An identity on multinomial coefficients

Jiayue Qi
Joint work with Dongsheng Wu (Tsinghua University)

DK Seminar
2022.01.11.

motivation

$$
\binom{s}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

[1, Theorem 7.2].

- The identity showed up when we want to prove the base case for an algorithm computing the integration of monomials in the Chow ring of the moduli space of stable marked curves of genus zero.
- For more background knowledge on where and how the identity showed up, see [1, Section 7].

basic settings

$$
\binom{s}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

- Let $r \in \mathbb{N}^{+}$and $m_{1}, m_{2}, \ldots, m_{r}$ be r-many positive-integer parameters.
- Let $s:=\sum_{i=1}^{r} m_{i}$.
- Denote by $X:=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ the set of r-many indeterminates.
- Denote by $T:=\left\{B \mid B \subset X, x_{1} \in B\right\}$ and by $\mathcal{B}:=\left\{\left(B_{1}, B_{2}\right) \mid B_{1} \in T, B_{2}=X \backslash B_{1}\right\}$.
- Basically \mathcal{B} is the collection of bipartitions of X, where x_{1} is fixed in B_{1} and B_{2} is allowed to be the emptyset.

basic settings

$$
\binom{s}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

- Denote by $X:=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ the set of r-many indeterminates.
- Define a function $g: X \rightarrow\left\{m_{1}-1, m_{2}, \ldots, m_{r}\right\}$ by $g\left(x_{1}\right):=m_{1}-1$ and $g\left(x_{i}\right)=m_{i}$ when $i \neq 1$.
- Define a "summation function" $S: X \rightarrow \mathbb{N}$ by $S(B):=\sum_{x \in B} g(x)$.
- Denote by $\binom{S(B)}{B}:=\frac{S(B)!}{\prod_{x \in B}(g(x)!)}$.

An example when $r=3$: LHS

$$
\binom{s}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

- For a deeper understanding, let us come to some examples.
- In order to check through the identity with an example, we only need to fix $r \in \mathbb{N}^{+}$and $m_{1}, \ldots, m_{r} r$-many positive integers.
- Take $r=3, m_{1}=2, m_{2}=3, m_{3}=3$, for instance.
- Then $s=\sum_{i=1}^{3} m_{i}=2+3+3=8$. Hence LHS $=\binom{s}{m_{1}, m_{2}, m_{3}}=\binom{8}{2,3,3}=560$.

An example when $r=3$: RHS

$$
\binom{s}{\left.m_{1}, m_{2}, \cdots, m_{r}\right)}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{s\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

- $\mathcal{B}=$ $\left\{\left(\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\}\right),\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}\right),\left(\left\{x_{1}, x_{3}\right\},\left\{x_{2}\right\}\right),\left(\left\{x_{1}, x_{2}, x_{3}\right\}, \emptyset\right)\right\}$.
- Now we need to go through these four elements of \mathcal{B}, starting from $B_{1}=\left\{x_{1}\right\}, B_{2}=\left\{x_{2}, x_{3}\right\}$.
- Then we have $S\left(B_{1}\right)=m_{1}-1=2-1=1$, $S\left(B_{2}\right)=m_{2}+m_{3}=3+3=6,\binom{S\left(B_{1}\right)}{B_{1}}=\frac{S\left(B_{1}\right)!}{g\left(x_{1}\right)!}=\frac{1}{1}=1$, and $\binom{S\left(B_{2}\right)}{B_{2}}=\binom{6}{3,3}=20$.
- $\binom{s-r+1}{s\left(B_{2}\right)-\left|B_{2}\right|}=\binom{8-3+1}{6-2}=\binom{6}{4}=15$.
- So the corresponding summand for $\left(\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\}\right)$ is $\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}=15 \cdot 1 \cdot 20=300$.

An example when $r=3:$ RHS

- Going through the similar process, we obtian the other three summands on RHS as:
- $\binom{6}{2} \cdot\binom{4}{1,3}=60$,
- $\binom{6}{2} \cdot\binom{4}{1,3}=60$, and
- $\binom{7}{1,3,3}=140$.
- Summing up the four summands: $300+60+60+140=560$!
- Identity verified for this example.

notations

We slightly modify the notations, so that they serve well for our proof - namely we add an index r for many of them, indicating that we are considering r many sums for the multinomial coefficient.

- $m_{1}, m_{2}, \cdots, m_{r}$: r-many positive-integer parameters.
- $s_{r}:=\sum_{i=1}^{r} m_{i}$.
- $X_{r}:=\left\{x_{1}, x_{2}, \cdots, x_{r}\right\}$: a set of r-many indeterminates.
- $T_{r}:=\left\{B \mid B \subset X_{r}, x_{1} \in B\right\}$.
- $\mathcal{B}_{r}:=\left\{\left(B_{1}, B_{2}\right) \mid B_{1} \in T_{r}, B_{2}=X_{r} \backslash B_{1}\right\}$.
- $g_{r}: X_{r} \rightarrow\left\{m_{1}-1, m_{2}, \cdots, m_{r}\right\}, x_{1} \mapsto m_{1}-1, x_{i} \mapsto m_{i}$ for $i \neq 1$. This function is introduced for the sake of the next two notations, mainly because the value for m_{1} is reduced by one.
- $S(B):=\sum_{x \in B} g_{r}(x)$, for $B \subset X_{r}$. This is just the normal sum of m_{i} for $1 \leq i \leq r$, except that m_{1} is replaced by $m_{1}-1$ as a summand - this is also why we need the function g_{r}.
- $\binom{S(B)}{B}:=\frac{S(B)!}{\prod_{x \in B}\left(g_{r}(x)!\right)}$, for $B \subset X_{r}$.

notations

- Define
$S_{r}:=\left\{\left(P_{1}, P_{2}, \cdots, P_{r}\right)\left|\cup_{i=1}^{r} P_{i}=\left\{1,2, \cdots, s_{r}\right\},\left|P_{i}\right|=m_{i}\right\}\right.$.
With this set, we collect all partitions of the set $\left\{1,2, \cdots, s_{r}\right\}$ into r parts such that the i-th part has cardinality m_{i}.
- Let $L_{r}:=\{2,3, \cdots, r\}$. These elements are special elements in $\left\{1,2, \cdots, s_{r}\right\}$. Later on we will see why or how they are special, in the definition of the function φ_{r}. The next two notations are also there to prepare for the definition of the function φ_{r}.
- For $A \subset\{1,2, \cdots, r\}$, define $P_{A}:=\cup_{i \in A} P_{i} . P_{A}$ is the union of the parts which have index in A.
- For $A \subset\{1,2, \cdots, r\}$, define $X_{A}:=\left\{x_{i} \mid i \in A\right\}$. X_{A} collect the indeterminates that have index in A.

an example on the notations

Given $r=3$, the following facts are already clear:

- $X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$.
- $T_{3}=\left\{\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{3}\right\}\right\}$. This is the collection of one part of the bipartition of X_{3} that contains x_{1}.
- $\mathcal{B}_{3}=$ $\left\{\left(\left\{x_{1}\right\},\left\{x_{2}, x_{3}\right\}\right),\left(\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}\right),\left(\left\{x_{1}, x_{3}\right\},\left\{x_{2}\right\}\right),\left(\left\{x_{1}, x_{2}\right.\right.\right.$, $\left.\left.\left.x_{3}\right\}, \emptyset\right)\right\}$.
- $L_{3}=\{2,3\}$. The elements 2 and 3 are special.
- Take $A=\{1,2\} \subset\{1,2,3\}$ for instance, then $X_{A}=\left\{x_{1}, x_{2}\right\}$
- the collection of indeterminate with index in A.

an example on the notations

In order to figure out those remaining notations, we should know the values of $m_{i}, 1 \leq i \leq 3$. Let $m_{1}=2, m_{2}=2$ and $m_{3}=1$.

- $s_{3}=\sum_{i=1}^{3} m_{i}=2+2+1=5$. Now we know that 2,3 are considered special among $1,2,3,4,5$.
- $g_{3}: X_{3} \rightarrow\{1,2\}$ is defined as $g_{3}\left(x_{1}\right)=m_{1}-1=1$, $g_{3}\left(x_{2}\right)=m_{2}=2$ and $g_{3}\left(x_{3}\right)=m_{3}=1$.
- Take $B=\left\{x_{2}, x_{3}\right\} \subset X_{3}$ for instance, then

$$
S(B)=g_{3}\left(x_{2}\right)+g_{3}\left(x_{3}\right)=m_{2}+m_{3}=3 .
$$

- Take $B=\left\{x_{2}, x_{3}\right\} \subset X_{3}$ for instance, then

$$
\binom{S(B)}{B}=\frac{S(B)!}{\prod_{x \in B}\left(g_{3}(x)!\right)}=\frac{3!}{g_{3}\left(x_{2}\right) \cdot g_{3}\left(x_{3}\right)}=\frac{6}{m_{2} \cdot m_{3}}=\frac{6}{2 \cdot 1}=3 .
$$

- S_{3} is the set of all partitions $\left(P_{1}, P_{2}, P_{3}\right)$ of the set $\{1,2,3,4,5\}$ into three parts P_{1}, P_{2}, P_{3} such that $\left|P_{1}\right|=m_{1}=2,\left|P_{2}\right|=m_{2}=2$ and $\left|P_{3}\right|=m_{3}=1$.
- Take $A=\{1,2\} \subset\{1,2,3\}$ for instance, then $P_{A}=P_{1} \cup P_{2}$ for some $\left(P_{1}, P_{2}, P_{3}\right) \in S_{3}$.

the function ϕ_{r}

$\phi_{r}: S_{r} \rightarrow T_{r},\left(P_{1}, \ldots, P_{r}\right) \mapsto B \in T_{r}$.

- Input: $\left(P_{1}, \cdots, P_{r}\right) \in S_{r}$.
- Output: $B \in T_{r}$.
- $B \leftarrow\left\{x_{1}\right\}$
- $A \leftarrow L_{r} \cap P_{1}$
- While $A \neq \emptyset: B=B \cup X_{A} A:=L_{r} \cap P_{A}$.
- Return B.

Check with the example $\varphi_{3}: S_{3} \rightarrow T_{3},\left(P_{1}, P_{2}, P_{3}\right) \mapsto B \in T_{3}$. $\left(P_{1}, P_{2}, P_{3}\right)=(\{1,3\},\{4,5\},\{2\})$. We see that $L_{3}=\{2,3\}$.

an example on ϕ_{r}

- Input: $\left(P_{1}, P_{2}, P_{3}\right)=(\{1,3\},\{4,5\},\{2\})$.
- Initial values: $B=\left\{x_{1}\right\}, A=\{2,3\} \cap\{1,3\}=\{3\}$.
- First loop: Since $A=\{3\} \neq \emptyset$, we have

$$
\begin{aligned}
& B=\left\{x_{1}\right\} \cup X_{\{3\}}=\left\{x_{1}\right\} \cup\left\{x_{3}\right\}=\left\{x_{1}, x_{3}\right\}, \text { and then } \\
& A=\{2,3\} \cap\{2\}=\{2\} .
\end{aligned}
$$

- Second loop: Since $A=\{2\} \neq \emptyset$, we have $B=\left\{x_{1}, x_{3}\right\} \cup X_{\{2\}}=\left\{x_{1}, x_{3}\right\} \cup\left\{x_{2}\right\}=\left\{x_{1}, x_{2}, x_{3}\right\}$, and then $A=\{2,3\} \cap\{4,5\}=\emptyset$.
- Since $A=\emptyset$, return $B=\left\{x_{1}, x_{2}, x_{3}\right\}$.
- Output: $B=\left\{x_{1}, x_{2}, x_{3}\right\}$.

further analysis using ϕ_{r}

- $\phi_{r}: S_{r} \rightarrow T_{r},\left(P_{1}, \ldots, P_{r}\right) \mapsto B \in T_{r}$ is a well-defined surjective function.
- Therefore, $\bigcup_{B \in T_{r}} \varphi_{r}^{-1}(B)=S_{r}$, and
$\left|S_{r}\right|=\sum_{B \in T_{r}}\left|\varphi_{r}^{-1}(B)\right|=\sum_{(B, X \backslash B) \in \mathcal{B}_{r}}\left|\varphi_{r}^{-1}(B)\right|$.
- Recall the identity (with the modified notations):
$\binom{s_{r}}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}_{r}}\left(\begin{array}{c}\left.\begin{array}{c}s_{r}-r+1 \\ \left(B_{2}\right)-\left|B_{2}\right|\end{array}\right)\end{array}\right)\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}$.
- It remains to show $\left|\varphi_{r}^{-1}\left(B_{1}\right)\right|=\binom{s_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}$.
- In order to prove it, we need to introduce the following result.

a proposition

Proposition

If $\varphi_{r}\left(P_{1}, \cdots, P_{r}\right)=B_{1}$ for some $\left(P_{1}, \cdots, P_{r}\right) \in S_{r}$ and $B_{1} \in T_{r}$; denote $B_{2}:=X_{r} \backslash B_{1}$. Then $P_{F_{B_{1}}} \cap L_{r}=F_{B_{1}} \backslash\{1\}$, where $F_{B}:=\left\{i \mid x_{i} \in B\right\}$. Consequently, we have $P_{F_{B_{2}}} \cap L_{r}=F_{B_{2}}$ and $\left|P_{F_{B_{2}}} \cap L_{r}\right|=\left|B_{2}\right|$.

What this proposition says is the following:

- Given $B_{1} \in T_{r}$ such that $\phi_{r}\left(P_{1}, \ldots, P_{r}\right)=B_{1}$, we know that the special elements in the union of piles defined by B_{1} (namely $P_{F_{B_{1}}}$) form the set $F_{B_{1}} \backslash\{1\}$.
- And the special elements in the union of piles defined by $B_{2}:=X_{r} \backslash B_{1}$ (namely $F_{B_{2}}$) form the set $F_{B_{2}}$.

further analysis using the proposition

- Let $K_{r}:=\left\{1, \cdots, s_{r}\right\}$.
- Given $B_{1} \in T_{r}$, we want to find the number of configurations $P:=\left(P_{1}, \ldots, P_{r}\right)$ such that $\phi_{r}(P)=B_{1}$.
- We do it in two steps: first decide $P_{F_{B_{1}}}$ and $P_{F_{B_{2}}}$, then find out the number of configurations inside these two big groups.
- We know that the special elements are already determined in $P_{F_{B_{1}}}$ for $\left(P_{1}, \ldots, P_{r}\right) \in \phi_{r}^{-1}\left(B_{1}\right)$.
- We only need to choose a proper amount of non-special elements to put in $P_{F_{B_{1}}}$, i.e. elements in $K_{r} \backslash L_{r}$.

further analysis using the proposition

- We need to choose
$\left|P_{F_{B_{1}}}\right|-\left(\left|B_{1}\right|-1\right)=\left(S\left(B_{1}\right)+1\right)-\left|B_{1}\right|+1=S\left(B_{1}\right)-\left|B_{1}\right|+2$ many elements from $\left|K_{r} \backslash L_{r}\right|=s_{r}-\left|L_{r}\right|=s_{r}-r+1$ many elements, and put them in the group of $P_{F_{B_{1}}}$.
- Since $\left(S\left(B_{1}\right)-\left|B_{1}\right|+2\right)+\left(S\left(B_{2}\right)-\left|B_{2}\right|\right)=$ $\left(S\left(B_{1}\right)+S\left(B_{2}\right)+1\right)-\left(\left|B_{1}\right|+\left|B_{2}\right|\right)+1=s_{r}-r+1$, we can also say that there are $\binom{s_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}$ many ways to arrange the non-special elements.
- This explains the coefficient in the formula:
- (Recall what we need to show:)

$$
\left|\varphi_{r}^{-1}\left(B_{1}\right)\right|=\binom{s_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}} .
$$

what remains to show

- Recall our strategy: we do it in two steps: first decide $P_{F_{B_{1}}}$ and $P_{F_{B_{2}}}$, then find out the number of configurations inside these two big groups.
- Considering the definition of φ_{r}, we see that no matter how we arrange the elements in $P_{F_{B_{2}}}$, the image of φ_{r} is not influenced.
- Therefore, there are $\binom{S\left(B_{2}\right)}{B_{2}}$ many configurations for the elements in $P_{F_{B_{2}}}$.
- Recall what we need to show:
$\left|\varphi_{r}^{-1}\left(B_{1}\right)\right|=\binom{S_{r}-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}$.
- So, we only need to prove that given $B_{1} \in T_{r}$, the number of configurations for the elements in $P_{F_{B_{1}}}$ is exactly $\binom{S\left(B_{1}\right)}{B_{1}}$.
- This can be formulated in the proposition below:

the last thing to show

Proposition

Recall that $s_{k}:=\sum_{i=1}^{k} m_{i}$ and that $X_{k}:=\left\{x_{1}, \cdots, x_{k}\right\}$. Then we have $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=\binom{s_{k}-1}{m_{1}-1, m_{2}, \cdots, m_{k}}, k \in \mathbb{N}^{+}, m_{i} \in \mathbb{N}^{+}$, where $f_{k}:\left(\mathbb{N}^{+}\right)^{k} \rightarrow \mathbb{N},\left(m_{1}, m_{2}, \cdots, m_{k}\right) \mapsto \mid\left\{\left(P_{1}, P_{2}, \cdots, P_{k}\right) \in\right.$ $\left.S_{k}| | P_{i} \mid=m_{i}, \varphi_{k}\left(P_{1}, P_{2}, \cdots, P_{k}\right)=X_{k}\right\} \mid$.

proof of the last proposition

- Prove by two layers of induction.
- When $k=1, L_{1}=\emptyset$, for any $m_{1} \in \mathbb{N}^{+}$, we have

$$
\left|\left\{\left(P_{1}\right) \in S_{1} \mid \varphi_{1}\left(P_{1}\right)=\left\{x_{1}\right\}\right\}\right|=1=\binom{s_{1}-1}{m_{1}-1}
$$

since $s_{1}=m_{1}$ in this case.

- Assume that the proposition holds whenever the number of parameters is less or equal to $k-1$, where $k \geq 2$.
- When the number of parameters is k, we start the inner induction on s_{k}.
- When $s_{k}=k$, we know that $m_{1}=m_{2}=\cdots=m_{k}=1$.

proof of the last proposition

- Recall how we define ϕ_{r}, we cannot choose a non-special element for the first pile P_{1}.
- We can choose any element in L_{k} for P_{1}, say i_{1}; there are $\left|L_{k}\right|=k-1$ many possibilities.
- Then we can choose an element in $L_{k} \backslash\left\{i_{1}\right\}$ for $P_{i_{1}}$, and so on. Until we choose the element $i_{k-1} \in L_{k}$ for $P_{i_{k-2}}$.
- Then the only remaining part $P_{i_{k-1}}$ can only be $\{1\}$.
- In total there are $(k-1)$! many configurations.
- Hence we have
$f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=(k-1)!=\binom{k-1}{1, \cdots, 1}=\binom{k-1}{0,1, \cdots, 1}$, which equals to $\binom{s_{k}}{m_{1}-1, m_{2}, \cdots, m_{k}}$.

proof of the last proposition

- Assume that the proposition holds whenever the sum of these parameters is less or equal to $s_{k}-1$, where we can assume $s_{k}-1 \geq k$, i.e., $s_{k} \geq k+1$.
- We focus on the position of the element 1 among the piles P_{i}.
- Since $1 \notin L_{k}$, it does not influence the image of φ_{k} on any configuration.
- So in the case when $m_{i} \geq 2$ for all $1 \leq i \leq k$, there are k-many cases for the distribution of 1 :
- $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=f_{k}\left(m_{1}-1, m_{2}, \cdots, m_{k}\right)+f_{k}\left(m_{1}, m_{2}-\right.$ $\left.1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}-1\right)$.

proof of the last proposition

- Now we can apply the induction hypothesis on the sum of the parameters:
- $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=$
$\left.\binom{s_{k}-2}{m_{1}-2, m_{2}, \cdots, m_{k}}+\binom{s_{k}-2}{m_{1}-1, m_{2}-1, \cdots, m_{k}}+\cdots+{ }_{m_{1}-1, m_{2}, \cdots, m_{k}-1}\right)$.
- By a known property of multinomial coefficients, we know that the RHS equals $\binom{s_{k}-1}{m_{1}-1, m_{2}, \cdots, m_{k}}$.
- Hence we get $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=\binom{s_{k}-1}{m_{1}-1, m_{2}, \cdots, m_{k}}$.
- In the case when $m_{i}=1$ for some $i \neq 1$, the problem can be reduced to counting the number of corresponding configurations of P_{j} for $j \neq i$, since $1 \notin L_{k}$:
- $f_{k}\left(m_{1}, \cdots, m_{k}\right)=$
$f_{k}\left(m_{1}-1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, \cdots, m_{i-1}-1, m_{i}, \cdots, m_{k}\right)+$
$f_{k-1}\left(m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}\right)+f_{k}\left(m_{1}, \cdots, m_{i}, m_{i+1}-\right.$
$\left.1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, \cdots, m_{i-1}, m_{i}, m_{i+1}, \cdots, m_{k}-1\right)$.

proof of the last proposition

- By the outer induction on k, we have:
$f_{k-1}\left(m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}\right)=$
$\binom{\left(s_{k}-m_{i}\right)-1}{m_{1}-1, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}}=\binom{\left(s_{k}-1\right)-1}{m_{1}-1, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}}=$ $\binom{s_{k}-2}{m_{1}-1, \cdots, m_{i-1}, 0, m_{i+1}, \cdots, m_{k}}=\binom{s_{k}-2}{m_{1}-1, \cdots, m_{i-1}, m_{i}-1, m_{i+1}, \cdots, m_{k}}$.
- Substituting it back to the above formula $f_{k}\left(m_{1}, \cdots, m_{k}\right)=$ $f_{k}\left(m_{1}-1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, \cdots, m_{i-1}-1, m_{i}, \cdots, m_{k}\right)+$ $f_{k-1}\left(m_{1}, \cdots, m_{i-1}, m_{i+1}, \cdots, m_{k}\right)+f_{k}\left(m_{1}, \cdots, m_{i}, m_{i+1}-\right.$ $\left.1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, \cdots, m_{i-1}, m_{i}, m_{i+1}, \cdots, m_{k}-1\right)$,
- we get $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=\binom{s_{k}-1}{m_{1}-1, m_{2}, \cdots, m_{k}}$.
- With the same idea, it is not hard to prove that the statement holds however many parameters except for m_{1} equal(s) one.

proof of the last proposition

- If $m_{1}=1$, from the definition of the function f_{k} and φ_{k}, we know that $1 \notin P_{1}$.
- Hence considering the distribution of the element 1 , the recurrence formula becomes: $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=$ $f_{k}\left(m_{1}, m_{2}-1, \cdots, m_{k}\right)+\cdots+f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}-1\right)$.
- Then by induction hypothesis on the sum of the parameters, we obtain:
- $f_{k}\left(m_{1}, m_{2}, \cdots, m_{k}\right)=\binom{s_{k}-2}{m_{1}-1, m_{2}-1, \cdots, m_{k}}+\cdots+$
$\binom{s_{k}-2}{m_{1}-1, m_{2}, \cdots, m_{k}-1}=\binom{s_{k}-2}{0, m_{2}-1, \cdots, m_{k}}+\cdots+\binom{s_{k}-2}{0, m_{2}, \cdots, m_{k}-1}=$
$\binom{s_{k}-2}{,m_{2}-1, \cdots, m_{k}}+\cdots+\binom{s_{k}-2}{m_{2}, \cdots, m_{k}-1}=\binom{s_{k}-1}{m_{2}, \cdots, m_{k}}=\binom{s_{k}-1}{0, m_{2}, \cdots, m_{k}}=$ $\left(\begin{array}{c}\left.\begin{array}{c}s_{k}-1 \\ m_{1}-1, m_{2}, \cdots, m_{k}\end{array}\right) .\end{array}\right.$
- With this, we conclude the proof of the identity.

the identity

$$
\binom{s}{m_{1}, m_{2}, \cdots, m_{r}}=\sum_{\left(B_{1}, B_{2}\right) \in \mathcal{B}}\binom{s-r+1}{S\left(B_{2}\right)-\left|B_{2}\right|}\binom{S\left(B_{1}\right)}{B_{1}}\binom{S\left(B_{2}\right)}{B_{2}}
$$

Reference

I thank Cristian-Silviu Radu for helping me formulate the identity and as well its proof in a mathematically proper way. The refenrece for this talk is [1, Section 7.5].

嗇 Jiayue Qi.
A tree-based algorithm on monomials in the Chow group of zero cycles in the moduli space of stable pointed curves of genus zero. arXiv preprint arXiv:2101.03789.

Thank You

