Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 1
10.10.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
Reminder: Do not forget to mark crosses online until Oct.10, 9 am . at https://fox.indmath.uni-linz.ac.at/wwwlehre/index.php?course=intgl

1. Let ℓ_{∞} be the linear space of bounded sequences with the norm $\|x\|_{\infty}:=$ $\sup _{n=1}^{\infty}\left|x_{n}\right|$. Let $A: \ell_{\infty} \rightarrow \ell_{\infty}$ be defined by

$$
A(x)=A\left(x_{1}, x_{2}, \ldots\right):=\left(x_{1}, x_{2} / 2, x_{3} / 3, \ldots\right) .
$$

Show that A is injective, continuous and not surjective. Furthermore, show that $\|A\|=1$ and that A^{-1} is not continuous.
2. Let $K \in \mathbb{R}^{m \times n}, f \in \mathbb{R}^{m}$. Prove the following statement: $K x=f$ has a solution in \mathbb{R}^{n} if and only if all solutions $y \in \mathbb{R}^{m}$ of $K^{T} y=0$ satisfy $(y, f)_{\mathbb{R}^{m}}=0$.
3. Classify the following integral equations and identify, if possible, the kernel in each equation:
(a) $\alpha f(x)=\int_{-t}^{t}(x-y)^{2} \sqrt{f(y)} d y+s(x) f(x)$,
(b) $\int_{0}^{s}(1+\beta) x(t) d t=\left(\beta-e^{i \pi}\right) x(s)$,
(c) $\sin (2 \pi s)-\int_{u}^{v} 2 \cos (\pi x) f(x) d x=g(s)$.
4. Rewrite the following boundary value problem using an integral equation and classify it:

$$
y^{\prime \prime}(s)+\lambda y(s)=0, y(0)=y(1)=0, s \in[0,1] .
$$

5. Let $A: X \rightarrow X$ be a mapping on a Banach space X, with the property that A^{n} is contractive on X for some n. In other words,

$$
\left\|A^{n} x-A^{n} y\right\| \leq q\|x-y\|,
$$

holds for all $x, y \in X, q<1$, and some $n \in \mathbb{N}$. Please show: A has exactly one fixed point.
6. We consider an integral equation on the interval $[a, b]$:

$$
x(s)-\int_{a}^{s} k(s, t) x(t) d t=g(s), \quad s \in[a, b],
$$

where $g:[a, b] \rightarrow \mathbb{R}$ and $k:\left\{(s, t) \in \mathbb{R}^{2}: a \leq t \leq s \leq b\right\} \rightarrow \mathbb{R}$ are continuous functions. Please show: The integral equation above has exactly one solution.
Hint: Let $A: C[a, b] \rightarrow C[a, b]$ be given by $(A x)(s)=\int_{a}^{s} k(s, t) x(t) d t+g(s)$ for $s \in[a, b]$. Show and use:

$$
\left|\left(A^{n} x\right)(s)-\left(A^{n} y\right)(s)\right| \leq c^{n} \frac{(s-a)^{n}}{n!}\|x-y\|_{\infty}
$$

holds for all $x, y \in C[a, b], s \in[a, b]$, and $n \in \mathbb{N}$, with $c:=\max _{a \leq t \leq s \leq b}|k(s, t)|$.

