Maker-Breaker domination number

Jiayue Qi

Joint work with Jovana Forcan (University of Novi Sad)
2021.06.22. DK seminar

Doctoral Program
Computational Mathematics
Numerical Analysis and Symbolic Computation

FШF
Der Wissenschaftsfonds.

What game are we playing?

- Given a graph $G=(V, E)$, two players take turn to claim a vertex from V that is unclaimed yet.
- One is called Dominator (the maker), the other is called Staller (the breaker).
- Dominator wins if all the vertices he has claimed form a domination set of G.
- Staller wins if he prevents Dominator from winning, that is to claim some vertex and all its neighbors, so that Dominator cannot dominate that vertex with any of his claimed vertices.
- This game is called the Maker-Breaker domination game, abbreviated as MBD game.

Maker-Breaker domination number

- The minimum number of moves for Dominator to win the game on a given graph is an invariant for the graph.
- This number is denoted by $\gamma_{M B}(G)$ when Dominator is the first one to play, and by $\gamma_{M B}^{\prime}(G)$ when Dominator is the second to play.
- Note that this number is usually denoted as ∞ if Dominator does not have any winning strategies for the game.
- This number is finite when he has a winning strategy.
- Domination number of a graph G is the cardinality of its minimum-sized domination set(s), denoted by $\gamma(G)$.
- Such sets are called γ-sets.

Today's content?

- First, we investigate the a base case for graph structures when its Maker-Breaker domination number equals to its domination number.
- Second, we figure out the domination number for $P_{2} \square P_{n}$.

Which graphs have this property?

It is obvious that $\gamma_{M B}(G)=1$ if and only if $\gamma(G)=1$.

Theorem

Let G be a graph with $\gamma(G)=2$. Then $\gamma_{M B}(G)=\gamma(G)$ if and only if G is a spring graph with 2 groups.

spring graph?

- Let $Q_{1}:=\{a\}, Q_{i}:=\left\{b_{i}, c_{i}\right\}$ for $2 \leq i \leq k$. Note that $a, b_{2}, c_{2}, \ldots, b_{k}, c_{k}$ are pairwise distinct vertices. Denote by $Q:=\cup_{i=1}^{k} Q_{i}$.
- Let A_{i} be a set of vertices such that $A_{i} \cap Q_{j}=\emptyset$ for all $1 \leq i, j \leq k$. Denote by $A:=\cup_{i=1}^{k} A_{i}$.
- We see that $A \cap Q=\emptyset$.
- Let G be a graph such that $V(G)=Q \dot{\cup} A$, and $E(G)$ be such that any vertex in A_{i} is (inclusive) adjacent to all vertices in Q_{i}, and that either $\left\{b_{i}, c_{i}\right\} \in E(G)$ or b_{i} is adjacent to all vertices in Q_{j}, c_{i} is adjacent to all vertices in Q_{k} for some $j, k \neq i$.

spring graph

- If a graph can be obtained from the described process, we call it a spring graph with k groups.
- We say that graph $G_{2}=\left(V_{2}, E_{2}\right)$ is an expansion of graph $G_{1}=\left(V_{1}, E_{1}\right)$ if $V_{1}=V_{2}$ and $E_{1} \subset E_{2}$.
- We see that any expansion of a spring graph with k groups is still a spring graph with k groups.

Figure: This is an illustration of a minimal spring graph.

spring graph and its domination sets

Theorem

Let \mathcal{G} be a graph with $\gamma(\mathcal{G})=k \geq 2$. Then the following two statements are equivalent:
(1) \mathcal{G} has at least $2^{k-1} \gamma$-sets and each of them has the form $\left\{a, \overline{Q_{2}}, \cdots, \overline{Q_{k}}\right\}$, where $\overline{Q_{i}}$ represents one element in set Q_{i}, where $Q_{i}:=\left\{b_{i}, c_{i}\right\}$.
(2) \mathcal{G} is a spring graph with k groups.

proof: $2 \Rightarrow 1$

- Let \mathcal{G} be a spring graph with k groups, and with $\gamma(\mathcal{G})=k$.
- It is not hard to see that there are 2^{k-1} many such sets, since each $\overline{Q_{i}}$ has two choices.
- We only need to show that such set is indeed a γ-set of \mathcal{G}.
- Let $S:=\left\{a, b_{2}, \cdots, b_{k}\right\}$.
- From the structure of \mathcal{G}, we know that c_{i} is either adjacent to b_{i}, or to all the vertices in some $Q_{j}(j \neq i)$, which says that c_{i} is adjacent to b_{j} or a (when $j=1$).
- Therefore, any vertex of \mathcal{G} that are not in S has a neighbor in S. This implies that S is a dominating set of \mathcal{G}.
- Since $|S|=k=\gamma(\mathcal{G})$, we know that S is a γ-set of \mathcal{G}.
- The other cases when $\overline{Q_{i}}=c_{i}$ for some $2 \leq i \leq k$ can be argued analogously.

proof: $1 \Rightarrow 2$

- Let \mathcal{G} be a graph fulfilling the condition described in item 2 .
- Let $v \in V(\mathcal{G}) \backslash Q$. Suppose there exists $q_{i} \in Q_{i}$ such that v is not adjacent to q_{i} for $1 \leq i \leq k$.
- Consider the dominating set $\left\{q_{1}=a, \ldots, q_{k}\right\}$.
- Vertex v is not dominated by any vertex in this set, which leads to a contradiction.
- Hence, there exists Q_{i} such that v is adjacent to all vertices in Q_{i}. Then we put vertex $v \in V(\mathcal{G}) \backslash Q$ into group A_{i}.
- As for the vertices in Q, suppose that b_{i} and c_{i} are not adjacent.
- By a similar argument as above, b_{i} and c_{i} must be adjacent to all vertices in Q_{j}, Q_{k} respectively, for some $j, k \neq i$.
- So far we have proved that \mathcal{G} is an expansion of some minimal spring graph with k groups, hence is also a spring graph with k groups.
- Let $V_{n}=\left\{u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right\}$.
- Let $E_{n}=\left\{\left\{u_{i}, u_{i+1}\right\} \mid i=1,2, \ldots, n-1\right\} \cup\left\{\left\{v_{i}, v_{i+1}\right\}: i=\right.$ $1,2, \ldots, n-1\} \cup\left\{\left\{u_{i}, v_{i}\right\}: i=1,2, \ldots, n\right\}$.
- $P_{2} \square P_{n}:=\left(V_{n}, E_{n}\right)$.

$\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)=n$ for $n \geq 1$, and Dominator cannot skip any moves, otherwise he cannot win.

- For $\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right) \leq n$, we propose the "pairing strategy".
- The pairing vertices are $\left\{v_{i}, u_{i}\right\}$, there are n pairs.
- Whenver Staller chooses one vertex, let Dominator choose its pairing vertex.
- In this way, he can win within n rounds.
- For the other direction, we need a proposition first.

$\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)$

Proposition

$\gamma_{M B}\left(\rho_{m}\right)=m$ for $m \geq 0$; when $m \geq 2$, Dominator will not skip any move, otherwise he would lose the game.

By $\rho_{m}(m \geq 0)$ denote the status of the graph $P_{2} \square P_{m}$ during the MBD game. This is when v_{2} is already claimed by Staller and u_{1} is already dominated by Dominator.

Figure: This is an illustration of the graph ρ_{m}.

$\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right)=n$ for $n \geq 1$, and Dominator cannot skip any moves, otherwise he cannot win.

Proof.

For the other direction, let Staller choose u_{2} for the first step.
Then we see that the remaining game is harder for Dominator to win, in comparison with playing on the graph ρ_{n}. By the above proposition, we know that Dominator needs n steps to win on ρ_{n}. Hence $\gamma_{M B}^{\prime}\left(P_{2} \square P_{n}\right) \geq n$.

$\gamma_{M B}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}\left(P_{2} \square P_{n}\right)=n-2, n \geq 13$.
For one direction, we need the following theorem.

Theorem

$\gamma_{M B}\left(P_{2} \square P_{13}\right)=11$.

$\gamma_{M B}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}\left(P_{2} \square P_{n}\right)=n-2, n \geq 13$.

- Consider the graph as the two subgraphs $A:=P_{2} \square P_{13}$ and $B \cong P_{2} \square P_{n-13}$ connected by edges $\left\{u_{13}, u_{14}\right\},\left\{v_{13}, v_{14}\right\}$, up to isomorphism.
- Let Dominator respond on A whenever Staller claims a vertex of A, and let Dominator respond on B with the pairing strategy whenver Staller claims a vertex of B.
- In this way, we see that he needs within $11+(n-13)=n-2$ steps in total, in order to win. Therefore, $\gamma_{M B}\left(P_{2} \square P_{13}\right) \leq n-2, n \geq 13$.
- For the other direction, we need another theorem first.

$\gamma_{M B}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}\left(X_{m}\right) \geq m-2$ for $m \geq 1$.
By $X_{m}(m \geq 1)$ denote the status of graph $P_{2} \square P_{m}$ during the MBD game. This is when u_{1} is already dominated by Dominator.

Figure: This is an illustration of the graph X_{m}.

$\gamma_{M B}\left(P_{2} \square P_{n}\right)$

Theorem

$\gamma_{M B}\left(P_{2} \square P_{n}\right)=n-2, n \geq 13$.

Proof.

For the lower bound, $\gamma_{M B}\left(P_{2} \square P_{n}\right) \geq \gamma_{M B}\left(X_{n}\right)$ since $P_{2} \square P_{n}$ has one more un-dominated vertex than the graph X_{n}. Hence $\gamma_{M B}\left(P_{2} \square P_{n}\right) \geq \gamma_{M B}\left(X_{n}\right) \geq n-2$. To conclude, $\gamma_{M B}\left(P_{2} \square P_{n}\right)=n-2$.

reference

E
J. Forcan and J. Qi.

How fast can Dominator win in the Maker-Breaker domination game? arXiv preprint arXiv:2004.13126 (2020).

Thank You

