ON C^{2}-FINITE SEQUENCES

A. Jiménez-Pastor, P. Nuspl and V. Pillwein 23 July, ISSAC 2021

JOHANNES KEPLER JOHANNES KEPLER
UNIVERSITY LINZ

FШF
Der Wissenschaftsfonds.

C-finite sequences

Definition

A sequence $c(n) \in \mathbb{K}^{\mathbb{N}}$ is called C-finite if there are constants $\gamma_{0}, \ldots, \gamma_{r-1} \in \mathbb{K}$ such that

$$
\gamma_{0} c(n)+\cdots+\gamma_{r-1} c(n+r-1)+c(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

■ The sequence $c(n)$ can be described completely by finite amount of data, namely by

$$
\gamma_{0}, \ldots, \gamma_{r-1}, c(0), \ldots, c(r-1)
$$

- C-finite sequences form a ring under termwise addition and multiplication. We denote it by \mathcal{R}_{C}.
■ Example: Fibonacci-sequence $f(n)$, Lucas numbers, Perrin numbers.

C^{2}-finite sequences

Definition

A sequence $a=a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r}(n) \in \mathbb{K}^{\mathbb{N}}$ with $c_{r}(n) \neq 0$ for all $n \in \mathbb{N}$ such that

$$
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+c_{r}(n) a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

- The sequence a can again be described completely by finite data.
- Contains C - and D-finite and q-holonomic sequences.
- Similar sequences already studied in
\square Kotek and Makowsky 2014,
\square Thanatipanonda and Zhang 2020.
■ Recognizing whether recurrence is valid: Skolem-Problem.

Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?

Not known whether decidable in general.

- Decidable for small orders (≤ 4), Ouaknine and Worrell 2012.
- Asymptotic analysis can help in many cases.

■ CAD can be used to determine sign-pattern of sequence, Gerhold and Kauers 2005.

Examples C^{2}-finite sequences

Example: Fibonorials (A003266)

Let $f(n)$ be the Fibonacci sequence and
$a(n)=\prod_{i=1}^{n} f(i)$. The sequence a is C^{2} finite with recurrence

$$
f(n+1) a(n)-a(n+1)=0
$$

$$
\begin{aligned}
& C^{2} \text {-finite: } \\
& 2^{n^{2}}, f\left(n^{2}\right)
\end{aligned}
$$

They are called fibonorial numbers.

Example: Sparse subsequences

Let $c(n)$ be C-finite. Then, $c\left(n^{2}\right)$ is C^{2}-finite.
Kotek and Makowsky 2014 give a C^{2}-finite recurrence for $f\left(n^{2}\right)$ (A054783).
C-finite: 2^{n}

Module of shifts

■ $Q\left(\mathcal{R}_{C}\right)$ is the localisation of C-finite sequences w.r.t. the sequences which do not contain any zeros.
■ Let $\sigma: \mathbb{K}^{\mathbb{N}} \rightarrow \mathbb{K}^{\mathbb{N}}$ be the shift operator, i.e. $\sigma(a(n))=a(n+1)$.

Theorem

The following are equivalent:

1. The sequence a is C^{2}-finite
2. The module $\left\langle\sigma^{n} a \mid n \in \mathbb{N}\right\rangle_{Q\left(\mathcal{R}_{C}\right)}$ over the ring $Q\left(\mathcal{R}_{C}\right)$ is finitely generated.

Ring

Let a, b be C^{2}-finite. Is $a+b$ a C^{2}-finite sequence?

$$
\left\langle\sigma^{n}(a+b) \mid n \in \mathbb{N}\right\rangle_{Q\left(\mathcal{R}_{C}\right)} \subseteq\left\langle\sigma^{n} a \mid n \in \mathbb{N}\right\rangle_{Q\left(\mathcal{R}_{C}\right)}+\left\langle\sigma^{n} b \mid n \in \mathbb{N}\right\rangle_{Q\left(\mathcal{R}_{C}\right)}
$$

Submodules of finitely generated modules might not be finitely generated as \mathcal{R}_{C} is not Noetherian.

Theorem

The set of C^{2}-finite sequences is a ring under elementwise addition and multiplication.

■ Idea: Restrict underlying ring from \mathcal{R}_{C} to Noetherian subring.

- Order of addition/multiplication depends on coefficients of the C^{2}-finite sequences.

Addition of C^{2}-finite sequence

Given C^{2}-finite a, b of order r_{1}, r_{2}. Make ansatz

$$
\begin{aligned}
x_{0}(n)(a(n)+b(n))+\cdots+x_{s-1} & (n)(a(n+s-1)+b(n+s-1)) \\
+ & (a(n+s)+b(n+s))=0
\end{aligned}
$$

of unknown order s and unknown coefficients $x_{0}, \ldots, x_{s-1} \in Q\left(\mathcal{R}_{C}\right)$. Repeated application of the recurrences and collecting $a(n+i)$ and $b(n+i)$ yields

$$
\begin{aligned}
& \sum_{i=0}^{r_{1}-1}\left(\alpha_{i}(n)+\sum_{j=0}^{s-1} \alpha_{i, j}(n) x_{j}(n)\right) a(n+i)+ \\
& \sum_{i=0}^{r_{2}-1}\left(\beta_{i}(n)+\sum_{j=0}^{s-1} \beta_{i, j}(n) x_{j}(n)\right) b(n+i)=0
\end{aligned}
$$

for some $\alpha_{i}, \alpha_{i, j}, \beta_{i}, \beta_{i, j} \in Q\left(\mathcal{R}_{C}\right)$. This equation is certainly true for all n if the coefficient sequences of $a(n+i)$ and $b(n+i)$ are zero.

Addition of C^{2}-finite sequence

The ansatz yields the linear system

$$
A x=w
$$

with given $A \in Q\left(\mathcal{R}_{C}\right)^{\left(r_{1}+r_{2}\right) \times s}, w \in Q\left(\mathcal{R}_{C}\right)^{r_{1}+r_{2}}$ and unknown $x \in Q\left(\mathcal{R}_{C}\right)^{s}$ where the order of the ansatz is denoted by s.

Lemma

If the order of the ansatz s is chosen big enough, then the linear system $A x=w$ has a solution $x(n) \in \mathbb{K}^{s}$ for every $n \in \mathbb{N}$.

■ Computation of s yields an ideal membership problem in \mathcal{R}_{C}.

Addition of C^{2}-finite sequence

The ansatz yields the linear system

$$
A x=w
$$

with given $A \in Q\left(\mathcal{R}_{C}\right)^{\left(r_{1}+r_{2}\right) \times s}, w \in Q\left(\mathcal{R}_{C}\right)^{r_{1}+r_{2}}$ and unknown $x \in Q\left(\mathcal{R}_{C}\right)^{s}$ where the order of the ansatz is denoted by s.

Lemma

If a linear system $A x=w$ has a termwise solution $x(n)$ for every $n \in \mathbb{N}$, then there exists a solution $x \in Q\left(\mathcal{R}_{C}\right)^{s}$.

- Based on Kotek and Makowsky 2014.
- For computing $x \in Q\left(\mathcal{R}_{C}\right)^{s}$ we need to solve instances of the Skolem-Problem.
- Hence, the lemma is not fully algorithmic.

Example

Consider

$$
\begin{aligned}
\left((-1)^{n}+2^{n}\right) a(n)-a(n+1) & =0, \\
\left(1+2^{n}\right) b(n)-b(n+1) & =0, \quad \text { for all } n \in \mathbb{N}
\end{aligned}
$$

Ansatz of order 2 for the sequence $c=a+b$ yields the equation

$$
\left(\begin{array}{cc}
1 & (-1)^{n}+2^{n} \\
1 & 1+2^{n}
\end{array}\right)\binom{x_{0}(n)}{x_{1}(n)}=\binom{-2 \cdot 4^{n}-(-2)^{n}+1}{-2 \cdot 4^{n}-3 \cdot 2^{n}-1}
$$

which has no solution for even n.
Ansatz of order 3 yields recurrence

$$
\begin{array}{r}
\left(-2 \cdot 8^{n}-4^{n}+2 \cdot 2^{n}-(-1)^{n}-2(-2)^{n}+(-4)^{n}+2(-8)^{n}+1\right) c(n) \\
\left(-10 \cdot 4^{n}-5 \cdot 2^{n}+5(-2)^{n}+10(-4)^{n}\right) c(n+1) \\
\left(4 \cdot 2^{n}+(-1)^{n}+4(-2)^{n}+1\right) c(n+2) \\
2 c(n+3)=0
\end{array}
$$

More closure properties

C^{2}-finite sequences are also closed under

- shifts,
- partial sums,
- taking subsequences at arithmetic progressions,
- interlacing.

Example

Let f denote the Fibonacci-sequence. The sequence

$$
\left(\sum_{k=0}^{\lfloor 2 n / 3\rfloor} f\left((3 k+1)^{2}\right)\right)_{n \in \mathbb{N}}
$$

is C^{2}-finite.

Fibonomial coefficients

Example: Fibonomial coefficients (Kilic, Akkus, and Ohtsuka 2012)

Let f be the Fibonacci sequence, l the Lucas numbers and

$$
\operatorname{Fib}(n, k):=\prod_{i=1}^{k} \frac{f(n-i+1)}{f(k)}
$$

the fibonomial coefficient. Then,

$$
\sum_{k=0}^{n} \operatorname{Fib}(2 n+1, k)=\prod_{k=1}^{n} l(2 k)
$$

for all $n \in \mathbb{N}$. In particular, this sequence is C^{2}-finite.

Identities of this form can be derived and proven fully automatically using difference rings with idempotent representations (Ablinger and Schneider 2021).

D^{2} and C^{n}-finite

■ In an analogous way, the set of
C^{3}-finite: $2^{n^{3}}$ D^{2}-finite sequences forms a ring.

- This process can be iterated to show that the sets of C^{k} and D^{k}-finite sequences are a ring for all $k \in \mathbb{N}$.
- Jiménez-Pastor and Pillwein 2018, 2019 used a similar construction for functions.
D^{2}-finite: $\prod_{i=1}^{n} i$!
C^{2}-finite: $2^{n^{2}}$
D-finite: n !
C-finite: 2^{n}

Conclusion

■ C^{2}-finite sequences are a generalization of many well-studied structures.
■ They have many closure properties which are usually computable.
■ Algorithms can be limited by Skolem-Problem.

References I

Ablinger, Jakob and Carsten Schneider (2021). "Solving linear difference equations with coefficients in rings with idempotent representations". In: Proceedings of ISSAC 2021, July 18-23, Virtual Event, Russian Federation, 2021.

Gerhold, Stefan and Manuel Kauers (2005). "A Procedure for Proving Special Function Inequalities Involving a Discrete Parameter". In: Proceedings of ISSAC 2005, Beijing, China, July 24-27, 2005, pp. 156-162.
Kilic, Emrah, llker Akkus, and Hideyuki Ohtsuka (2012). "Some generalized Fibonomial sums related with the Gaussian q-binomial sums". In: Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 55.

References II

Kotek, Tomer and Johann A. Makowsky (2014). "Recurrence relations for graph polynomials on bi-iterative families of graphs". In: Eur. J. Comb. 41, pp. 47-67.
Ouaknine, Joël and James Worrell (2012). "Decision Problems for Linear Recurrence Sequences". In: Lecture Notes in Computer Science. Springer, pp. 21-28.
Thanatipanonda, Thotsaporn Aek and Yi Zhang (2020). Sequences: Polynomial, C-finite, Holonomic, https://arxiv.org/pdf/2004.01370. arXiv: math/2004.01370.

