Five equivalent ways to represent a phylogenetic tree

Jiayue Qi

joint work with Herwig Hauser (university of Wien) and Josef Schicho (University of Linz)
2021.11.12

7 Doctoral Program
Computational Mathematics
Numencal Analysis and Symbolic Computation

JYU UNIVERSITY LINZ

Der Wissenschaftsfonds.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

Example: phylogenetic tree

This is a phylogenetic tree with leaf set $N=\{1,2, \cdots, 9\}$. The set of inner vertices is $V \backslash N=\{a, b, c, d, e\}$.

Definition: phylogenetic tree

- A phylogenetic tree with leaf set N is a tree (V, E) with no vertex of degree 2 such that $N \subset V$ is the set of leaves. We call the elements in N labels of the tree.
- Two phylogenetic trees are isomorphic iff there is a graph isomorphism between them which is the identity when restricted to the leaf set.
- In the last example, we can permute the inner vertices and obtain a phylogenetic tree that is isomorphic to the given one.

set of partitions

- For every inner vertex, we can collect the labels on the path from this vertex to one of its incident edges, respectively, forming a partion of set N.
- Then we obtain a set of partitions from the given phylogenetic tree.
- For the given tree, what partitions for N can we obtain?

running example: set of partitions

- $P=\left\{p_{a}, p_{b}, p_{c}, p_{d}, p_{e}\right\}$
- $p_{a}=\{\{1\},\{2\},\{3\},\{4,5,6,7,8,9\}\}$
- $p_{b}=\{\{1,2,3\},\{4\},\{5\},\{6,7,8,9\}\}$
- $p_{c}=\{\{1,2,3,4,5\},\{6,7\},\{8,9\}\}$
- $p_{d}=\{\{1,2,3,4,5,8,9\},\{6\},\{7\}\}$
- $p_{e}=\{\{1,2,3,4,5,6,7\},\{8\},\{9\}\}$

running example: set of partitions

- $P=\left\{p_{a}, p_{b}, p_{c}, p_{d}, p_{e}\right\}$
- $p_{a}=\{\{1\},\{2\},\{3\},\{4,5,6,7,8,9\}\}$
- $p_{b}=\{\{1,2,3\},\{4\},\{5\},\{6,7,8,9\}\}$
- $p_{c}=\{\{1,2,3,4,5\},\{6,7\},\{8,9\}\}$
- $p_{d}=\{\{1,2,3,4,5,8,9\},\{6\},\{7\}\}$
- $p_{e}=\{\{1,2,3,4,5,6,7\},\{8\},\{9\}\}$

What kind of partition sets can be obtained from a phylogenetic tree?

phylogenetic set of partitions

A set of partitions of N is phylogenetic iff it fulfills the following axioms:

- Each partition has at least 3 parts.
- Any cardinality-one subset of N belongs to a unique partition.
- Any subset of N belongs to at most one partition.
- For any subset $A \subset N$ with cardinality bigger than one that belongs to some partition, its complement $N \backslash A$ also belongs to some partition.
- Is P phylogenetic?
- Given a phylogenetic set of partitions, how to convert it back to a tree?

From partitions to tree

- VERTICES: Each partition is a vertex, each single-element set $\{x\}$ in the partition contributes to a leaf x attached to the vertex.
- EDGES: Draw an edge between vertex v_{1} and v_{2} iff $I \in v_{1}$ and $N \backslash I \in v_{2}$.
- From P, we can also try this method, see if we obtain a pylogenetic tree?
- Let's try it on the blackboard.

From partitions to tree

- $P=\left\{p_{a}, p_{b}, p_{c}, p_{d}, p_{e}\right\}$
- $p_{a}=\{\{1\},\{2\},\{3\},\{4,5,6,7,8,9\}\}$
- $p_{b}=\{\{1,2,3\},\{4\},\{5\},\{6,7,8,9\}\}$
- $p_{c}=\{\{1,2,3,4,5\},\{6,7\},\{8,9\}\}$
- $p_{d}=\{\{1,2,3,4,5,8,9\},\{6\},\{7\}\}$
- $p_{e}=\{\{1,2,3,4,5,6,7\},\{8\},\{9\}\}$

From partitions to tree

- The above mentioned two algorithms transfer in between a phylogenetic tree and a phylogenetic set of partitions. Both compositions are the identities.
- These two representations are equivalent.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

running example: set of cuts

- A cut of N is a partition of N into two subsets I, J such that the cardinalities of both I and J are bigger than one; then I, J are called parts of this cut.
- Starting from a phylogenetic tree with leaf set N, removing any inner edge and collecting the labels on two connected components gives us a cut of N.
- Collect the cuts obtained in the above described way, we obtain a set of cuts.

running example: set of cuts

Let's see what we will obtain from this given tree!

running example: set of cuts

- $C_{a b}:\{\{1,2,3\},\{4,5,6,7,8,9\}\}$
- $C_{b c}:\{\{1,2,3,4,5\},\{6,7,8,9\}\}$
- $C_{c d}:\{\{1,2,3,4,5,8,9\},\{6,7\}\}$
- $C_{c e}:\{\{1,2,3,4,5,6,7\},\{8,9\}\}$
- We obtain the set $C=\left\{C_{a b}, C_{b c}, C_{c d}, C_{c e}\right\}$.
- We say that a set of cut C is phylogenetic iff for any two cuts $\left\{I_{1}, J_{1}\right\},\left\{I_{2}, J_{2}\right\}$ in C, (at least) one of these four sets is empty: $I_{1} \cap I_{2}, I_{1} \cap J_{2}, J_{1} \cap I_{2}, J_{1} \cap J_{2}$.
- Is C in our running example phylogenetic?
- We have an algorithm (which we call tree algorithm) converting from a phylogenetic set of cuts to a phylogenetic tree. Both compositions are the identities.
- These two representations are equivalent.

tree algorithm: from cuts to tree

- Input: a phylogenetic set of cuts C
- Output: its corresponding phylogenetic tree
- Step 1: collect all parts of those cuts in C in set P.
- Step 2: pick any cut from set C, say $c=(I, J) \in C$.
- Step 3: go through all elements in P, find those that is either a subset of I or a subset of J, collect them together in set P_{1}.
- Step 4: create a Hasse diagram H of elements in P_{1} w.r.t. set containment order.
- Step 5: consider H as a graph (V, E). Each element in P_{1} has a corresponding vertex in H. We denote the vertex v_{l} for $l \in P_{1}$.

tree algorithm

- Step 6: For each vertex v of H, define the leaf set $h(v)$ attached to v as its corresponding element in P_{1}.
- Step 8: Go through the vertices again, update the leaf sets: $h(v):=h(v) \backslash h\left(v_{1}\right)$ if v_{1} is less than v in H (in the Hasse diagram relation).
- Step 9: $E=E \cup\left\{v_{l}, v_{J}\right\}$. This edge corresponds to the cut we pick in Step 3.

Let us now apply this algorithm to our running example, on the blackboard!

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

Crossing relations

- A crossing relation is a set X of a pair of cardinality-two subsets of N. We denote as $(i, j \mid k, l)$ the element $\{\{i, j\},\{k, l\}\}$ and we call it a cross of X.
- Starting from a set of cuts C, we can construct a crossing relation X_{C} as follows: $(i, j \mid k, I) \in X_{C}$ iff $i, j \in I$ and $k, I \in J$ for some cut $\{I, J\} \in C$.
- We say X is phylogenetic iff it fulfills the following axioms:

X1 If $(i, j \mid k, l) \in X,(i, k \mid j, I) \notin X$.
X2 If $(i, j \mid k, I),(i, j \mid k, m) \in X$ and $I \neq m$, then $(i, j \mid I, m) \in X$.
X3 If $(i, j \mid k, l) \in X$ and m is distinct from i, j, k, l, then $(i, j \mid k, m) \in X$ or $(i, m \mid k, l) \in X$. (Note that here "or" means at least one incident should happen.)

recall: phylogenetic set of cuts

- $C=\left\{C_{a b}, C_{b c}, C_{c d}, C_{c e}\right\}$.
- $C_{a b}:\{\{1,2,3\},\{4,5,6,7,8,9\}\}$
- $C_{b c}:\{\{1,2,3,4,5\},\{6,7,8,9\}\}$
- $C_{c d}:\{\{1,2,3,4,5,8,9\},\{6,7\}\}$
- $C_{c e}:\{\{1,2,3,4,5,6,7\},\{8,9\}\}$

running example: crossing relations

- Starting from the set of cuts C in our running example, we obtain a crossing relation X_{C} containing the following elements.
- $i, j \in\{1,2,3\}$ and $k, I \in\{4,5,6,7,8,9\}$ (45 crosses);
- $i, j \in\{1,2,3,4,5\}$ and $k, I \in\{6,7,8,9\}$ (60 crosses);
- $i, j \in\{1,2,3,4,5,8,9\}$ and $\{k, I\}=\{6,7\}$ (21 crosses);
- $i, j \in\{1,2,3,4,5,6,7\}$ and $\{k, I\}=\{8,9\}$ (21 crosses).
- One can check that X_{C} is a phylogenetic crossing relation.
- We also have an algorithm converting from phylogenetic crossing relation to a phylogenetic set of cuts. The two compositions are both the identities.
- These two representations are equivalent.

Five equivalent representations

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

phylogenetic equivalent classes of triples

A triple in N is a 3-element subset of N. We denote the set of triples in N by $\binom{N}{3}$. A set $S \subset\binom{N}{3}$ of triples is called diverse if it is non-empty and it fulfills the following two axioms:
(D1) If $\{i, j, k\} \in S$, and $I \in N$, then S also contains one of the triples $\{i, j, I\},\{i, k, I\}$, or $\{j, k, I\}$.
(D2) Let $a, b, c, x, y, z \in N$. If S contains the triples $\{a, x, y\},\{b, y, z\}$, and $\{c, x, z\}$, then it also contains $\{x, y, z\}$.
We say that an equivalence relation on $\binom{N}{3}$ is phylogenetic if and only if the following axiom is fulfilled:
(E0) Each class of the equivalence relation is diverse.

example: equivalences of triples

- Let $N=\{1,2,3,4,5\}$. We define an equivalence relation E with three distinct classes as follows:
- $\{1,2,3\} \sim\{1,2,4\} \sim\{1,2,5\}$
- $\{1,4,5\} \sim\{2,4,5\} \sim\{3,4,5\}$
- $\{1,3,4\} \sim\{1,3,5\} \sim\{2,3,4\} \sim\{2,3,5\}$
- We can check that it is phylogenetic.
- Starting from a phylogenetic equivalence relation E of triples in $\binom{N}{3}$, we can construct a set of partitions P_{E} on N as follows.
- For any set S of triples, let G_{S} be the graph with vertex set N, and an edge between $i, j \in N$ if and only if no triples of S contain both i and j. Let p_{S} be the partition of N defined by the connected components of G_{S}.
- P_{E} is defined as the collection of those p_{S} for each equivalence class S in E.
- What partition set do we get from this example above?

conversion: partitions and triples

- Starting from a phylogenetic set of partition P, for each partition p, let S_{p} be the set of triples that are separated by p.
- Collection of S_{p} for each $p \in P$ gives us the equivalence classes of triples.
- What equivalence class of triples do we get from the set of partitions above?
- Composition of the two transformations are both the identities.
- These two representations are equivalent.

Five equivalent representations ?

- phylogenetic tree
- phylogenetic set of partitions
- phylogenetic set of cuts
- phylogenetic crossing relations
- phylogenetic equivalences of triples

meta-level overview

- Edges? Vertices?
- Macro level? Micro level?
- macro level + focusing on edges \Longrightarrow set of cuts. (Each cut corresponds to an edge.)
- micro level + focusing on edges \Longrightarrow crossing relation.
- macro level + focusing on vertices \Longrightarrow set of partitions. Each partition corresponds to a vertex.
- micro level + focusing on vertices \Longrightarrow equivalent classes of triples. Each class corresponds to a vertex.

Reference

Qi Jiayue, Schicho Josef.Five Equivalent Ways to Describe Phylogenetic Trees. arXiv preprint arXiv:2011.11774

Thank You

