Integral Equations and Boundary Value Problems

Exercise, WS 2018/19

Exercise sheet 1

10.10.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at

Reminder: Do not forget to mark crosses online until Oct.10, 9 am. at https://fox.indmath.uni-linz.ac.at/wwwlehre/index.php?course=intgl

1. Let ℓ_{∞} be the linear space of bounded sequences with the norm $||x||_{\infty} := \sup_{n=1}^{\infty} |x_n|$. Let $A : \ell_{\infty} \to \ell_{\infty}$ be defined by

$$A(x) = A(x_1, x_2, \dots) := (x_1, x_2/2, x_3/3, \dots).$$

Show that A is injective, continuous and not surjective. Furthermore, show that ||A|| = 1 and that A^{-1} is not continuous.

- 2. Let $K \in \mathbb{R}^{m \times n}$, $f \in \mathbb{R}^m$. Prove the following statement: Kx = f has a solution in \mathbb{R}^n if and only if all solutions $y \in \mathbb{R}^m$ of $K^T y = 0$ satisfy $(y, f)_{\mathbb{R}^m} = 0$.
- 3. Classify the following integral equations and identify, if possible, the kernel in each equation:

,

(a)
$$\alpha f(x) = \int_{-t}^{t} (x - y)^2 \sqrt{f(y)} \, dy + s(x) f(x)$$

(b) $\int_{0}^{s} (1 + \beta) x(t) \, dt = (\beta - e^{i\pi}) x(s)$,
(c) $\sin(2\pi s) - \int_{u}^{v} 2\cos(\pi x) f(x) \, dx = g(s)$.

4. Rewrite the following boundary value problem using an integral equation and classify it:

$$y''(s) + \lambda y(s) = 0, \ y(0) = y(1) = 0, \ s \in [0, 1].$$

5. Let $A: X \to X$ be a mapping on a Banach space X, with the property that A^n is contractive on X for some n. In other words,

$$||A^n x - A^n y|| \le q ||x - y||,$$

holds for all $x, y \in X$, q < 1, and some $n \in \mathbb{N}$. Please show: A has exactly one fixed point.

6. We consider an integral equation on the interval [a, b]:

$$x(s) - \int_{a}^{s} k(s,t)x(t) dt = g(s), \qquad s \in [a,b],$$

where $g : [a, b] \to \mathbb{R}$ and $k : \{(s, t) \in \mathbb{R}^2 : a \leq t \leq s \leq b\} \to \mathbb{R}$ are continuous functions. Please show: The integral equation above has exactly one solution.

Hint: Let $A : C[a, b] \to C[a, b]$ be given by $(Ax)(s) = \int_{a}^{s} k(s, t)x(t) dt + g(s)$ for $s \in [a, b]$. Show and use:

$$|(A^{n}x)(s) - (A^{n}y)(s)| \le c^{n} \frac{(s-a)^{n}}{n!} ||x-y||_{\infty},$$

holds for all $x, y \in C[a, b], s \in [a, b]$, and $n \in \mathbb{N}$, with $c := \max_{a \le t \le s \le b} |k(s, t)|$.