Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 10
09.01.2019

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
55. Let $\langle X, Y\rangle$ be a dual system with two normed spaces, X and Y. Let $A_{n}: X \rightarrow X$ and $B_{n}: Y \rightarrow Y$ be adjoint finite dimensional operators of the form,

$$
A_{n} \phi=\sum_{j=1}^{n}\left\langle\phi, b_{j}\right\rangle a_{j} \text { and } B_{n} \psi=\sum_{j=1}^{n}\left\langle a_{j}, \psi\right\rangle b_{j}
$$

for $\phi \in X$ and $\psi \in Y$, and linearly independent elements $\left\{a_{1}, \ldots, a_{n}\right\} \subset$ X and $\left\{b_{1}, \ldots, b_{n}\right\} \subset Y$. By reducing the operator equations to linear systems, demonstrate the validity of Fredholm's theorem for the operators $I-A_{n}$ and $I-B_{n}$.
56. Let $\langle X, Y\rangle, A_{n}$ and B_{n} be defined as in the previous problem. Let S : $X \rightarrow X$ and $T: Y \rightarrow Y$ be adjoint linear operators such that $\|S\|<1$ and $\|T\|<1$. Establish the validity of Fredholm's theorem for the operators $I-A$ and $I-B$ where

$$
A=A_{n}+S \text { and } B=B_{n}+T
$$

Hint: Establish that $(I-S)$ and $(I-T)$ have bounded inverse operators on X and Y, respectively. Then transform the operator equations into equivalent equations with the operators $I-(I-S)^{-1} A_{n}$ and $I-(I-T)^{-1} B_{n}$.
57. Let K be a compact operator induced by the kernel $k(s, t) \in L^{2}\left([0,1]^{2}\right)$ with $k(s, t)>0$. Prove that $\|K\|<1$ if and only if $(I-K)$ has a bounded inverse $(I-K)^{-1}$ which is induced by a positive kernel.
58. From the proof of Theorem 2.1, it was shown that for $k \in C(G \times G)$ and $x \in L^{2}(G)$ the operator K induced by k satisfies the inequality,

$$
\|K x\|_{2} \leq\|k\|_{2}\|x\|
$$

i.e., $\|K\|_{2} \leq\|k\|_{2}$. Is this actually the norm? In other words, does it hold that

$$
\|K\|_{2}=\|k\|_{2} ?
$$

Prove or show a counterexample.
Hint: Consider the finite dimensional case (i.e., K is a matrix).
59. Please solve:

$$
\int_{0}^{s}(s+1-t) x(t) d t=e^{s}-1, \quad s \in[0,1] .
$$

for $x \in C[0,1]$.
Hint: use Theorem 4.3.
60. Please show that the following integral equation

$$
x(s)-\int_{0}^{1} k(s, t) x(t) d t=s,
$$

where the kernel k is given by

$$
k(s, t)= \begin{cases}1+t, & t \leq s \\ 2 s, & t>s\end{cases}
$$

has no solutions in $L^{2}[0,1]$.
Hint: Show and use: The integral equation

$$
x(s)=\int_{0}^{s} 2 t x(t) d t+\int_{s}^{1}(1+s) x(t) d t
$$

can be reformulated as a differential equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}(s)=(s-1) x^{\prime}(s) \\
x^{\prime}(0)=x^{\prime}(1)=0
\end{array}\right.
$$

for $x \in C^{2}[0,1]$.

