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Overview

� C2-finite sequences are defined by certain linear recurrence equations.

� We will see how we can compute with them.

� These computations can be done with the package rec_sequences in Sage
(can be obtained from github.com/PhilippNuspl/rec_sequences).

� The package is based on the ore_algebra package (Kauers, Jaroschek, and
Johansson 2015).

sage: from rec_sequences.CFiniteSequenceRing import *
sage: from rec_sequences.C2FiniteSequenceRing import *
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https://www.github.com/PhilippNuspl/rec_sequences


C-finite sequences

Definition

A sequence a(n) ∈ KN is called C-finite if there are constants γ0, . . . , γr ∈ K, not
all zero, such that

γ0a(n) + · · ·+ γr−1a(n+ r − 1) + γra(n+ r) = 0 for all n ∈ N.

� Examples: Fibonacci numbers, Lucas numbers, Pell numbers, etc.
� The set of C-finite sequences is a ring under termwise addition and

multiplication.
� Every C-finite sequence can be described by finite amount of data.

sage: C = CFiniteSequenceRing(QQ)
sage: f = C([1,1,-1], [1,1])
sage: f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55] 2/16



C2-finite sequences

Definition

A sequence a = a(n) ∈ KN is called C2-finite if there are C-finite sequences
c0(n), . . . , cr(n) ∈ KN with cr(n) 6= 0 for all n ∈ N such that

c0(n)a(n) + · · ·+ cr−1(n)a(n+ r − 1) + cr(n)a(n+ r) = 0 for all n ∈ N.

� Contains C- and D-finite (also P -recursive or holonomic) and q-holonomic
sequences.

� Describable by finite amount of data.
� Studied by Kotek and Makowsky 2014 and Thanatipanonda and Zhang 2020.

sage: C2 = C2FiniteSequenceRing(QQ)
sage: fib_fac = C2([f,-1], [1])
sage: fib_fac [:10] # fibonacci -factorial , A003266
[1, 1, 1, 2, 6, 30, 240, 3120, 65520 , 2227680] 3/16



Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?

Not known whether decidable in general.

� Decidable for sequences of order ≤ 4 (Ouaknine and Worrell 2012).
� Decidable if we have a unique dominant root (Halava et al. 2005).
� Sometimes the Gerhold-Kauers method using CAD can be applied (Gerhold

and Kauers 2005; Kauers and Pillwein 2010).

sage: f>0 # use Gerhold -Kauers to show positivity
True
sage: f.has_no_zeros ()
True
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Skolem-Mahler-Lech Theorem

A sequence (nd+ r)n∈N for r, d ∈ N is called an arithmetic progression.

Skolem-Mahler-Lech Theorem

Let c(n) be C-finite over a field of characteristic 0. Then the set

Zc := {n ∈ N | c(n) = 0}
is comprised of a finite set together with a finite number of arithmetic progres-
sions.

sage: # A021250 , decimal expansion of 1/246
sage: c = C([0,0,0,-1,0,0,0,0,1], [0, 0, 4, 0, 6, 5, 0, 4])
sage: c.zeros()
Zero pattern with finite set {0} and arithmetic progressions:
- Arithmetic progression (5*n+3)_n
- Arithmetic progression (5*n+1)_n
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Example: Sparse Subsequences

Theorem

Let c be a C-finite sequence. The sequence c(n2) is C2-finite.

sage: fib_sparse = f.sparse_subsequence(C2) # A054783
sage: fib_sparse
C^2-finite sequence of order 2 and degree 2 with coefficients:
> c0 (n) : C-finite sequence c0(n): (-1)*c0(n) + (3)*c0(n+1) + (-1)

*c0(n+2) = 0 and c0(0)=-2 , c0(1)=-5
> c1 (n) : C-finite sequence c1(n): (-1)*c1(n) + (7)*c1(n+1) + (-1)

*c1(n+2) = 0 and c1(0)=-3 , c1(1)=-21
> c2 (n) : C-finite sequence c2(n): (-1)*c2(n) + (3)*c2(n+1) + (-1)

*c2(n+2) = 0 and c2(0)=1 , c2(1)=2
and initial values a(0)=1 , a(1)=1
sage: fib_sparse [:10]
[1, 1, 5, 55, 1597, 121393 , 24157817 , 12586269025]
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Ring

Theorem (Jiménez-Pastor, Nuspl, and Pillwein 2021b)

The set of C2-finite sequences is a difference ring under termwise addition and
multiplication.

Proof idea: Let a, b be C2-finite. Is a+ b a C2-finite sequence?

� Let R be the smallest K-algebra that contains all coefficients of the
recurrences of a, b and their shifts.

� Let Q(R) be its total ring of fractions (localization w.r.t. sequences which do
not contain zeros). This ring Q(R) is Noetherian.

� Then,

〈σn(a+ b) | n ∈ N〉Q(R) ⊆ 〈σna | n ∈ N〉Q(R) + 〈σnb | n ∈ N〉Q(R)

is finitely generated.
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Computable

� Is the ring computable?

� Algorithm suggested by the previous theorem: Reduce problem of finding a
recurrence for a+ b to solving a linear system Ax = b over Q(R).

� Not clear how to solve such systems.
� If the zeros of the sequences appearing in the system A can be computed:

� A solution x can be computed (if such a solution exists).
� Uses Skolem-Mahler-Lech theorem and Moore-Penrose inverse.
� Not very efficient.
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Example addition

Consider

(−1)na(n) + a(n+ 1) = 0, b(n) + b(n+ 1) = 0, for all n ∈ N.
Ansatz of order 2 for the sequence a+ b:

x0(n) (a(n) + b(n)) + x1(n) (a(n+ 1) + b(n+ 1)) + (a(n+ 2) + b(n+ 2)) = 0.

Using recurrences of a, b this can be written as

a(n) (x0(n)− (−1)nx1(n)− 1) + b(n) (x0(n)− x1(n) + 1) = 0.

Equating coefficients of a, b to zero yields the linear system(
1 −(−1)n

1 −1

)(
x0(n)

x1(n)

)
=

(
1

−1

)
.

which has no solution for even n.
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Example addition continued

Ansatz of order 3 yields the linear system(
1 −(−1)n −1
1 −1 1

)x0(n)x1(n)

x2(n)

 =

(
−(−1)n

1

)
.

It has the solution

(x0(n), x1(n), x2(n)) =
(
1
2(−1)

n+1 + 1
2 , 0,

1
2(−1)

n + 1
2

)
.

Indeed, c = a+ b satisfies the recurrence(
1
2(−1)

n+1 + 1
2

)
c(n) +

(
1
2(−1)

n + 1
2

)
c(n+ 2) + c(n+ 3) = 0,

sage: var("n")
sage: a = C2([C((-1)^n), 1], [1])
sage: b = C2([1, 1], [1])
sage: c = a+b
sage: c.order(), c.degree ()
(3, 2)
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More closure properties

C2-finite sequences are also closed under

� partial sums,

� taking subsequences at arithmetic progressions,

� interlacing.

Example

The sequence
∑bn/3c

k=0 f((2k + 1)2) is C2-finite.

sage: a = fib_sparse.subsequence (2, 1).sum().multiple (3)
sage: a.order(), a.degree ()
(9, 147)
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C2-finite identities

Let f be the Fibonacci sequence. We denote the fibonomial coefficient by[
n

k

]
f

=
f(n)f(n− 1) · · · f(n− k + 1)

f(1) · · · f(k)
=

n∏
i=1

f(n− i+ 1)

f(i)
.

Let l denote the Lucas numbers, then
n∑

k=0

[
2n+ 1

k

]
f

=

n∏
k=1

l(2k),

This can be shown using

� q-theory (Kilic, Akkus, and Ohtsuka 2012),

� creative telescoping applied to the C2-finite case,

� difference rings with idempotent representations (Ablinger and Schneider
2021).
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Generating function

Lemma

Let a be C2-finite and g(x) =
∑

n≥0 a(n)x
n its generating function. Then, g satis-

fies a functional equation of the form
m∑
k=0

pk(x)g
(dk)(γkx) = p(x)

with p0, . . . , pm, p ∈ K[x], d0, . . . , dm ∈ N, γ0, . . . , γm ∈ K.

� Not all coefficient sequences of functions satisfying such a functional equation
are C2-finite. E.g., not all coefficient sequences of even functions are C2-finite.
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Examples

Example

Let f(n2) be the sparse subsequence of the Fibonacci sequence f . The gener-
ating function g of f(n2) satisfies the functional equation(

φ3x2 − φ−3
)
g
(
φ2x

)
−
(
ψ3x2 − ψ−3

)
g
(
ψ2x

)
+xg

(
φ4x

)
− xg

(
ψ4x

)
= (ψ − φ)x+ 2(ψ − φ)

where φ := 1+
√
5

2 denotes the golden ratio and ψ := 1−
√
5

2 its conjugate.

sage: c = C(2^n+1)
sage: d = C(3^n)
sage: a = C2([c, d], [1])
sage: a.functional_equation ()
(x)g(2x) + (x)g(x) + (1/3)g(3x) = 1/3
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Further generalizations

� D-finite sequences satisfy linear recurrence with polynomial coefficients.

� Can define D2-finite sequences as sequences satisfying linear recurrence
with D-finite coefficients.

� Example: Superfactorial a(n) =
∏n

k=1 k! (A000178).

� Define Ck-finite (or Dk-finite) sequences as sequences satisfying a linear
recurrence with Ck−1-finite (or Dk−1-finite) coefficients.

� Using the same methods as for C2-finite: All these are rings (Jiménez-Pastor,
Nuspl, and Pillwein 2021a).

� Let c be C-finite. Then, c(nk) is Ck-finite.
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Open problems

� More Examples and counterexamples.
� Asymptotics:

� Upper bound for a C2-finite sequence? Conjecture: αn2

.
� Precise asymptotic behavior (maybe only for subclass of C2-finite sequences).

� More efficient computations: How can we solve system efficiently?
� Are C2-finite sequences closed under the Cauchy product?

� Is the Cauchy product of 2n
2

and 3n
2

a C2-finite sequence?
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