C^{2}-FINITE SEQUENCES

A Computational Approach

Philipp Nuspl

August 19, 2022
ACA: D-finite Functions and Beyond

C-finite sequences

Definition

A sequence $a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C-finite if there are constants $\gamma_{0}, \ldots, \gamma_{r} \in \mathbb{K}$, not all zero, such that

$$
\gamma_{0} a(n)+\cdots+\gamma_{r-1} a(n+r-1)+\gamma_{r} a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

■ Examples: Fibonacci numbers $f(n)$, Lucas numbers, Pell numbers, etc.

- The set of C-finite sequences forms a ring under termwise addition and multiplication.

■ Every C-finite sequence can be described by finite amount of data.
■ Every sequence $a(n)$ is bounded by α^{n} for some computable α, i.e., $|a(n)| \leq \alpha^{n}$ for all $n \geq 1$.

D-finite sequences

Definition

A sequence $a(n) \in \mathbb{K}^{\mathbb{N}}$ is called D-finite if there are polynomials $p_{0}(n), \ldots, p_{r}(n) \in \mathbb{K}[x]$, not all zero, such that

$$
p_{0}(n) a(n)+\cdots+p_{r-1}(n) a(n+r-1)+p_{r}(n) a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

- Also called: holonomic, P-recursive.
\square Examples: C-finite sequences, factorial, Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
- Set of D-finite sequences forms a ring.

■ Every sequence is bounded by $(n!)^{k}$ for some computable $k \in \mathbb{N}$.

C^{2}-finite sequences

Definition

A sequence $a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r}(n) \in \mathbb{K}^{\mathbb{N}}$ with $c_{r}(n) \neq 0$ for all $n \in \mathbb{N}$ such that

$$
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+c_{r}(n) a(n+r)=0 \quad \text { for all } n \in \mathbb{N} \text {. }
$$

\square Contains C - and D-finite and q-holonomic sequences.
■ Examples: $c\left(n^{2}\right)$ and $\prod_{k=0}^{n} c(k)$ for a C-finite sequence $c(n)$.
■ Set of C^{2}-finite sequences forms a ring (Jiménez-Pastor, N., and Pillwein 2021).

- Every sequence is bounded by $\alpha^{n^{2}}$ for some α. It is not known, whether such an α can be computed.

Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?

Not known whether decidable in general.

- Decidable for sequences of order ≤ 4 or if the sequence has a unique dominant root (Survey: Ouaknine and Worrell 2012).
■ Sometimes the Gerhold-Kauers method using CAD can be applied (Gerhold and Kauers 2005).
- In practice, it is usually decidable (N. and Pillwein 2022a).

Simple C^{2}-finite sequences

Definition

A sequence $a(n) \in \mathbb{K}^{\mathbb{N}}$ is called simple C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r-1}(n) \in \mathbb{K}^{\mathbb{N}}$ such that

$$
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

■ Examples: $c\left(n^{2}\right)$ and $\prod_{k=0}^{n} c(k)$ for a C-finite sequence $c(n)$.

- Set of simple C^{2}-finite sequences forms a ring.
- The set of simple C^{2}-finite sequences over $\overline{\mathbb{Q}}$ is even a computable ring (N . and Pillwein 2022b).
■ Every sequence is bounded by $\alpha^{n^{2}}$ for some computable α.

Overview: Rings of Sequences

$2^{n}, f(n)$

C-finite

Overview: Rings of Sequences

Overview: Rings of Sequences

Overview: Rings of Sequences

Overview: Rings of Sequences

$$
(-1)^{\lfloor\log (n+1)\rfloor}+1
$$

rec_sequences package

- rec_sequences is a SageMath package for linear recurrence sequences (mostly C-finite and C^{2}-finite sequences).
- Based on the ore_algebra package (Kauers, Jaroschek, and Johansson 2015).
- Can be obtained from GitHub: github.com/PhilippNuspl/rec_sequences

```
sage: from rec_sequences.CFiniteSequenceRing import *
sage: from rec_sequences.C2FiniteSequenceRing import *
```

A C-finite sequence can be defined by the recurrence and initial values or using guessing:

```
sage: C = CFiniteSequenceRing(QQ)
sage: fib = C([1, 1, -1], [1, 1])
sage: alt = C(10*[1, -1])
```


Example: Sparse Fibonacci numbers

The sequence $f\left(n^{2}\right)$ is C^{2}-finite satisfying (Kotek and Makowsky 2014)

$$
-f(2 n+3) f\left(n^{2}\right)-f(4 n+4) f\left((n+1)^{2}\right)+f(2 n+1) f\left((n+2)^{2}\right)=0
$$

```
sage: C2 = C2FiniteSequenceRing(QQ)
sage: sparse_fib= fib.sparse_subsequence(C2) # A054783
sage: var("n")
sage: coeffs = [-fib(2*n+3), -fib(4*n+4), fib(2*n+1)]
sage: sparse_fib.coefficients() == coeffs
True
sage: sparse_fib[:8]
[1, 1, 5, 55, 1597, 121393, 24157817, 12586269025]
```


Ring operations

Consider the fibonorial numbers $a(n)=\prod_{k=0}^{n} f(k)$ and the Pell-Lucas numbers $p(n)$ satisfying

$$
\begin{aligned}
f(n+1) a(n)-a(n+1) & =0, & & a(0)=1, \\
p(n)+2 p(n+1)-p(n+2) & =0, & & p(0)=2, p(1)=2 .
\end{aligned}
$$

Then, the sequence $c=a+p$ is C^{2}-finite.

```
sage: fibonorial = C2([fib, -1], [1]) # A003266
sage: pell_lucas = C([1, 2, -1], [2, 2]) # A002203
sage: c = fibonorial + pell_lucas
sage: c.order()
3
sage: c[:100] == [fibonorial[n]+pell_lucas[n] for n in range(100)]
True
```


Ring operations

Consider the sequences

$$
\begin{aligned}
(-1)^{n} a(n)+a(n+1) & =0, & a(0)=1, \\
b(n)+b(n+1) & =0, & p(0)=1 .
\end{aligned}
$$

Then, the sequences $a b$ and $a+b$ are C^{2}-finite.

```
sage: a = C2([C((-1) n n), 1], [1])
sage: b = C2([1, 1], [1])
sage: show(a*b)
(-(-1)}\mp@subsup{)}{}{n})\cdota(n)+(1)\cdota(n+1)=0\quada(0)=
sage: show(a+b)
    (-\frac{1}{2}(-1\mp@subsup{)}{}{n}+\frac{1}{2})\cdota(n)+(\frac{1}{2}(-1\mp@subsup{)}{}{n}+\frac{1}{2})\cdota(n+2)+(1)\cdota(n+3)=0}a(0)=2,a(1)=-2,a(2)=
```

Note: The order bounds for C-finite sequences are not satisfied for $a+b$.

More closure properties

(Simple) C^{2}-finite sequences are also closed under

- partial sums,
- taking subsequences at arithmetic progressions,
- interlacing.

Example

The sequence $\sum_{k=0}^{\lfloor n / 3\rfloor} f\left((2 k+1)^{2}\right)$ is C^{2}-finite.

```
sage: a = sparse_fib.subsequence(2, 1).sum().multiple(3)
sage: a.order()
9
```

Are (simple) C^{2}-finite sequences closed under the Cauchy product?
We do not know.

Further generalizations

■ Can define D^{2}-finite sequences as sequences satisfying a linear recurrence with D-finite coefficients.

■ Example: Superfactorial $a(n)=\prod_{k=1}^{n} k$! (A000178).
■ Let us define C^{k}-finite (or D^{k}-finite) sequences as sequences satisfying a linear recurrence with C^{k-1}-finite (or D^{k-1}-finite) coefficients.
■ Using the same methods as for C^{2}-finite sequences: All these sets form rings (Jiménez-Pastor, N., and Pillwein 2022).
■ Let c be C-finite. Then, $c\left(n^{k}\right)$ is C^{k}-finite.

References I

[1] Stefan Gerhold and Manuel Kauers. "A Procedure for Proving Special Function Inequalities Involving a Discrete Parameter". In: Proceedings of ISSAC 2005, Beijing, China, July 24-27, 2005. 2005, pp. 156-162.
[2] Antonio Jiménez-Pastor, P. N., and Veronika Pillwein. "An extension of holonomic sequences: C^{2}-finite sequences". In: Journal of Symbolic Computation (2022). https://doi.org/10.35011/risc.21-20.
[3] Antonio Jiménez-Pastor, P. N., and Veronika Pillwein. "On C^{2}-finite sequences". In: Proceedings of ISSAC 2021, Virtual Event Russian Federation, July 18-23, 2021. 2021, pp. 217-224.

References II

[4] Manuel Kauers, Maximilian Jaroschek, and Fredrik Johansson. "Ore Polynomials in Sage". In: Computer Algebra and Polynomials: Applications of Algebra and Number Theory. Springer International Publishing, 2015, pp. 105-125.
[5] Tomer Kotek and Johann A. Makowsky. "Recurrence relations for graph polynomials on bi-iterative families of graphs". In: Eur. J. Comb. 41 (2014), pp. 47-67.
[6] P. N. and Veronika Pillwein. "A comparison of algorithms for proving positivity of linearly recurrent sequences". In: Proceedings of CASC 2022. 2022.

References III

[7] P. N. and Veronika Pillwein. "Simple C^{2}-Finite Sequences: A Computable Generalization of C-Finite Sequences". In: Proceedings of ISSAC 2022, Lille, France, July 4-7, 2022. 2022.
[8] Joël Ouaknine and James Worrell. "Decision Problems for Linear Recurrence Sequences". In: Lecture Notes in Computer Science. Springer, 2012, pp. 21-28.

