SIMPLE C^{2}-FINITE SEQUENCES

A Computable Generalization of C-finite Sequences

P. Nuspl and V. Pillwein

July 5, ISSAC 2022

ҒШF
Der Wissenschaftsfonds.

C-finite sequences

Let $\mathbb{K} \supseteq \mathbb{Q}$ be a number field.

Definition

A sequence $c(n) \in \mathbb{K}^{\mathbb{N}}$ is called C-finite if there are constants $\gamma_{0}, \ldots, \gamma_{r-1} \in \mathbb{K}$ such that

$$
\gamma_{0} c(n)+\cdots+\gamma_{r-1} c(n+r-1)+c(n+r)=0 \quad \text { for all } n \in \mathbb{N}
$$

■ The sequence $c(n)$ can be described by finite amount of data, namely by

$$
\gamma_{0}, \ldots, \gamma_{r-1}, c(0), \ldots, c(r-1)
$$

- C-finite sequences form a computable ring under termwise addition and multiplication.
- Examples: Fibonacci-sequence $f(n)$, Pell numbers, Perrin numbers.

C^{2}-finite sequences

Definition

A sequence $a=a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r}(n) \in \mathbb{K}^{\mathbb{N}}$ with $c_{r}(n) \neq 0$ for all $n \in \mathbb{N}$ such that $c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+c_{r}(n) a(n+r)=0 \quad$ for all $n \in \mathbb{N}$.

- The sequence a can again be described completely by finite data.
$\square C$-, D-finite and q-holonomic sequences are C^{2}-finite.
- C^{2}-finite sequences form a ring (Jiménez-Pastor, N., and Pillwein 2021).
- Not clear if the ring is computable.

Skolem problem

Recognizing whether recurrence is valid and computations in C^{2}-finite sequence ring are limited by Skolem problem:

Skolem problem

Does a given C-finite sequence have a zero?

It is not known whether the problem is decidable in general.

- Decidable for sequences of order ≤ 4 (Ouaknine and Worrell 2012).
- Decidable if we have a unique dominant root (Halava et al. 2005).
- In practice: For "most" sequences it can be checked fully automatically.

Simple C^{2}-finite sequences

Definition

A sequence $a=a(n) \in \mathbb{K}^{\mathbb{N}}$ is called simple C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r-1}(n) \in \mathbb{K}^{\mathbb{N}}$ such that

$$
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

- Most C^{2}-finite sequences we encountered are simple C^{2}-finite.
- Catalan numbers are C^{2}-finite (as they are D-finite) but not simple C^{2}-finite, cf. Cadilhac et al. 2021.
- For every simple C^{2}-finite sequence $a(n)$ we can compute an $\alpha \in \mathbb{Q}$ such that $|a(n)| \leq \alpha^{n^{2}}$ for all $n \geq 1$.

Example

Lemma

Let c be a C-finite sequence. The sequence $\prod_{k=0}^{n} c(k)$ is simple C^{2}-finite.
In particular, $a(n)=\prod_{k=0}^{n} f(k)$ is simple C^{2}-finite satisfying

$$
-f(n+1) a(n)+a(n+1)=0
$$

The sequence is called Fibonacci factorial or fibonorials.

Example: Sparse Subsequences

The sequence $f\left(n^{2}\right)$ is C^{2}-finite satisfying

$$
f(2 n+3) f\left(n^{2}\right)+f(4 n+4) f\left((n+1)^{2}\right)-f(2 n+1) f\left((n+2)^{2}\right)=0
$$

However, $f\left(n^{2}\right)$ is even simple C^{2}-finite satisfying

$$
\begin{array}{r}
-f(6 n+11) f\left(n^{2}\right) \\
-f(4 n+6)(-1-2 f(4 n+4)+3 f(4 n+6)) f\left((n+1)^{2}\right) \\
+f(6 n+9) f\left((n+2)^{2}\right) \\
\\
+f\left((n+3)^{2}\right)=0
\end{array}
$$

Theorem

Let c be a C-finite sequence. The sequence $c\left(n^{2}\right)$ is simple C^{2}-finite.

Ring (closure properties)

■ Given simple C^{2}-finite sequences a, b with recurrences

$$
\begin{aligned}
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+a(n+r) & =0 \\
d_{0}(n) b(n)+\cdots+d_{s-1}(n) b(n+s-1)+b(n+s) & =0
\end{aligned}
$$

We want to compute a simple C^{2}-finite recurrence for $a+b$ and $a b$.
■ Using an ansatz this problem can be reduced to solving linear systems over C-finite sequence ring.
\square For C-finite sequences over $\overline{\mathbb{Q}}$ we know how to do this.

Theorem

The set of simple C^{2}-finite sequences over $\overline{\mathbb{Q}}$ is a computable difference ring.

Example

Consider the simple C^{2}-finite sequences

$$
2^{n} a(n)+a(n+1)=0, \quad b(n)+b(n+1)=0
$$

We want to compute a recurrence for $c=a+b$.
■ Using algorithm from (Jiménez-Pastor, N., and Pillwein 2021):

$$
\begin{aligned}
& \left(-2^{5 n+4}+2^{4 n+2}+2^{3 n+3}-2^{2 n+1}\right) c(n) \\
& \quad+\left(2^{5 n+4}-2^{3 n+3}-2^{2 n+1}+1\right) c(n+2) \\
& \quad+\left(2^{4 n+2}-2^{2 n+2}+1\right) c(n+3)=0
\end{aligned}
$$

■ Using new algorithm:

$$
\left(2 \cdot 2^{n}\right) c(n)+\left(2+6 \cdot 2^{n}\right) c(n+1)+\left(3+4 \cdot 2^{n}\right) c(n+2)+c(n+3)=0 .
$$

Example continued

$$
2^{n} a(n)+a(n+1)=0, \quad b(n)+b(n+1)=0 .
$$

We want to compute a recurrence for $c=a+b$.

- An ansatz of order 3 for c yields the linear system

$$
\left(\begin{array}{ccc}
1 & -2^{n} & 2 \cdot 4^{n} \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=\binom{8 \cdot 8^{n}}{1}
$$

for the coefficients $x_{0}, x_{1}, x_{2} \in \mathbb{Q}^{\mathbb{N}}$ of the recurrence of c.
■ Ansatz: $x_{i}=x_{i, 1}+x_{i, 2} 2^{n}$ yields

$$
\left(\begin{array}{cccccc}
1 & -2^{n} & 2 \cdot 4^{n} & 2^{n} & -4^{n} & 2 \cdot 8^{n} \\
1 & -1 & 1 & 2^{n} & -2^{n} & 2^{n}
\end{array}\right) \hat{x}=\binom{8 \cdot 8^{n}}{1}
$$

where $\hat{x}=\left(x_{0,1}, x_{1,1}, x_{2,1}, x_{0,2}, x_{1,2}, x_{2,2}\right) \in \mathbb{Q}^{6}$.

Example continued

$$
2^{n} a(n)+a(n+1)=0, \quad b(n)+b(n+1)=0 .
$$

We want to compute a recurrence for $c=a+b$.

- We want to solve

$$
\left(\begin{array}{cccccc}
1 & -2^{n} & 2 \cdot 4^{n} & 2^{n} & -4^{n} & 2 \cdot 8^{n} \\
1 & -1 & 1 & 2^{n} & -2^{n} & 2^{n}
\end{array}\right) \hat{x}=\binom{8 \cdot 8^{n}}{1} .
$$

■ Comparing the coefficients of $1,2^{n}, 4^{n}, 8^{n}$ yields the constant system

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \\
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 1
\end{array}\right) \hat{x}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
8 \\
1 \\
0
\end{array}\right) .
$$

Example continued

$$
2^{n} a(n)+a(n+1)=0, \quad b(n)+b(n+1)=0 .
$$

We want to compute a recurrence for $c=a+b$.

- Linear system has solution

$$
\hat{x}=(0,2,3,2,6,4) .
$$

This gives rise to the coefficients x_{i} of the recurrence for c :

$$
\left(2 \cdot 2^{n}\right) c(n)+\left(2+6 \cdot 2^{n}\right) c(n+1)+\left(3+4 \cdot 2^{n}\right) c(n+2)+c(n+3)=0 .
$$

■ If we would not get a solution:
\square Can increase order of ansatz for c. Then, we solve for $x_{0}, x_{1}, x_{2}, x_{3}$.
\square Or: Can increase ansatz for coefficients x_{i}. Then, we have the ansatz $x_{i}=x_{i, 1}+x_{i, 2} 2^{n}+x_{i, 4} 4^{n}$.

More closure properties

Theorem

Simple C^{2}-finite sequences $a(n), b(n)$ are also closed under

- partial sums $\sum_{k=0}^{n} a(k)$,
- taking subsequences at arithmetic progressions $a(l n+k)$ for fixed $l, k \in \mathbb{N}$,
- interlacing

$$
(a(0), b(0), a(1), b(1), a(2), b(2), \ldots) .
$$

Generating functions

Suppose we have a sequence $a \in \mathbb{K}^{\mathbb{N}}$ and we consider its generating function $g(x)=\sum_{n \geq 0} a(n) x^{n}$.
$\square a$ is C-finite iff g is rational.
$\square a$ is D-finite (i.e., satisfies a linear recurrence with polynomial coefficient) iff g is D-finite (i.e., satisfies a linear differential equation with polynomial coefficients).

- What kind of equations do the generating functions of (simple) C^{2}-finite sequences satisfy?
■ First ideas were presented in Thanatipanonda and Zhang 2020.

Sequence to generating function

Theorem

Let a be a C^{2}-finite sequence over \mathbb{K}. Let $g(x)=\sum_{n \geq 0} a(n) x^{n}$ be its generating function. Then, $g(x)$ satisfies a functional equation of the form

$$
\sum_{k=1}^{m} p_{k}(x) g^{\left(d_{k}\right)}\left(\lambda_{k} x\right)=p(x)
$$

for $p, p_{1}, \ldots, p_{m} \in \mathbb{L}[x], d_{1}, \ldots, d_{m} \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{L}$ for some $\mathbb{L} \supseteq \mathbb{K}$.
Let $a(n)=f\left(n^{2}\right)$. The generating function g satisfies

$$
\begin{array}{r}
\left(\phi^{3} x^{2}-\phi^{-3}\right) g\left(\phi^{2} x\right)-\left(\psi^{3} x^{2}-\psi^{-3}\right) g\left(\psi^{2} x\right) \\
+x g\left(\phi^{4} x\right)-x g\left(\psi^{4} x\right)=(\psi-\phi) x
\end{array}
$$

where $\phi:=\frac{1+\sqrt{5}}{2}$ denotes the golden ratio and $\psi:=\frac{1-\sqrt{5}}{2}$ its conjugate.

Generating function to sequence

Theorem

Let $g(x)=\sum_{n \geq 0} a(n) x^{n}$ satisfy a functional equation of the form

$$
\sum_{k=1}^{m} p_{k}(x) g^{\left(d_{k}\right)}\left(\lambda_{k} x\right)=p(x)
$$

for $p, p_{1}, \ldots, p_{m} \in \mathbb{L}[x], d_{1}, \ldots, d_{m} \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{L}$. Then, the coefficient sequence $(a(n))_{n \in \mathbb{N}}$ satisfies a linear recurrence with C-finite coefficients over \mathbb{L}.

- Not all coefficient sequences of such functions are C^{2}-finite.
- E.g., $g(x)=g(-x)$ is of the required form, but not all coefficient sequences of even functions are C^{2}-finite.
- Let $g(x)=\sum_{n \geq 0} a(n) x^{n}$ satisfy $x g(2 x)+g(x)=1$. Then,

$$
2^{n} a(n)+a(n+1)=0 .
$$

Generating functions of simple C^{2}-finite sequences

Theorem

The sequence $a \in \overline{\mathbb{Q}}^{\mathbb{N}}$ is simple C^{2}-finite if and only if its generating function $g(x)=\sum_{n \geq 0} a(n) x^{n}$ satisfies a functional differential equation of the form

$$
\sum_{k=1}^{m} \alpha_{k} x^{j_{k}} g^{\left(d_{k}\right)}\left(\lambda_{k} x\right)=p(x)
$$

for

1. $\alpha_{1}, \ldots, \alpha_{k}, \lambda_{1}, \ldots, \lambda_{k} \in \overline{\mathbb{Q}} \backslash\{0\}$,
2. $j_{1}, \ldots, j_{m}, d_{1}, \ldots, d_{m} \in \mathbb{N}$,
3. $p \in \overline{\mathbb{Q}}[x]$ and
4. let $s:=\max _{k=1, \ldots, m}\left(d_{k}-j_{k}\right)$, then for all $k=1, \ldots, m$ with $d_{k}-j_{k}=s$ we have $j_{k}=0$ and $\lambda_{k}=1$.

Cauchy product

- For (simple) C^{2}-finite sequences a, b, is the Cauchy product $(a \odot b)(n):=\sum_{i=0}^{n} a(i) b(n-i)$ again (simple) C^{2}-finite?

Question

Let $a(n)=2^{n^{2}}$ and $b(n)=3^{n^{2}}$. Is the Cauchy product $a \odot b$ again C^{2}-finite?

Theorem

Let a be (simple) C^{2}-finite and b be C-finite. Then, the Cauchy product $a \odot b$ is again (simple) C^{2}-finite.

Overview

By restricting to simple C^{2}-finite sequences we obtained:

- a computable ring,
- a computable bound on the growth of the terms,
- an equivalent characterization in terms of the generating function.

Open problems:
■ Is the ring of C^{2}-finite sequences computable?

- Is it possible to derive more precise asymptotic behavior of (simple) C^{2}-finite sequences?

References I

Cadilhac, Michaël et al. (2021). "On Polynomial Recursive Sequences". In:
Theory of Computing Systems.
Halava, Vesa et al. (2005). Skolem's Problem: On the Border Between Decidability and Undecidability. Tech. rep.
Jiménez-Pastor, Antonio, Philipp N., and Veronika Pillwein (2021). "On C^{2}-finite sequences". In: Proceedings of ISSAC 2021, Virtual Event Russian Federation, July 18-23, 2021, pp. 217-224.
Ouaknine, Joël and James Worrell (2012). "Decision Problems for Linear Recurrence Sequences". In: Lecture Notes in Computer Science. Springer, pp. 21-28.

References II

Thanatipanonda, Thotsaporn Aek and Yi Zhang (2020). Sequences: Polynomial, C-finite, Holonomic, https://arxiv.org/pdf/2004.01370. arXiv:
math/2004.01370.

