropic form is one for which the isotropi
consists of the zero vector anly. o

‘WSE now-on g will be assumed.-non-degenerate.

13.D Orthogonality ([B, 13.3)

hﬂ E ,Un..m vector space endowed with a quadratic form, and F a s
the @ﬂ»o&aa&.@iﬁ%ﬁnﬁ of F, denoted by F*_is the mn._umm.mon of E
Www M . H%..W an 7)=0 mnmm.mb x &F }. In general, untike the Euclides
he sum 1§ not always direct; but the following 1 ies hol¢
Subspaces F, ' Oing properties hol

3.F The Two-dimensional Case ([B, 13.8))

(F)"=F; dim F+dim F* = dim E; |
tad F=F* (YF,  Fisanull subspace = F <
(ENF) =F 4 Pt (Py Py =pipprt,

E=FoF" (direct sum} « Fis non-singular

In dimension 2, the subgroup O (£) is always commulative, and 0~ (E) is
formed by reflections through lines; see problem 134. . .

In E there are.either two distinct isotropic lines ¢r no isotropic lines; in the
first case we necessarily have E'= Art,, and we can study O(E) in the same

e Pl s LSingular < e B A : - T
snon-smgular < Fry Fi <, way we did for the Euclidean case (cf. {B, 13.8]).

13.E The Group of a Quadratic Form (IB, 13.6, 13" Problems

The orthogonal group of (E, q), written O(E) ot O(q), is defined as
O(E)={/=GL(E}): fr=q].
For a basis in which the matrix of ¢ is A, the matrices § of the elements

O(E) are those fulfilling the condition 'SAS = 4. T ti :
£ ) are those f { . ion = A. In particular :
det f=+1 and as usiral we put P one alwa

| Q»?&.Hﬁxmﬁﬁ.mu“aﬂxﬂwi.
The involutions of O(E)are exactly the maps of the form f=1d s —Id,, wh

13.1 ANISOTROFIC FORMS (B, 13.9:4]). Reduce the classification of
guadratic forms fo that of anisotropic forms.

13.2 FORMS IN DIMENSION 1 OVER A FINITE FIELD ((B, 13.9.10]).
Show that if =1 and K isfinite, there are exactly three classes of guadratic
forms,

133 FORMS IN DIMENSION 1 OVER THE RATIONALS (B, 13.9.9]).
Show that if K=Q and #=dimE =1 there are an infinite mumber of
non-isometric forms ( E, g).

esult is Witt’s theorem: let £, F’ be two subspaces of E and f be a linear

R ———"Y



13.4 >Z WNOmSHOHL}h PLANE (B O} Show that O(E) |
commutative unless E = Art, over the field it .. thrée m_mamm ts. :
13.5 mxomwﬁﬂz_ﬁ}r.H.m_OKO.meHmZm ((B; 13.9.15)). Show there are VE
spaces m Possessing quadratic forms g such that (E, ) adniits isomorphisia
(ie. 7€0(g)) satisfying the following condition: f(x)~x is ﬂou.w%
1sotropic for any non-isotropic vector x. o o

In this chapter E denotes a vector space of dimension n +1 over a
commutative field X of characteristic different.from 2; the associated
projective space is denoted by P(E), and p: E\0— P(E) is the
ccanonical projection. We denote by Q(E) the ‘vector space of
quadratic forms over E, and by PQ( £ the associated projective space
P(Q(E)); the polar form of ¢ & Q(E) is denoted by P. We will
always have n > 1. . -

14.A Definitions ([B, 14.1))

A ( projective) quadric in. P(E) is a non-zero element « of PQ(E), Le. a
-quadratic form. g, over E, considered up to a non-zero scalar: Such a form g
representing the class « is.called an equation. of a, o o

The image of o, denoted by im(a), is defined as p{g~}(ONDY; it is the
image in P(E) of a cone of £, and it may be empty, The rank of a is the rank
of one of its equations; the'quadric is called degenerate if g is degenerate, and
proper otherwise. When »n =72 we usé the tefm conic instead of quadric.

14.B Notation, Examples ([B, 14.1])

If & is a quadric in P(E) and §= P(F) is a (projective) subspace of P(E), we
define the intersection of « and § as the quadric having. g]r as an equation
(where g is an equation of @) denoting this intersection by aN S we have,
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fine Quadrics

Figure {4.G:

In all of this chapter X will be an affine space of finite. &.Ennm.ﬁos
n=1 over a commutative field of characteristic # 2, We shall use (cf.

chapter 5) the projective completion X'= XU ooy of X, where the
hyperplane at infinity.is soy = P(X).

Problems

14.1 THE COMPLEX QUADRIC AND THE GRASSMANN MAN.
([B, 14.8.4]. Let C(n) be the complex quadric in dimension » (cf. 1
the unique non-degenerate quadric of the complex projective spac
given in homogeneous coordinates by the equation 57,422 = 0. .

‘Show that. C(#) is" homeomorphic to the Grassmann manifold of
lines of p* (R), which is the same as the set of ‘oriented two-dimensional
subspaces of R**L,

14,2 SIX POINTS ON THE SAME CONIC (B, 14:8.11)). Let a be 2
conic, { @, b; ¢} and {4, b, ¢’} two self-polar triangles with respect to ¢
that the six points @, 4, ¢, a’, &, ¢’ belong. to one single conic.

14.3 HARMONICALLY INSCRIBED QUADRIC ([B, 14.8.10]). We s
the. proper quadric &' is harmonically hiscribed in a if trace (o'~
Interpret this condition geometrically.

Deduce that two. triangles which are self-polar with respect to t
conic are circurscribed around onesingle conic, Prove also that if thé
triangle inscribed in a conic C and circumsecribed around a conic ¥; every:
of € from which it i§ possible to take tangents 16 I is the vertex of a-f
‘inscribed in ¢ and circumscribed around T

Show finally that the circle circumscribed around a triangle circumns
-around a parabela passes through its focus.

5.A Definitions ([B, 15.1])

An affing guadratic form over X is a polynomial over X' whose degree is F.m.m
than or equal to 2 (cf. 3.E); we denote by Q(X} n.vm vector space of such
polynomials. The symbol § of g € Q(X) is a polynomial of degree 2 over X. F.
every vectorialization of X, we can-write ¢= ¢, + ¢ * qq. where g, € K, g, is
a lincar form, and ¢, =3, . o |

An {affine) quadric-in X is an element « of the projective space QA(X) =
P(Q( X)) such that, for = p(g), we have .w... #* o.. If o= plg), we say Em..ﬁ g1is
1 egiation of & if n =2 weuse the term eonic instead of quadric. The image
f o is im(a) = ¢7(0),
o mﬂ wm_wmmdw WME WNHS X, we see that there is a bijection : _un.ﬁ..ﬁnwn the dffine
quadrics of X and the projective quadrics 8 =& of X m:mr Emm._.ﬁ m. } does :nﬁ
...w..u:ﬂ&.: ooy. Under this noﬁnmﬁonnnsna it is true that im{e) =1im{&)}N X and
@Nocy =& if &= p(g) for an equation.gq .om...a.. . o L

Wesay that n is proper if & is; the rank of « is that of & and the index of d
ig the rank of a. .
Expressed in an affine-frame, an equation g of e will be:

Yaxx; 42y bx;+ ¢, where =3, Oy X, X, {1)

i
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here ¢ isa positive definite quadratic form over the vectotialization X, and
s the center of &, . o T
The theorem of Appolonius says the Tollowinig: let & w_o”. an n_gmwﬁ .4::
ter g, and let {m,},_, » be a set of points of & such that the directions
m. (i u.nr.:.. i) .mﬂn..non_,.mwwa (which means that the lines {a, m;) moe.:. aset
af mo_d.cmm:n &waﬁnmm of &, in the sense of 15,C). ..E&u.. .moH. each £, Em sum
R .QEBQ:. ooy ) OF the Gram determinants of all the k-glement
e n ! A . - . . . . . . L
Amrmﬂm .ohm_ the m, is a constant, depending only on q...m:a not on Em _.uro_on o.ﬁ
16 m,. The cases k=1 and k'=n are particularly interesting; see problems
i
3 and 154, and 17.D.2.

15.C Polarity ([B, 15.5])

Polarity relative to a proper afling quadric @ i5'by definition the
polarity relative to &; it is a relation in. X, , orif necessary in X U o0y
and chapter 5), .

It is easy to see that the following three conditions are equivalént
C'=o0x of the hyperplane at infinity is not at infinity. In this situatio:

nﬁmmﬂmn.nmmomﬁwﬁm_ﬁEq hyperplane oo is not tangent to X, and

| .S.s. Mw“

that « is a certral quadric, for-in effect c=0o0} is a center of symm
imf a).
If(&)...,8,) is a'point in X, its polar hyperplane relative to the qQuadrip:
equation (1) (15.A) has the following equation (ct. 14.E): -

M __n.._.__‘....m_{.&‘___.. |T Mm& ﬁmm_ + unh....v +e=,.
i i

The equations of the center (X450, x,) are then

.M.P.”,.H.‘,.\ +b,=0 (i=1,,.., n}.
J

An interesting case of polarity is when we take 2 point a €0 y; if w is t
quadric; the polar hyperplaiie a* of g is an affine hyperplane passing
the center ¢, and the affine reflection through the hyperplane a*- and
to the direction 4 (cf. 2.D) leaves invariant the image of a. We say that
diametral ‘hyperplane for a; for m=2 we call it a diameter. If we take
dy,++ .y @y I 00y Such that the simplex {¢, a,, ... va, ) is self-polar relati
(el. 14.Ey (which here ‘means that the points «; are pairwise conjugai
respect {0 «), then the lines going through ¢ and whose directions. ar
dre said to form-a set'of conjugate diamigters of o " .

diameters are all parallel and their direction is that of the point at infinit

Figure 15.D.

15.D Buclidean Affine Quadrics ([B, 15.6)

Becanse of 13.B, every proper affine quadric in a Euclidean affine sp; Vil
‘have, in some appropriate orthonormal frame, one of the following equations: o
, " . i _ : Problems
e~ ¥ axd+l o Yaxd- S apnd+2s
i=1 i=r+1 i=1 F= ]
where all the 4; are strictly positive, The quadric is called an. ellipso
im{e) =& can be written as

%“%madﬂ {xe X alvi=T

= :15.1. ARCHIMEDES’ METHOD FOR THE AREA OF THE w}w}wﬂuﬁ}
.ﬁ.w.. .m.mu.q..mc. Let C=im(a) be the non-empty image of a proper plane cenic,
et mbea w.omm.ﬂ on the plane, and (i, a) and"(m,b) two m;@ﬁ.ﬁmumnﬁm to:
2l L™ ’
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diameter of o, and that-the tangénts'io fCND atep
{a, b5, When a is a parabola, show that D always iniersects C, a1
_ﬂnmm.@o:g is-the midpoint of i and (a+ b) /2. Deduce a .mnoBm:..._.n.. on
tion for a sequence of points on an arc of pardbola, given two points an

{angents at these points.

- Observing that the area of the triangle {m, a’, b"} in figure 15.1 is
the area of {m,a,b)}, deduce that the shaded area is 2/3 of the:
{m, a, b) (this imiting process is due 1o Archimedes).

Figure 15.2. 1.

153 METRIC RELATIONS IN ELLIPSOIDS: 1 ([B, 15.7.9]). Let Q be the
image. of an éllipsoid in a-three-dimensional Euclidean affine space, and let x
be a fixed point in the Famwm of @ (cf. 15.D). Take three orthogonal lines
D. E, F through x, and let the intérsection points of ¢ with D be a, b, with E
be ¢, d and with F beé e, f. Show that the sum

xa-xb  xcxd  xe-xf

is-constant. Give examples and generalize,

Now consider threé lines D, E, F through x whose directions-are pairwise
conjugate relative to Q; and let the intersection points of ¢ with D be q, b,
with £ be ¢, d and with F be e, f. Show that the sum

Xa-%h+ e Xd+ %o xf
is consiant.

154 METRIC RELATIONS.IN ELLIPSOIDS: 1k ([B; 15.7.20]). Let & be an
ellipsoid with center O in an .-dimensional Euclidean mazm..mnnqﬁamﬂm.g.

We consider the sets {a,};uy, ., of points of & such thar the vectors Og; are
orthogonal. Show that

W.L. 1
i1 (0a)
is & constant. .
Use this fact to find the envelope of the hyperplanes containing the ;..
Using polarity with respect to a sphere centered at O {cf. 10.B), show that
the precéding rtesuit implies that the locus of the points which are the
intersection of # orthogonal hyperplanes tangent to an ellipsoid is a sphere
{called the orthoptic sphere of that ellipsoid).
15,5 NORMALS TO A QUADRIC FROM A GIVEN POINT ({B, 15.7.15]}.
Let ¢ be a guadric in a 3-dimensional Buclidean affine space; and let. m bea
point. Show that the number of normals 1o O that pass through i is “in

Figurc 15.1.2

15.2 ELLIPSES .>ZU PARALLELOGRAMS Given a parallelogram, sh
NE:. there are ellipses inscribed in them so that the tangency .nom:.ﬁ.m..mwo.m :
middie of each side. With the notation of figure 15.2:1, show that such

ellipse always satisfies ca =V2 8. .

general” -equal to six, Show that the feet of all normals to Q from m are



a2 3. Summ

contained in a second-degree cone émw vertex rm and containing the cen
¢ and the paraliels to the axes.of ¢ which go through mr.

15.6 HOMOFOCAL QUADRICS ([B, 15.7.17]). 'We consider in R® the fa
of quadrics Q(A) whose equations are
2 b3 2
m 1=,
at+ X m._:; _%i,__

Figure 15.4.

Chapter 16
Projective Conics

Tn all of this chapter, P~=P(E) is a projective plane. over a
commutative field K of characteristic # 2; we put P*= P(E*). We
will often identify a point m& P with its homogeneous coordinates
(%.3,.2).

We will generally fix a conic a @ PQ(E) and its image C.=im(a)
(if most cases, a will be proper and have non-empty image), as well as
one equation-g for &. For « a point of C, the tangent to- C at a will
sometimes. be denoted by {a, a).

16.A Notation ([B, 16.1)
The general equation of a conic will be writien
g=ax>+a’y¥+ a"zt + 2hyz +2b'zx + 24 xy.

Depending on whether the triangle p(1,0,0), 7(0,1,0), la 0,1) is:inscribed in

C, self-polar relative to C {(cf. 14.E) or “bitangent to C ? we have three

crmnlifiad amastinne far the ronie chnwn 1 the ficure helowe



16.F Pencils of Conics (IB, 16.5))

Recall (cf, 14.D) that a pencil of conics i
set of ‘conics with equations Ag -+ Ag'
(and we assume that at least one of th
K. In the algebraically closed case, a
”Eﬂmmumﬂ.m gtven proper conic (€ in a fixed set {(m;; @)} of point
mmnmgum.mhem = 4. So there are five types, I, II, Bl z_._m:m..< . o_,..ﬁ m.s.m ;
drawings in [B, 16.5)). . T ot
The degenerate co .
u.mrum of .:nam in case 11, one pair of lines and a d
of lines in case IV, and a double line in case V; see figure 16.E.

tecall 14.F. We will have Here five types I*, JI*, III*, IV* and V* of
ngential pencils of conics. Geometrically, IIT=IiI* and V=V* (bitangent
1d superosculating conics. For case 1*, see problem 16.6.) Recall that the
natrix that gives the envelope equation is the inverse of that for the puncural
uation. . ‘

16.H The Great Poncelet Theorem ([B, 16.6])

This is a delicate theorem, and its proof is involved. Tt applies in the
algebraically closed case, and it says that if C and T are two conics such that
there is an n-sided polygon, all of whose ‘vertices aré on € and all of whose
edges are tangent to: T, then there are infinitely many such polygons, and one
of the vertices cati be arbitrarily chosen ot C. See simple. particular cases in
problems 10.2, 14.3.and 16.5.

16.1 Affine Conics ([B, 16.7))

The equation of an affine ¢onic is
ax®+2bxy + cy* +2dx +2ep + f=0.

Figure 16. E. The conic is proper if

d

ei=+ 0,
f

its points at infinity are the lines of slope #, where & satisfies the equation

2o R
oy o

s a line in PQ(E), or, analytically a+2bd ¥t =0
\ 2&0.8 4.4 are two equations of cor
em 1s proper), and (A, X) runs-thro

pencil of conics is the set of conics H.H.O@H@Bm

16.1 TRIANGLE CIRCUMSCRIBED AROUND A CONIC (B, 16.8.2]).
Show that if a,b,¢ is a triangle circumscribed around C, and o, 8,v are the
tangency points, then the segments ae, b8, cy -are concurrent. Use only ana-
lytic geometry in your proof.

nics in these pencils are: three pairs of lines in case I
louble tine in cdse ITI, one p:
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tangent to C, and a scalar k such that ¢’= g+ kd® where ¢,¢’,d are
equations of C,C’, D, respectively (cf. 16.E). Notice that if the field X is
' closed, € and € are indeed tangent at two distinct points.

Suppose the field X is R or € (if not, we must use an algebraic closure of
K Let f be a non-involutive homography (different from the identity) of a
- proper conic- C. Show that the set of lines (m, xo&uv for m ranging through
. C, is-the set of tangents 1o a proper coni¢ which is bitangent to C in the sense

‘above. Prove .a converse statement. For two such bitangent conics, prove the
- great Poncelet theorem (16.H).

- 16.6 TANGENTIAL PENCILS OF CONICS (B, 16.8.10]). The figure below
shows several conics belonging to the same pencil. Prove rigorously that there
. -are regions of the plane which do not intersect any of the conics of the pencil.

16.2 THEOREM OF PASCAL ([B, 16.8.5]). Let C be .any conic
a,b,c,d, e, f any six points on C. Then the points {a, bYNY(d,e), (b
(e, ), {e,dYN{ S, a} are collinear. Prove this result using calenius, by t
a projective base formed by four of the six poisnts considered.

M- e s e  — — —————— =T

Figure 16.2.1.

16.3 CROSS-RATIOS FOR A CONIC ([B, 16.8.6]). Lei C be the non:
image of a proper conic, and let p,q, # be such that C is tangent to-
and to pr at r. Show that, forany m, n & C, the following holds (cf. 16.

fg,r,m,nlt= [ pq, pr, pm, pn).

Figure 16.3.1,

. i Figure 16,8.1.
16.4 COMMUTING INVOLUTIONS ({B, 16.8.7]). Show that two i N
tions of a proper conic whose image is non-empty commute if and-only |
Frégier points are conjugate (cf. 16.D). .
16.5 THE GREAT PONCELET THEOREM FOR RITANGENT (O}

16.7 INTERSECTION OF TWO ooZ,Om oqmw A Ezﬁm FIELD ([B,
' 16.8.16]). Study the intersection of xz — y* =0 and xy~— 2% =0 over the moa

K <rith threa alements
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hyperbola C, the two tangents and the lines (m, £3,{m, {7 have th
bisectors.

7.1 CHORDS OF A CONIC ([B, 17.9.20)). Given a fixed point on a conic,
consider all the chords whose angle, seen from that peint, is a constant. Find
‘the envelope of these chords. Analyze the special case of the right angle.

7.2 COCYCLIC POINTS AND NORMALS TO AN ELLIPSE ({B; 17.7.3
7,9.15, 17.9.10]). Consider the ellipse parametrized by (acost, bsint), where
fie parameter ¢ is defined modulo 27, and put & = tan¢ /2,

17.C Using the Cyclical Points ([B, 17.4, 17.5])

We denote by & the projective conic in X obtained by complexify
projective. complétion & of the conic a (cf. 15.A). On the line at. infini
the position of the points at infinity of & can take interesting special
relative to the cyclical points {7, J} (cf. 9.D): . .
— 4 is an equilateral hyperbola if and only if its points -at infifa

conjugate relative to {1, J };

(i) Show that the four points corresponding to values of the parameter
(t)i-1.21,4 are on the same circle if ‘and only if

f+ty 1y + 1, =0 (mod27).

.Q..bﬁomw&ﬂmoc_.no.mﬁmhib?rm.ioumnmzw.nmﬁ.mcuswa.%nnaﬁaﬁ.
where the osculating circles at m, intersect the ellipse (we choose n, #m,
except in the superosculating case). Show that if the m, are cocyelie, then
so are the #,. .

iii) Show that the normals to the ellipse through the points parametrized by
(#)=1.73,4 are concurrent if and only if the corresponding &, satisfy the
following. two conditions;

B9, + 4 By +D 8, + By - By + Sy =0,

~ In this case we have 1, +1; + {3 + £, = w(mod 2.

iv) If four points in an ellipse have concurreni normais, then the circle
passing through three of them also passes through the point diametrically
opposite to the fourth (theorem of Joachimstal). .

7.3 TANGENT CIRCLES TQO TWO CONJUGATE DIAMETERS ([B,
17:9.21]). Show that the tangent circles to two variable conjugate diameters of
ait ellipse, and whose center is on the ellipse, have constant radius.

174 TANGENT ELLIPSES TO A CIRCLE ([B, 17.9.23]). Given a ciréle C
X and two points.a, b on C, consider the ellipses E which are tangent to. C,
ass through @ and b, and whose center is the midpoint of .ab. Show that all
such ellipses have the same excentricity.

17.5 NORMALS FROM A POINT TO A PARABOLA ([B, 17.9.18.2)). Show
that the normals at three points m, m’,m” of a parabola P are concurrent if
and ‘only if the barycenter (m+m’+m”)/3 belongs to the axis of P. Also if
and only if the circle passing through m, m’, m” contains the vertex-of P,

— g it a circle if and only if its points at infinity are {1, J } themselve
We can_see immediately that the Laguerre formula (8.H) and the f:
the cross-ratio in 16.C is conistant imply the condition we found in 1
four points to be on the same circle. See also problem 16.3, .
Combining the above with the theorem of Desargues for pencils o
(cf. 14.D), taking D to be the line at infinity of X, one obtains a nu
resulis concerning pencils of Buclidean conics, For instance:

— the directions of the (syminetry) axes of a conic C are the points &0
are harmonic conjugates relative to {7, J'} and .also relative to the p
infinity of G ) _ )

— a pencil of conics contains a single equilaterdl hyperbola, unless it
only such curves;

—-a pencil of conics contains a circle if and only if the directions of-th
are fixed; ‘in particular, the common chords have the same in¢l
relative to- the axes, and the axes of the two parabalas in the pen
orthogonal; .

— the. centroid of four cocyclical points on a parabola is located. on 1

The foci of C are thé points through which the tangents to C con
cycticil points: cf. [B, 17.4.3].

Ly H

17.D Notes

1. The set of plane-conics (ellipses and hyperbolas) which share two ¢
foci f,f’ satisfies a number of properties. 1t forms a tangential pencil{g
14.F). For details, see [B, 17.6.3]; and.also problem 15.6. . .
2. The theorem of Appolonius (cf. 15.D); applied to the special case ¢
says that the-area and the suin of the squares of the sides of a paralle
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We can obtain the circles-of Villarceau in"an ¢lementary fashion b
the torus by oblique bitangent planes. We'car 150 wtilize the theory of
see problems 18.7 and 20.C, as well as [B, 20.7.21.

18.E The Mobius Group ([B, 18.10])

T

The spheres § is a homogeneous space under a group {cf. 1.B) strictly
than O{d +1) (cf. 18.B), which is a Lie group of dimension [d(d +1)]
larger group, cailed conformal group ‘or Mobius group of S7 and dey
Msb(d), has dimension {(d +1)d +2)]/2. It can be obtained. in:s
equivalent ways, .

First, 1t is the group of conformal transformations.of 7. It is-also the or
of transformations of S¢ generated by O(d +1) and the pull-back
stereographic projection of the vector homotheties. 6f R, Also the Bro
transformations of $¥ which transform every subsphere into a subsphe
thé group formed by the restrictions to §¢ of all inversions (cf. 10
reflections through hyperplanes in RY*! which leave S¢ invariant. Finally #
can be identified with the projective group of the quadric « with equ
X + X7, (of. 14G)in P(RE?); the idea is to homogenize the'a
equation T x7 =1 of 5 (see also chapter 15).

i= ]

Figuce 18.1.2:

H. Bouasse, Appateils de mesure, Delagrave, 1917.
Problems

aw..u. LOXODROMES ({B, 18.11.3]). Recall that a _oxemmﬂﬂwq or .%Edv line,
of the terrestiial sphere is 2 curve that makes & constant m:m_a..ézr the
mefidian at-each point, (In the projection of meoﬁor_ .woxo.&nwzm.m c@.nomMn
straight lines; they represent the trajectories of a m..Eﬂ E.womm helm is kept m.xwr .
See “..m.,. 18.1.8.2].) Show that, using stereographic projection centered at the

18.1 THE SPHEROMETER ([B, 18,11.1}). Let A denote the threé vestice
an equilateral triangle of side a, B a point of the perpendicular to the:trigngle
‘passing throngh its cenfer, and e the distance from B to the plarie defined b
the triangle, Show that the radius of the Sphere passing through B an
three points 4 has the value R = (a® +32%)/6e. : .
One can build a device to measure the radius of a spherical surface by usin
the formula above. In the case of the dévice shown in figure 18.1.2, expls
function of the lever systein at the top of the spherometer

problem 6.6.

18.3 THE STRICT TRIANGLE INEQUALITY HOLDS FOR THE SPHERE

A

a, b, ¢ between any three points. x, y, z in the sphere verify the inequalities

LI

b~clsash+e,

and equality can only take place.if the three points are. in the same plane (ie.
they- are aligned on a great eircle, cf, 18.A).

184 UNIVERSAL RELATION BETWEEN DISTANCES OF POINTS IN
544

Figure 18.1.1.

north pole (18.A), loxodromes become logarithimic spirals (cf. 9.E). See also.

(B, 18.11.13]). Prove; using Gramx determinants (cf. 8.J), that the distances:

B, 18.11.4]). Show that if (x,);; . ¢4y are d-+2 points in S¥% their
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distances x;x; always satisfy the relation
n._onom.A X 5 ={},

18,5 PLANE TRIGONOMETRY AS THE LIMIT OF SPHERICAL
ONOMETRY ([B, 18.11.9]). Generalize formulas (1}, () and (3) of 1
the intrinsic rhetric of a sphere of radius R. Then find out what the mo
‘become when- R approaches infinity.

18.6 HOOKE JOINTS, HOMOKINETIC JOINTS ([B, 1811.16]). Consid
Hooke ._.o_E (figure 18.6.2) whose axes-make an angle &. The ratio betws
iristant angular velocities. of the two shafts is a function of the angle
the plaiie of either fork and. the plane containing the axes of the shaft; fi
worst possible value for this ratio. To do this, take two great cirgles C,:
making an-angle #, and two moving points m (¢}, n(t) on the circles
m(t) r(t)=m/2. Find the value of the worst possible ratio when. -
n/4, w/6.

Show that if two shafts 4, 4’ are joined by Hooke joints to a third
whose. ?&a are in the same Emnﬁ in such a way that 4, B, A’ are in th
plane and the angles of B with .4 and A’ are the same { homokinetic joini
A-and A’ always have the same angular velocity.

113

18.7 DUPIN CYCLIDS ({B, 18.11.19]). Let £, 3", 2" be three spheres in R,
show that, for certain configurations of these spheres, the set of spherés tangent
1o M_ % 5 has for envelope the surface ‘obtained from a torus of revolution
by inversion relative to an appropriate point. Deduce several properties of such
surfaces, which we will encounter again in 20.C and which are called Dupin
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11 /Y3 ) or cos™ /¥3:); study their behavior under the action of Is{ ).
w that, up to isometries, P contains exactly one five-point and one
point equilateral set, and their sides have length cos™1(1/V3),

HYPERBOLIC QUADRILATERALS WITH THREE RIGHT AN-
LES ([B, 19.8.7)). Find the fourth angle of a quadrilateral in the hyperbolic
ane such that three of its-angles are right and the lengths of the sides which
pinl two right angles are ¢ and &.

9.3 UNIVERSAL DISTANCE RELATION IN HYPERBOLIC SPACES

15.8,16)). Show that in n-dimensional hyperbolic space every-set of n+2
oints z.{i=1,..., n +2) obeys the relation

i

mmﬁﬁoi d(z, NL“_ v =0.

9.4 REGULAR HYPERBOLIC POLYGONS ([B, 19.8.20]).. Here # is an
teger = 3. We want to study #-sided polygons in the hyperbelic plane, all of
hose sides are equal and ail of whose angles have the value 2m/#n. Are there
ch-polygons for any n? Are they unique up to isometries?

Figure 19.D.2.

Figure 19.D.3.

. >u.o.:.ﬁ.H an.m_ o, called the upper half-space model, wm.ovam:mm.moﬁ
mmﬁ.ﬁsm mversion relative to -a point on the boundary of s#;
conformal, and the segmenis are sfill circles.

Problems

19.1 ELLIPTICAL EQUILATERAL SETS (B, 19.8.24)). An equiliroitl s
of 4 metric space is any set {m,};_; ., such that all the distances ¢ (

= J) are equal. Show that the elliptic plane P contains equilateral thr
sets with side lengths ranging from 0 to 7/2; classify thém under the ac
Is(P). Show that P contains equilateral four-point sets with side’




Observe that true ‘spheres the oo
Those inside represent imaginiary spheres”
hyperbolic geometry; see 19.B), _

Pencils of spheres are the (projective) lines of S(E). They differ dependiy
on whether the line does or ddes not intersect E; see [B, 20.5.6].

The above construction allows us to: extend inversion to thie completio:
the pole ¢ is taken to o6 and oo is taken to ¢. Inversions are in fact {ha
elements of PO(p) which are refiections through hyperplanes; this mes;
generate the conformal group Mob(n) of §7.

£y:which lie “out
n?..EoEmn.Ezw,mmo.E

A

20.C Polyspheric Coordinates ([B, 20.7])

Since £ is embedded in S(E), we can represent the points of
homogengous coordinates in the prajective space S(E) (so there -

coordinates for an.a-dimensional space £9); the chosen basis will prefe;
one in which p is diagonal. Such coordinates.are called polyspheric. Oy
the hypersurfaces  of E which are quadrics when expressed in polysp
coordinates; they are algebraic hypersurfaces of the fourth degree. The
of Dupin are those which have two equal coefficients; the torus of revalu
a special case of 4 cyclid of Dupin. See problems 18.7 and 20.2. Certain
contain six families of circles: [B, 20.8.7],

Problems

20.1 TANGENT HYPERPLANE TO im(s) IN THE SPACE OF SPHE
(B, 20.8.1]). Construct geonietrically the tangent hyperplane to im(s) iz S

20.2 THE TORUS IS A CYCLID OF DUBIN (B, 20.8.5)), Show &
torus is a cyclid of Dupin (cf. 20.C).

20.3 THE THEOREM OF DARBOUX {IB, 20.8.7]). If three points o
describe three spheres whose centers are collinear, then every point of th
alsa describes such a sphere, or possibly a plane for one exceptional
Find a relation between four points of the. line-and the: centers of the
spheres they describe. .

Figure 20,3, 1..
Gabriel-K oenigs, Legons de cinétmatique, A. Hermann; 1897.




