C^{2}-FINITE SEQUENCES: A COMPUTATIONAL APPROACH

Philipp Nuspl, joint work with A. Jiménez-Pastor, V. Pillwein 10/3/2022
Tagung der Fachgruppe Computeralgebra 2022

Overview

■ C^{2}-finite sequences are defined by certain linear recurrence equations.

- We will see how we can compute with them.

■ These computations can be done with the package rec_sequences in Sage (can be obtained from github.com/PhilippNuspl/rec_sequences).
■ The package is based on the ore_algebra package (Kauers, Jaroschek, and Johansson 2015).

```
sage: from rec_sequences.CFiniteSequenceRing import *
sage: from rec_sequences.C2FiniteSequenceRing import *
```


C-finite sequences

Definition

A sequence $a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C-finite if there are constants $\gamma_{0}, \ldots, \gamma_{r} \in \mathbb{K}$, not all zero, such that

$$
\gamma_{0} a(n)+\cdots+\gamma_{r-1} a(n+r-1)+\gamma_{r} a(n+r)=0 \quad \text { for all } n \in \mathbb{N} .
$$

■ Examples: Fibonacci numbers, Lucas numbers, Pell numbers, etc.

- The set of C-finite sequences is a ring under termwise addition and multiplication.
- Every C-finite sequence can be described by finite amount of data.

```
sage: C = CFiniteSequenceRing(QQ)
sage: f = C([1,1,-1], [1,1])
sage: f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
```


C^{2}-finite sequences

Definition

A sequence $a=a(n) \in \mathbb{K}^{\mathbb{N}}$ is called C^{2}-finite if there are C-finite sequences $c_{0}(n), \ldots, c_{r}(n) \in \mathbb{K}^{\mathbb{N}}$ with $c_{r}(n) \neq 0$ for all $n \in \mathbb{N}$ such that

$$
c_{0}(n) a(n)+\cdots+c_{r-1}(n) a(n+r-1)+c_{r}(n) a(n+r)=0 \quad \text { for all } n \in \mathbb{N} \text {. }
$$

- Contains C - and D-finite (also P-recursive or holonomic) and q-holonomic sequences.
■ Describable by finite amount of data.
- Studied by Kotek and Makowsky 2014 and Thanatipanonda and Zhang 2020.

```
sage: C2 = C2FiniteSequenceRing(QQ)
sage: fib_fac=C2([f,-1], [1])
sage: fib_fac[:10] # fibonacci-factorial, A003266
[1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680]
```


Skolem-Problem

Skolem-Problem

Does a given C-finite sequence have a zero?
Not known whether decidable in general.

- Decidable for sequences of order ≤ 4 (Ouaknine and Worrell 2012).
- Decidable if we have a unique dominant root (Halava et al. 2005).
- Sometimes the Gerhold-Kauers method using CAD can be applied (Gerhold and Kauers 2005; Kauers and Pillwein 2010).

```
sage: f>0 # use Gerhold-Kauers to show positivity
True
sage: f.has_no_zeros()
True
```


Skolem-Mahler-Lech Theorem

A sequence $(n d+r)_{n \in \mathbb{N}}$ for $r, d \in \mathbb{N}$ is called an arithmetic progression.

Skolem-Mahler-Lech Theorem

Let $c(n)$ be C-finite over a field of characteristic 0 . Then the set

$$
Z_{c}:=\{n \in \mathbb{N} \mid c(n)=0\}
$$

is comprised of a finite set together with a finite number of arithmetic progressions.

```
sage: # A021250, decimal expansion of 1/246
sage: c = C([0,0,0,-1,0,0,0,0,1], [0, 0, 4, 0, 6, 5, 0, 4])
sage: c.zeros()
Zero pattern with finite set {0} and arithmetic progressions:
- Arithmetic progression (5*n+3)_n
- Arithmetic progression (5*n+1)_n
```


Example: Sparse Subsequences

Theorem

Let c be a C-finite sequence. The sequence $c\left(n^{2}\right)$ is C^{2}-finite.

```
sage: fib_sparse = f.sparse_subsequence(C2) # A054783
sage: fib_sparse
C^2-finite sequence of order 2 and degree 2 with coefficients:
    > c0 (n) : C-finite sequence c0(n): (-1)*c0(n) + (3)*c0(n+1) + (-1)
        * c0(n+2) = 0 and c0(0)=-2, c0(1)=-5
    > c1 (n) : C-finite sequence c1(n): (-1)*c1(n) + (7)*c1(n+1) + (-1)
        *c1(n+2) = 0 and c1(0)=-3 , c1(1) = - 21
    > c2 (n) : C-finite sequence c2(n): (-1)*c2(n) + (3)*c2(n+1) + (-1)
        *c2(n+2) = 0 and c2(0)=1 , c2(1)=2
and initial values a(0)=1 , a(1)=1
sage: fib_sparse[:10]
[1, 1, 5, 55, 1597, 121393, 24157817, 12586269025]
```


Ring

Theorem (Jiménez-Pastor, Nuspl, and Pillwein 2021b)

The set of C^{2}-finite sequences is a difference ring under termwise addition and multiplication.

Proof idea: Let a, b be C^{2}-finite. Is $a+b$ a C^{2}-finite sequence?

- Let R be the smallest \mathbb{K}-algebra that contains all coefficients of the recurrences of a, b and their shifts.
- Let $Q(R)$ be its total ring of fractions (localization w.r.t. sequences which do not contain zeros). This ring $Q(R)$ is Noetherian.
- Then,

$$
\left\langle\sigma^{n}(a+b) \mid n \in \mathbb{N}\right\rangle_{Q(R)} \subseteq\left\langle\sigma^{n} a \mid n \in \mathbb{N}\right\rangle_{Q(R)}+\left\langle\sigma^{n} b \mid n \in \mathbb{N}\right\rangle_{Q(R)}
$$

is finitely generated.

Computable

- Is the ring computable?

■ Algorithm suggested by the previous theorem: Reduce problem of finding a recurrence for $a+b$ to solving a linear system $A x=b$ over $Q(R)$.
■ Not clear how to solve such systems.

- If the zeros of the sequences appearing in the system A can be computed:
\square A solution x can be computed (if such a solution exists).
\square Uses Skolem-Mahler-Lech theorem and Moore-Penrose inverse.
\square Not very efficient.

Example addition

Consider

$$
(-1)^{n} a(n)+a(n+1)=0, \quad b(n)+b(n+1)=0, \quad \text { for all } n \in \mathbb{N} .
$$

Ansatz of order 2 for the sequence $a+b$:

$$
x_{0}(n)(a(n)+b(n))+x_{1}(n)(a(n+1)+b(n+1))+(a(n+2)+b(n+2))=0 .
$$

Using recurrences of a, b this can be written as

$$
a(n)\left(x_{0}(n)-(-1)^{n} x_{1}(n)-1\right)+b(n)\left(x_{0}(n)-x_{1}(n)+1\right)=0 .
$$

Equating coefficients of a, b to zero yields the linear system

$$
\left(\begin{array}{cc}
1 & -(-1)^{n} \\
1 & -1
\end{array}\right)\binom{x_{0}(n)}{x_{1}(n)}=\binom{1}{-1} .
$$

which has no solution for even n.

Example addition continued

Ansatz of order 3 yields the linear system

$$
\left(\begin{array}{ccc}
1 & -(-1)^{n} & -1 \\
1 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0}(n) \\
x_{1}(n) \\
x_{2}(n)
\end{array}\right)=\binom{-(-1)^{n}}{1}
$$

It has the solution

$$
\left(x_{0}(n), x_{1}(n), x_{2}(n)\right)=\left(\frac{1}{2}(-1)^{n+1}+\frac{1}{2}, 0, \frac{1}{2}(-1)^{n}+\frac{1}{2}\right) .
$$

Indeed, $c=a+b$ satisfies the recurrence

$$
\left(\frac{1}{2}(-1)^{n+1}+\frac{1}{2}\right) c(n)+\left(\frac{1}{2}(-1)^{n}+\frac{1}{2}\right) c(n+2)+c(n+3)=0
$$

```
sage: var("n")
sage: a = C2([C((-1) n n), 1], [1])
sage: b = C2([1, 1], [1])
sage: c = a+b
sage: c.order(), c.degree()
```


More closure properties

C^{2}-finite sequences are also closed under

- partial sums,
- taking subsequences at arithmetic progressions,
- interlacing.

Example

The sequence $\sum_{k=0}^{\lfloor n / 3\rfloor} f\left((2 k+1)^{2}\right)$ is C^{2}-finite.

```
sage: a = fib_sparse.subsequence(2, 1).sum().multiple(3)
sage: a.order(), a.degree()
(9, 147)
```


C^{2}-finite identities

Let f be the Fibonacci sequence. We denote the fibonomial coefficient by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{f}=\frac{f(n) f(n-1) \cdots f(n-k+1)}{f(1) \cdots f(k)}=\prod_{i=1}^{n} \frac{f(n-i+1)}{f(i)} .
$$

Let l denote the Lucas numbers, then

$$
\sum_{k=0}^{n}\left[\begin{array}{c}
2 n+1 \\
k
\end{array}\right]_{f}=\prod_{k=1}^{n} l(2 k)
$$

This can be shown using

- q-theory (Kilic, Akkus, and Ohtsuka 2012),
- creative telescoping applied to the C^{2}-finite case,
- difference rings with idempotent representations (Ablinger and Schneider 2021).

Generating function

Lemma

Let a be C^{2}-finite and $g(x)=\sum_{n \geq 0} a(n) x^{n}$ its generating function. Then, g satisfies a functional equation of the form

$$
\begin{gathered}
\sum_{k=0}^{m} p_{k}(x) g^{\left(d_{k}\right)}\left(\gamma_{k} x\right)=p(x) \\
\text { with } p_{0}, \ldots, p_{m}, p \in \mathbb{K}[x], d_{0}, \ldots, d_{m} \in \mathbb{N}, \gamma_{0}, \ldots, \gamma_{m} \in \mathbb{K} .
\end{gathered}
$$

■ Not all coefficient sequences of functions satisfying such a functional equation are C^{2}-finite. E.g., not all coefficient sequences of even functions are C^{2}-finite.

Examples

Example

Let $f\left(n^{2}\right)$ be the sparse subsequence of the Fibonacci sequence f. The generating function g of $f\left(n^{2}\right)$ satisfies the functional equation

$$
\begin{aligned}
\left(\phi^{3} x^{2}-\phi^{-3}\right) g\left(\phi^{2} x\right)- & \left(\psi^{3} x^{2}-\psi^{-3}\right) g\left(\psi^{2} x\right) \\
& +x g\left(\phi^{4} x\right)-x g\left(\psi^{4} x\right)=(\psi-\phi) x+2(\psi-\phi)
\end{aligned}
$$

where $\phi:=\frac{1+\sqrt{5}}{2}$ denotes the golden ratio and $\psi:=\frac{1-\sqrt{5}}{2}$ its conjugate.

```
sage: c = C(2^n+1)
sage: d = C(3^n)
sage: a = C2([c, d], [1])
sage: a.functional_equation()
(x)g(2x) + (x)g(x) + (1/3)g(3x) = 1/3
```


Further generalizations

■ D-finite sequences satisfy linear recurrence with polynomial coefficients.

- Can define D^{2}-finite sequences as sequences satisfying linear recurrence with D-finite coefficients.
■ Example: Superfactorial $a(n)=\prod_{k=1}^{n} k!$ (A000178).
- Define C^{k}-finite (or D^{k}-finite) sequences as sequences satisfying a linear recurrence with C^{k-1}-finite (or D^{k-1}-finite) coefficients.
■ Using the same methods as for C^{2}-finite: All these are rings (Jiménez-Pastor, Nuspl, and Pillwein 2021a).
■ Let c be C-finite. Then, $c\left(n^{k}\right)$ is C^{k}-finite.

Open problems

■ More Examples and counterexamples.

- Asymptotics:
\square Upper bound for a C^{2}-finite sequence? Conjecture: $\alpha^{n^{2}}$.
\square Precise asymptotic behavior (maybe only for subclass of C^{2}-finite sequences).
■ More efficient computations: How can we solve system efficiently?
- Are C^{2}-finite sequences closed under the Cauchy product?
\square Is the Cauchy product of $2^{n^{2}}$ and $3^{n^{2}}$ a C^{2}-finite sequence?

References I

Ablinger, Jakob and Carsten Schneider (2021). "Solving Linear Difference Equations with Coefficients in Rings with Idempotent Representations". In: Proceedings of ISSAC 2021. ISSAC '21. Virtual Event, Russian Federation. Gerhold, Stefan and Manuel Kauers (2005). "A Procedure for Proving Special Function Inequalities Involving a Discrete Parameter". In: Proceedings of ISSAC 2005, Beijing, China, July 24-27, 2005, pp. 156-162.
Halava, Vesa et al. (2005). Skolem's Problem: On the Border Between Decidability and Undecidability. Tech. rep.
Jiménez-Pastor, Antonio, Philipp Nuspl, and Veronika Pillwein (2021a). "An extension of holonomic sequences: C^{2}-finite sequences". In: RISC Report Series 21.20. https://doi.org/10.35011/risc.21-20.

References II

Jiménez-Pastor, Antonio, Philipp Nuspl, and Veronika Pillwein (2021b). "On C^{2}-finite sequences". In: Proceedings of ISSAC 2021, Virtual Event Russian Federation, July 18-23, 2021, pp. 217-224.
Kauers, Manuel, Maximilian Jaroschek, and Fredrik Johansson (2015). "Ore Polynomials in Sage". In: Computer Algebra and Polynomials: Applications of Algebra and Number Theory. Ed. by Jaime Gutierrez, Josef Schicho, and Martin Weimann. Springer International Publishing, pp. 105-125.
Kauers, Manuel and Veronika Pillwein (2010). "When Can We Detect That a P-Finite Sequence is Positive?". In: Proceedings of ISSAC 2010, Munich, Germany. New York, NY, USA: Association for Computing Machinery, 195âĂŞ-201. DOI: 10.1145/1837934.1837974.

References III

Kilic, Emrah, Ilker Akkus, and Hideyuki Ohtsuka (2012). "Some generalized Fibonomial sums related with the Gaussian q-binomial sums". In: Bulletin mathématiques de la Société des sciences mathématiques de Roumanie 55.
Kotek, Tomer and Johann A. Makowsky (2014). "Recurrence relations for graph polynomials on bi-iterative families of graphs". In: Eur. J. Comb. 41, pp. 47-67.
Ouaknine, Joël and James Worrell (2012). "Decision Problems for Linear Recurrence Sequences". In: Lecture Notes in Computer Science. Springer, pp. 21-28.
Thanatipanonda, Thotsaporn Aek and Yi Zhang (2020). Sequences: Polynomial, C-finite, Holonomic, https://arxiv.org/pdf/2004.01370. arXiv: math/2004.01370.

