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motivation

The actual item that we will study today is the
compactification of the moduli space of n pairwise distinct
points on a projective line.

The compactification is denoted by Mn. It is a smooth
projective variety of dimension n − 3. It has been constructed
by Knudsen and Mumford.

Their construction has been used for theoretical physics,
resolution of singularities, and kinematics. It has been called
“the main tool of modern enumerative geomety”.

However, their construction is very long and complicated. We
will give a self-contained construction of a variety which is
isomorphic to the Knudsen-Mumford moduli space, using only
basic algebraic geometry.

We will not go into details of their construction.
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cross ratio

Given a quadruple (p1, p2, p3, p4) ∈ (P1)4.

If the four points are pairwise distinct, it’s cross ratio is
defined to be ((p1 − p3)(p2 − p4) : (p1 − p4)(p2 − p3)).

Later we use the notation γq(p), where p ∈ (P1)n and q a
quadruple of four entries, to define the cross ratio of these
four entries on p.

However, if indeed ∞ is contained in one of the four entries,
how do we practically compute it?

It is normally extended to the case when one of the entries are
infinity; basically just remove the corresponding two
differences from the formula.
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cross ratio

When the four places are pairwise distinct, it’s not hard to
check that the cross ratio is then different from ∞, 0, or 1. In
other cases, the definition is the following:

p1 = p2 or p3 = p4 iff γ(p1, p2, p3, p4) = 1;
p1 = p3 or p2 = p4 iff γ(p1, p2, p3, p4) = 0;
p1 = p4 or p2 = p3 iff γ(p1, p2, p3, p4) =∞.

If three or four places coincide in the quadruple, we say that
the cross ratio is not defined.

When this definition is clear, we can then move forward to the
basic settings.
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basic settings

Let n ≥ 3 be an integer, we study the equivalence induced by
the group action of PGL(2,C) on (P1)n. We can also view it
as a Möbius transformation applied on each entry of the
sequence. (Elements in PGL(2,C) are all the 2× 2 matrices
which has non-zero determinant.)

Two n-tuples are equivalent if there is a projective linear
transformation transforming one into the other.

In our setting this transformation is nothing more than
Möbius transformation.

A Möbius transformation of the complex plane is a rational
function of the form f (z) = az+b

cz+d of one complex variable z ;
a, b, c , d here are complex numbers satisfying ad − bc 6= 0.
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basic settings

When the n-tuples have n distinct points, two n-tuples are
equivalent if and only if all cross ratios defined by all
(corresponding) quadruples coincide.

In this case, the equivalence classes are in bijective
correspondence with the points of an open subset (P1)n−3,
which can be parametrized by n − 3 cross ratios. (Because of
the 3-sharp-transitivity of PGL2, we can fix three coordinates.)

3-sharp-transitivity: there is a unique group element which
transfers the three pairwise distinct points to another three
pairwise distinct points.

We introduce the abbreviations ∞, 0, 1 for the three points
(1 : 0), (0 : 1), (1 : 1) ∈ P1, respectively.
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notations

N := {1, ..., n}, where n ≥ 3 is a natrual number. Elements of
it are called labels.

An n-tuple (p1, ..., pn) ∈ (P1)n is called an n-gon.

An n-gon is dromedary if all its places are distinct.

PGL2 acts on (p1, ..., pn) by (p1, ..., pn)σ := (pσ1 , ..., p
σ
n ) for all

σ ∈ PGL2. The equivalent classes are called orbits.

Dromedary orbits (orbits of dromedary n-gons) are in bijective
correspondence with the points in Un.

Un is defined as the open subset of all points
(c4, . . . , cn) ∈ (P1)n−3 where ci 6∈ {∞, 0, 1} for i ∈ {4, . . . , n}
and ci 6= cj if i 6= j , where i , j ∈ {4, . . . , n}. (When we
transfer n distinct points on P1, after the transformation, they
stay pairwise distinct.)
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notations

Un is the moduli space of n distinct points on P1, under PGL2
group action.

It is an open subset of (P1)n−3, and (P1)n−3 is indeed a
compactification of it, which is projective and smooth.
However, the first three entries are somehow special, so it is
not symmetric under random permutation of the labels.

We want to find a good compactification of Un which is
smooth, projective, and symmetric under permutation of
labels.

Basically we need to consider those orbits that are not
dromedary, and make a compactification of Un.

We managed to find it! It is denoted by Mn, and definition
comes in the next slide!
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moduli space

Denote by Tn := {(i , j , k) | i , j , k ∈ {1, ..., n}, i < j < k}.
Sometimes we use short notation for the elements in Tn, for
instance, 123 represents {1, 2, 3},etc.

Mn := {p ∈ ((P1)n)Tn | ∀t = (i , j , k) ∈ Tn : pti =∞, ptj =
0, ptk = 1, ∀t1, t2 ∈ Tn, ∀q ∈ Q : γq(pt1) =
γq(pt2) if both sides are defined}.
Note that we define Mn only for n ≥ 3, otherwise there is no
triple to consider..

Let’s see some examples, so as to understand better the
definition.

When n = 3, M3 consists of only one element which can be
denoted as p. p contains only one 3-gon: p(1,2,3). We have

p
(1,2,3)
1 =∞, p

(1,2,3)
2 = 0, p

(1,2,3)
3 = 1.

Since the number of entries is not enough to talk about cross
ratios, with this we finish the exploration of M3.
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moduli space: examples (M3)

Figure: Here is the graphical representation of the unique element in M3,
inside which the vertical line segment represents P1.
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moduli space: examples (M4)

When n = 4. M4 consists of infinitely many elements. Each
one of them contains four elements: p123, p124, p134, p234.
Denote any element in M4 by p.

When four entries of p are pairwise distinct, we have that
p1231 =∞, p1232 = 0, p1233 = 1, assume w.l.o.g., p1234 = a,
where a ∈ P1 \ {∞, 0, 1}.
With the requirement on cross ratios in the definition of Mn,
we can calculate out precisely the other three 4-gons.

Since γ1234(p123) = γ1234(p124), we know that p1243 = 1
a .

Analogously, we obtain that p1342 = 1
1−a and p2341 = a

a−1 .



title background construction loaded tree smoothness

moduli space: examples (M4)

Figure: Here is the graphical representation of an arbitrary element in
M4, of which all four entries are pairwise distinct. γ1234(p) = a. Note
that here if we apply a PGL2 group action to the 4-gons of this element
p, we obtain only one orbit, the structure of which is a 4-gon with four
pairwise distinct entries.
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moduli space: examples (M4)

Since we only discuss here the situation when n ≥ 3, there
should be at least three entries. So the only case that is left is
when two entries coincide.

There are in total three elements in M4 in this case.

First one is p1231 = p1234 . Then by the requirement of cross
ratio in the definition, we deduce that p1242 = p1243 ,
p124 = p134 and p2344 = p2341 .

Second one is e2 = e4 on p123 and p134, e1 = e3 on p124 and
p234.

Third one is e3 = e4 on p123 and p124, e1 = e2 on p134 and
p234.

We will show the first one in a graphical way in the next slide.
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moduli space: examples (M4)

Figure: Here is the graphical representation of an element which has two
entries coincide in M4. γ1234(p) =∞. Note that here if we apply PGL2
group action to the 4-gons of this element in M4, we obtain two distinct
orbits. One of which has e1 = e4 and the other has e2 = e3.
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loaded graph

Let x ∈ Mn. (so x is a set of n-gons fulfilling the cross ratio
condition)

If p is an n-gon of x , then a subset I ⊂ N is called a cluster
of p or of its orbit (under PGL2 action) [p], iff
∀i , j ∈ I , k ∈ N \ I we have pi = pj 6= pk .

A cluster I is proper if and only if it has at least two elements.

For each x ∈ Mn, we define a graph (V ,E ) as follows.

V is the set of all PGL2-orbits of n-gons of x .

There is an edge between [p] and [q] iff [p] has a cluster I , [q]
has a cluster J and (I , J) is a bi-partition of N.

For each vertex v , H(v) is the set of labels i such that {i} is
a cluster of v . We call it the singletons of v .
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loaded graph

The graph (V ,E ), together with the subsets H(v) for v ∈ V ,
is called the loaded graph of x and denoted by L(x).

If x ∈ Un, then all its n-gons are PGL2-equivalent. Hence
L(x) has only a single vertex v . There are no proper clusters,
hence also no edges in L(x). Every node is a singleton, hence
H(v) = N.

Let’s see some examples.



title background construction loaded tree smoothness

loaded graph: examples-recall

Figure: Here is the graphical representation of an arbitrary element in
M4, of which all four entries are pairwise distinct. γ1234(p) = a.
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loaded graph: examples

For the above element in M4, we get only one orbit under the
PGL2 group action. Therefore, in the loaded graph, there is
only one vertex v .

H(v) = {1, 2, 3, 4}.
Graphically, we can view it as the following.
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loaded graph: examples-recall

Figure: Here is the graphical representation of the unique element in M3,
inside which the vertical line segment represents P1.
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loaded graph: examples

For that unique element in M3, there is only one orbit under
PGL2 group action. Hence there is only one vertex for the
loaded graph.

Singletons of v are {1, 2, 3}, we can view it graphically as the
following:
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loaded graph: examples-recall

Figure: Here is the graphical representation of an element which has two
entries coincide in M4. γ1234(p) =∞.
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loaded graph: examples

If we consider the PGL2 group action on this element in M4,
there are two orbits: one with e1 = e4 and pairwise distinct
with e2, e3; the other with e2 = e3 and pairwise distinct with
e1, e4.

To view it graphically, see the next slide.
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loaded graph: examples

Figure: Two orbits of an element in M4 where two entries coincide, under
PGL2 group action.



title background construction loaded tree smoothness

loaded graph: examples

Continue with this element, there are two vertices in its
loaded graph, v1 and v2. H(v1) = {2, 3}, H(v2) = {1, 4}.
How about edges?

Since orbit v1 has a cluster {1, 4}, v2 has a cluster {2, 3},
they together is a bi-partition of {1, 2, 3, 4}. So there is an
edge between v1 and v2.

We see this graph in the following:

Figure: Note that here the vertex on the left represents v1 and on the
right represents v2.
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loaded graph: properties

let x ∈ Mn.

Lemma

A cluster I ⊂ N cannot be a cluster of two distinct orbits of x .

Lemma

If J is a proper cluster of x , then N \ J is also a (proper) cluster
of x .

Remark

From the above two lemmas, we know that for any proper cluster
of v , there is a unique edge corresponding to it in the loaded graph
(where v is one of its vertices).
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loaded graph: properties

Lemma

Every label i ∈ N is a singleton of exactly one orbit of n-gons.

Remark

Non-empty sets H(v) form a partition of N.
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loaded graph: properties

Lemma

For every orbit v , we have |H(v)|+ deg(v) ≥ 3, where deg(v) is
the vertex degree with respect to the loaded graph (V ,E ).

Remark

Every orbit must have at leat three distinct places, by definition.
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loaded tree

Lemma

For any x ∈ Mn, the loaded graph of x is a tree.

proof sketch:

First we show by a proper inclusion of clusters that there is no
cycle in the graph.

Then we show by induction that for any two vertices u, v ,
there is a path in (V ,E ) connecting them.
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loaded tree

A “loaded tree with labeling set N” is a tree (V ,E ) together with
a collection (H(v))v∈V of subsets of N so that its non-empty
elements form a partition of N, and that |H(v)|+ deg(v) ≥ 3 for
each vertex v .

Theorem

Let (V ,G ,H) be the loaded graph of x ∈ Mn. Then (V ,G ,H) is a
loaded tree with n labels.

Converse statement also holds.

Theorem

Let (V ,G ,H) be a loaded tree with n nodes. Then there exists a
point x ∈ Mn such that L(x) = (V ,G ,H).

We denote loaded tree of x ∈ Mn as LT (x).
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loaded tree: application

Here we want to apply the second theorem on last page,
trying to find all loaded trees of some elements in M5.
(basically, all loaded trees with 5 labels?)

Note that loaded trees is just one way of grouping the
elements in Mn. One loaded tree can represent infinitely many
different elements; however, sometimes can also just represent
one element.

I will try it with some mysterious whiteboard!
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smoothness

With the help of its combinatorics structures, we can prove the
following result.

Theorem

The variety Mn is smooth and of dimension n − 3.
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Thank You
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