Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 12
23.01.2019

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
67. Calculate the Green's Function for the following boundary value problem

$$
-x^{\prime \prime}(s)+x(s)=f(s), \quad s \in[0,1], \quad x(0)=0, \quad x^{\prime}(1)=0
$$

68. Define $(L x)(s):=-x^{\prime \prime}(s)+x(s)$, the operator from Exercise 67. Let L_{B} be defined as the restriction of the operator L o the space of functions satisfying the boundary conditions. Calculate the eigenvalues and eigenfunctions of L_{B}.
69. Calculate the Green's Function for the boundary value problem

$$
x^{\prime \prime}(s)=f(s), \quad s \in[0,1], \quad x(0)=x^{\prime}(0), \quad x(1)=-x^{\prime}(1)
$$

70. Let

$$
D_{B}:=\left\{x \in C^{2}[0,1] \mid x(0)-x(1)=0, x^{\prime}(0)-x^{\prime}(1)=0\right\}
$$

and define $L x:=-x^{\prime \prime}$ and $L_{B}:=\left.L\right|_{D_{B}}$.
(a) Calculate the eigenvalues and eigenfunctions of L_{B}.
(b) Why in (58a) does no contradiction arise to Theorem 5.8, part (d), that all eigenspaces associated to eigenvalues of a Sturm Liouville Problem are one dimensional? Note: The requirement that 0 is not an eigenvalue was not used in the proof of part (d).
71. Let $K: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be induced by the kernel $k(s, t)=\min (s, t)$, i.e.,

$$
(K x)(s)=\int_{0}^{1} \min (s, t) x(t) d t
$$

- Show that (λ, x), with $\lambda \in \mathbb{R}$ and $x \in L^{2}[0,1]$, is an eigenpair of K if and only if the (λ, x) satisfies

$$
\lambda x^{\prime \prime}(s)+x(s)=0 \text { for } s \in(0,1)
$$

with boundary conditions $x(0)=x^{\prime}(1)=0$.

- Deduce that $\lambda_{i}=\frac{1}{(n-1 / 2)^{2} \pi^{2}}$ and $x_{n}(s)=\sqrt{2} \sin ((n-1 / 2) \pi s)$ are the eigenvalues and eigenvectors, respectively.

72. Let $x \in C^{2}[a, b]$ and let $g(s, t)$ be a Green's Function including the integral operator G, as described in Theorem 5.5. In the proof of Theorem 5.5, we have

$$
x(s):=\int_{a}^{s} g(s, t) f(t) d t+\int_{s}^{b} g(s, t) f(t) d t .
$$

It follows that

$$
\begin{equation*}
x^{\prime}(s)=\int_{a}^{s} \frac{\partial g}{\partial s}(s, t) f(t) d t+\int_{s}^{b} \frac{\partial g}{\partial s}(s, t) f(t) d t \tag{1}
\end{equation*}
$$

and then

$$
\begin{equation*}
x^{\prime \prime}(s)=\frac{f(s)}{p(s)}+\int_{a}^{b} \frac{\partial^{2} g}{\partial^{2} s}(s, t) f(s) d s . \tag{2}
\end{equation*}
$$

Please fill in the details for the proof showing that (2) follows from (1), specifically as it relates to the fact that $\frac{\partial g}{\partial s}(s, t)$ is discontinuous at (s, s).

