Moduli space of *n*-marked points on a projective line

Jiayue Qi (DK 9)

Joint work with Herwig Hauser (University of Vienna) and Josef Schicho (University of Linz)

DK Statusseminar

2021.09.22.

Der Wissenschaftsfonds.

	background	loaded tree	smoothness
motiva	tion		

- The actual item that we will study today is the compactification of the moduli space of *n* pairwise distinct points on a projective line.
- The compactification is denoted by M_n . It is a smooth projective variety of dimension n 3. It has been constructed by Knudsen and Mumford.
- Their construction has been used for theoretical physics, resolution of singularities, and kinematics. It has been called "the main tool of modern enumerative geomety".
- However, their construction is very long and complicated. We will give a self-contained construction of a variety which is isomorphic to the Knudsen-Mumford moduli space, using only basic algebraic geometry.
- We will not go into details of their construction.

	background	loaded tree	smoothness
cross ratio	0		

- Given a quadruple $(p_1, p_2, p_3, p_4) \in (\mathbb{P}^1)^4$.
- If the four points are pairwise distinct, it's cross ratio is defined to be ((p₁ − p₃)(p₂ − p₄) : (p₁ − p₄)(p₂ − p₃)).
- Later we use the notation γ_q(p), where p ∈ (P¹)ⁿ and q a quadruple of four entries, to define the cross ratio of these four entries on p.
- However, if indeed ∞ is contained in one of the four entries, how do we practically compute it?
- It is normally extended to the case when one of the entries are infinity; basically just remove the corresponding two differences from the formula.

• When the four places are pairwise distinct, it's not hard to check that the cross ratio is then different from ∞ , **0**, or **1**. In other cases, the definition is the following:

•
$$p_1 = p_2$$
 or $p_3 = p_4$ iff $\gamma(p_1, p_2, p_3, p_4) = \mathbf{1}$;
 $p_1 = p_3$ or $p_2 = p_4$ iff $\gamma(p_1, p_2, p_3, p_4) = \mathbf{0}$;
 $p_1 = p_4$ or $p_2 = p_3$ iff $\gamma(p_1, p_2, p_3, p_4) = \infty$.

- If three or four places coincide in the quadruple, we say that the cross ratio is not defined.
- When this definition is clear, we can then move forward to the basic settings.

	background	loaded tree	smoothness
basic se	ttings		

- Let n ≥ 3 be an integer, we study the equivalence induced by the group action of PGL(2, C) on (P¹)ⁿ. We can also view it as a Möbius transformation applied on each entry of the sequence. (Elements in PGL(2, C) are all the 2 × 2 matrices which has non-zero determinant.)
- Two *n*-tuples are equivalent if there is a projective linear transformation transforming one into the other.
- In our setting this transformation is nothing more than Möbius transformation.
- A Möbius transformation of the complex plane is a rational function of the form f(z) = az+b/cz+d of one complex variable z;
 a, b, c, d here are complex numbers satisfying ad bc ≠ 0.

	background	loaded tree	smoothness
basic se	ttings		

- When the *n*-tuples have *n* distinct points, two *n*-tuples are equivalent if and only if all cross ratios defined by all (corresponding) quadruples coincide.
- In this case, the equivalence classes are in bijective correspondence with the points of an open subset (ℙ¹)ⁿ⁻³, which can be parametrized by n 3 cross ratios. (Because of the 3-sharp-transitivity of PGL₂, we can fix three coordinates.)
- 3-sharp-transitivity: there is a unique group element which transfers the three pairwise distinct points to another three pairwise distinct points.
- We introduce the abbreviations ∞ , **0**, **1** for the three points $(1:0), (0:1), (1:1) \in \mathbb{P}^1$, respectively.

	background	construction	loaded tree	smoothness
notations				

- N := {1,..., n}, where n ≥ 3 is a natrual number. Elements of it are called labels.
- An *n*-tuple $(p_1,...,p_n) \in (\mathbb{P}^1)^n$ is called an **n-gon**.
- An *n*-gon is **dromedary** if all its places are distinct.
- PGL₂ acts on (p₁,..., p_n) by (p₁,..., p_n)^σ := (p₁^σ,..., p_n^σ) for all σ ∈ PGL₂. The equivalent classes are called **orbits**.
- Dromedary orbits (orbits of dromedary *n*-gons) are in bijective correspondence with the points in U_n .
- U_n is defined as the open subset of all points
 (c₄,...,c_n) ∈ (ℙ¹)ⁿ⁻³ where c_i ∉ {∞, 0, 1} for i ∈ {4,...,n}
 and c_i ≠ c_j if i ≠ j, where i, j ∈ {4,...,n}. (When we
 transfer n distinct points on ℙ¹, after the transformation, they
 stay pairwise distinct.)

	background	construction	loaded tree	smoothness
notations				

- U_n is the moduli space of *n* distinct points on \mathbb{P}^1 , under PGL_2 group action.
- It is an open subset of $(\mathbb{P}^1)^{n-3}$, and $(\mathbb{P}^1)^{n-3}$ is indeed a compactification of it, which is projective and smooth. However, the first three entries are somehow special, so it is not symmetric under random permutation of the labels.
- We want to find a good compactification of U_n which is smooth, projective, and symmetric under permutation of labels.
- Basically we need to consider those orbits that are not dromedary, and make a compactification of U_n .
- We managed to find it! It is denoted by M_n , and definition comes in the next slide!

	background	construction	loaded tree	smoothness
modu	li space			
(Denote by $T_n :=$	$\{(i,j,k) \mid i,j,k \in \{$	$\{1,, n\}, i < j < 1$	<i>k</i> }.

- Sometimes we use short notation for the elements in T_n, for instance, 123 represents {1,2,3},etc.
- $M_n := \{ p \in ((\mathbb{P}^1)^n)^{T_n} \mid \forall t = (i, j, k) \in T_n : p_i^t = \infty, p_j^t = \mathbf{0}, p_k^t = \mathbf{1}, \forall t_1, t_2 \in T_n, \forall q \in Q : \gamma_q(p^{t_1}) = \gamma_q(p^{t_2}) \text{ if both sides are defined} \}.$
- Note that we define M_n only for $n \ge 3$, otherwise there is no triple to consider..
- Let's see some examples, so as to understand better the definition.
- When n = 3, M_3 consists of only one element which can be denoted as p. p contains only one 3-gon: $p^{(1,2,3)}$. We have $p_1^{(1,2,3)} = \infty$, $p_2^{(1,2,3)} = \mathbf{0}$, $p_3^{(1,2,3)} = \mathbf{1}$.
- Since the number of entries is not enough to talk about cross ratios, with this we finish the exploration of M_3 .

title

background

construction

loaded tree

smoothness

moduli space: examples (M_3)

$$p^{123}$$

$$\bullet e_1 = \infty$$

$$\bullet e_2 = 0$$

$$\bullet e_3 = 1$$

Figure: Here is the graphical representation of the unique element in M_3 , inside which the vertical line segment represents \mathbb{P}^1 .

moduli space: examples (M_4)

- When n = 4. M₄ consists of infinitely many elements. Each one of them contains four elements: p¹²³, p¹²⁴, p¹³⁴, p²³⁴. Denote any element in M₄ by p.
- When four entries of p are pairwise distinct, we have that $p_1^{123} = \infty$, $p_2^{123} = 0$, $p_3^{123} = 1$, assume w.l.o.g., $p_4^{123} = a$, where $a \in \mathbb{P}^1 \setminus \{\infty, 0, 1\}$.
- With the requirement on cross ratios in the definition of M_n , we can calculate out precisely the other three 4-gons.

• Since $\gamma_{1234}(p^{123}) = \gamma_{1234}(p^{124})$, we know that $p_{3}^{124} = \frac{1}{a}$. Analogously, we obtain that $p_{2}^{134} = \frac{1}{1-a}$ and $p_{1}^{234} = \frac{a}{a-1}$. backgr

ckground

construction

loaded tree

smoothness

moduli space: examples (M_4)

	p^{123}	p^{124}	p^{134}	p^{234}
				a
•	$e_1 = \infty$	$e_1 = \infty$	$e_1 = \infty$	$e_1 = \frac{a}{a-1}$
•	$e_2 = 0$	$e_2 = 0$	$e_2 = \frac{1}{1-a}$	$e_2 = \infty$
•	$e_3 = 1$	$e_3 = \frac{1}{a}$	$e_3 = 0$	• $e_3 = 0$
•	$e_4 = a$	$e_4 = 1$	$e_4 = 1$	$e_4 = 1$

Figure: Here is the graphical representation of an arbitrary element in M_4 , of which all four entries are pairwise distinct. $\gamma_{1234}(p) = a$. Note that here if we apply a PGL_2 group action to the 4-gons of this element p, we obtain only one orbit, the structure of which is a 4-gon with four pairwise distinct entries.

- Since we only discuss here the situation when n ≥ 3, there should be at least three entries. So the only case that is left is when two entries coincide.
- There are in total three elements in M_4 in this case.
- First one is $p_1^{123} = p_4^{123}$. Then by the requirement of cross ratio in the definition, we deduce that $p_2^{124} = p_3^{124}$, $p^{124} = p^{134}$ and $p_4^{234} = p_1^{234}$.
- Second one is $e_2 = e_4$ on p^{123} and p^{134} , $e_1 = e_3$ on p^{124} and p^{234} .
- Third one is $e_3 = e_4$ on p^{123} and p^{124} , $e_1 = e_2$ on p^{134} and p^{234} .
- We will show the first one in a graphical way in the next slide.

construction

loaded tree

smoothness

moduli space: examples (M_4)

$$p^{123} \qquad p^{124}/p^{134} \qquad p^{234}$$

$$e_1 = e_4 = \infty$$

$$e_2 = 0$$

$$e_3 = 1$$

$$e_4 = 1$$

$$e_4 = e_1 = 1$$

Figure: Here is the graphical representation of an element which has two entries coincide in M_4 . $\gamma_{1234}(p) = \infty$. Note that here if we apply PGL_2 group action to the 4-gons of this element in M_4 , we obtain two distinct orbits. One of which has $e_1 = e_4$ and the other has $e_2 = e_3$.

	background	loaded tree	smoothness
loaded gi	raph		

- Let x ∈ M_n. (so x is a set of n-gons fulfilling the cross ratio condition)
- If p is an n-gon of x, then a subset I ⊂ N is called a cluster of p or of its orbit (under PGL₂ action) [p], iff ∀i, j ∈ I, k ∈ N \ I we have p_i = p_j ≠ p_k.
- A cluster *I* is **proper** if and only if it has at least two elements.
- For each $x \in M_n$, we define a graph (V, E) as follows.
- V is the set of all PGL₂-orbits of *n*-gons of x.
- There is an edge between [p] and [q] iff [p] has a cluster I, [q] has a cluster J and (I, J) is a bi-partition of N.
- For each vertex v, H(v) is the set of labels i such that $\{i\}$ is a cluster of v. We call it the **singletons** of v.

- The graph (V, E), together with the subsets H(v) for v ∈ V, is called the loaded graph of x and denoted by L(x).
- If x ∈ U_n, then all its n-gons are PGL₂-equivalent. Hence L(x) has only a single vertex v. There are no proper clusters, hence also no edges in L(x). Every node is a singleton, hence H(v) = N.

• Let's see some examples.

loaded graph: examples-recall

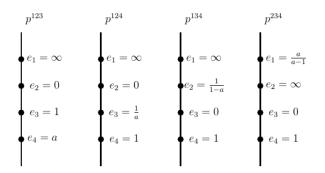


Figure: Here is the graphical representation of an arbitrary element in M_4 , of which all four entries are pairwise distinct. $\gamma_{1234}(p) = a$.

• For the above element in M_4 , we get only one orbit under the PGL_2 group action. Therefore, in the loaded graph, there is only one vertex v.

•
$$H(v) = \{1, 2, 3, 4\}.$$

• Graphically, we can view it as the following.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

construction

loaded tree

smoothness

loaded graph: examples-recall

$$p^{123}$$

$$\bullet e_1 = \infty$$

$$\bullet e_2 = 0$$

$$\bullet e_3 = 1$$

Figure: Here is the graphical representation of the unique element in M_3 , inside which the vertical line segment represents \mathbb{P}^1 .

- For that unique element in M_3 , there is only one orbit under PGL_2 group action. Hence there is only one vertex for the loaded graph.
- Singletons of v are {1,2,3}, we can view it graphically as the following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

loaded graph: examples-recall

$$p^{123} \qquad p^{124}/p^{134} \qquad p^{234}$$

$$e_1 = e_4 = \infty$$

$$e_2 = 0$$

$$e_3 = 1$$

$$e_4 = 1$$

$$e_4 = e_1 = 1$$

Figure: Here is the graphical representation of an element which has two entries coincide in M_4 . $\gamma_{1234}(p) = \infty$.

loaded graph: examples

- If we consider the PGL_2 group action on this element in M_4 , there are two orbits: one with $e_1 = e_4$ and pairwise distinct with e_2 , e_3 ; the other with $e_2 = e_3$ and pairwise distinct with e_1 , e_4 .
- To view it graphically, see the next slide.

title

construction

loaded tree

smoothness

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

loaded graph: examples

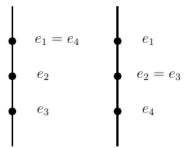


Figure: Two orbits of an element in M_4 where two entries coincide, under PGL_2 group action.

title background construction loaded tree smoothness

loaded graph: examples

- Continue with this element, there are two vertices in its loaded graph, v₁ and v₂. H(v₁) = {2,3}, H(v₂) = {1,4}.
- How about edges?
- Since orbit v_1 has a cluster $\{1,4\}$, v_2 has a cluster $\{2,3\}$, they together is a bi-partition of $\{1,2,3,4\}$. So there is an edge between v_1 and v_2 .
- We see this graph in the following:

Figure: Note that here the vertex on the left represents v_1 and on the right represents v_2 .

loaded graph: properties

let $x \in M_n$.

Lemma

A cluster $I \subset N$ cannot be a cluster of two distinct orbits of x.

Lemma

If J is a proper cluster of x, then $N \setminus J$ is also a (proper) cluster of x.

Remark

From the above two lemmas, we know that for any proper cluster of v, there is a unique edge corresponding to it in the loaded graph (where v is one of its vertices).

construction

loaded tree

smoothness

loaded graph: properties

Lemma

Every label $i \in N$ is a singleton of exactly one orbit of n-gons.

Remark

Non-empty sets H(v) form a partition of N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

loaded graph: properties

Lemma

For every orbit v, we have $|H(v)| + \deg(v) \ge 3$, where $\deg(v)$ is the vertex degree with respect to the loaded graph (V, E).

Remark

Every orbit must have at leat three distinct places, by definition.

loaded tree

Lemma

For any $x \in M_n$, the loaded graph of x is a tree.

- proof sketch:
- First we show by a proper inclusion of clusters that there is no cycle in the graph.
- Then we show by induction that for any two vertices *u*, *v*, there is a path in (*V*, *E*) connecting them.

A "loaded tree with labeling set N" is a tree (V, E) together with a collection $(H(v))_{v \in V}$ of subsets of N so that its non-empty elements form a partition of N, and that $|H(v)| + \deg(v) \ge 3$ for each vertex v.

Theorem

Let (V, G, H) be the loaded graph of $x \in M_n$. Then (V, G, H) is a loaded tree with n labels.

Converse statement also holds.

Theorem

Let (V, G, H) be a loaded tree with n nodes. Then there exists a point $x \in M_n$ such that L(x) = (V, G, H).

We denote loaded tree of $x \in M_n$ as LT(x).

loaded tree: application

- Here we want to apply the second theorem on last page, trying to find all loaded trees of some elements in M₅. (basically, all loaded trees with 5 labels?)
- Note that loaded trees is just one way of grouping the elements in M_n . One loaded tree can represent infinitely many different elements; however, sometimes can also just represent one element.
- I will try it with some mysterious whiteboard!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

smoothness

With the help of its combinatorics structures, we can prove the following result.

Theorem

The variety M_n is smooth and of dimension n-3.

title

Thank You