Integral Equations and Boundary Value Problems

Exercise, WS 2018/19

Exercise sheet 10

09.01.2019

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at

55. Let $\langle X, Y \rangle$ be a dual system with two normed spaces, X and Y. Let $A_n : X \to X$ and $B_n : Y \to Y$ be adjoint finite dimensional operators of the form,

$$A_n \phi = \sum_{j=1}^n \langle \phi, b_j \rangle a_j$$
 and $B_n \psi = \sum_{j=1}^n \langle a_j, \psi \rangle b_j$,

for $\phi \in X$ and $\psi \in Y$, and linearly independent elements $\{a_1, \ldots, a_n\} \subset X$ and $\{b_1, \ldots, b_n\} \subset Y$. By reducing the operator equations to linear systems, demonstrate the validity of Fredholm's theorem for the operators $I - A_n$ and $I - B_n$.

56. Let $\langle X, Y \rangle$, A_n and B_n be defined as in the previous problem. Let $S : X \to X$ and $T : Y \to Y$ be adjoint linear operators such that ||S|| < 1 and ||T|| < 1. Establish the validity of Fredholm's theorem for the operators I - A and I - B where

$$A = A_n + S$$
 and $B = B_n + T$.

Hint: Establish that (I - S) and (I - T) have bounded inverse operators on X and Y, respectively. Then transform the operator equations into equivalent equations with the operators $I - (I-S)^{-1}A_n$ and $I - (I-T)^{-1}B_n$.

- 57. Let K be a compact operator induced by the kernel $k(s,t) \in L^2([0,1]^2)$ with k(s,t) > 0. Prove that ||K|| < 1 if and only if (I - K) has a bounded inverse $(I - K)^{-1}$ which is induced by a positive kernel.
- 58. From the proof of Theorem 2.1, it was shown that for $k \in C(G \times G)$ and $x \in L^2(G)$ the operator K induced by k satisfies the inequality,

$$||Kx||_2 \le ||k||_2 \, ||x|| \; ,$$

i.e., $\|K\|_2 \leq \|k\|_2.$ Is this actually the norm? In other words, does it hold that

$$||K||_2 = ||k||_2?$$

Prove or show a counterexample.

Hint: Consider the finite dimensional case (i.e., K is a matrix).

59. Please solve:

$$\int_{0}^{s} (s+1-t)x(t) \, dt = e^{s} - 1 \,, \qquad s \in [0,1] \,.$$

for $x \in C[0, 1]$.

Hint: use Theorem 4.3.

60. Please show that the following integral equation

$$x(s) - \int_{0}^{1} k(s,t)x(t) dt = s$$
,

where the kernel k is given by

$$k(s,t) = \begin{cases} 1+t, & t \le s, \\ 2s, & t > s, \end{cases}$$

has no solutions in $L^2[0,1]$.

Hint: Show and use: The integral equation

$$x(s) = \int_{0}^{s} 2tx(t) dt + \int_{s}^{1} (1+s)x(t) dt,$$

can be reformulated as a differential equation

$$\begin{cases} x''(s) &= (s-1)x'(s), \\ x'(0) &= x'(1) = 0, \end{cases}$$

for $x \in C^2[0, 1]$.