Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 13
30.01.2019

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
73. Consider the Volterra integral equation of first kind

$$
\int_{0}^{s} x(t) d t=f(s), \quad s \in[0,1]
$$

Let $f \in C^{1}([0,1])$ and $f(0)=0$, compute the general solution in $C([0,1])$. Let now $f(s):=\sinh (s)$ and $f_{n}^{\delta}(s):=\sinh (s)+\delta \cdot \sin \left(\frac{n s}{\delta}\right)$, for $\delta>0$ and $n \in \mathbb{N}, n \geq 2$. Compute analytically the solution and test numerically for different values δ and n. Can you conclude anything from that?
74. Compute

$$
\left\|f-f_{n}^{\delta}\right\|, \quad \text { and } \quad\left\|x-x_{n}^{\delta}\right\|
$$

for f and x from Exercise 73. How does a(n arbitrary) small error in the data δ change the solution?
75. Let $f \in C[a, b], k \in C\left([a, b]^{2}\right)$ continuously differentiable with respect to the second variable und $k(s, s) \neq 0$ for all $s \in[a, b]$. Please show that the Volterra integral equation of first kind

$$
\int_{a}^{s} k(s, t) x(t) d t=f(x), \quad s \in[a, b]
$$

is uniquely solvable, if the solution $y \in C[a, b]$ to the Volterra integral equation of second kind

$$
y(s)-\int_{a}^{s} \frac{\frac{\partial k(s, t)}{\partial t}}{k(s, s)} y(t) d t=\frac{f(s)}{k(s, s)}, \quad s \in[a, b]
$$

is continuously differentiable and $y(a)=0$.
Hint: Try $x(s):=y^{\prime}(s)$.
76. Please show the reverse of Exercise 75. Hint: Try $y(s):=\int_{a}^{s} x(t) d t$.
77. Let $f \in C^{1}[0,1]$. Does it hold that

$$
\frac{d}{d s}\left(\int_{0}^{1} \frac{f(r s)}{(1-r)^{1-\alpha}}\right)=\int_{0}^{1} \frac{r f^{\prime}(r s)}{(1-r)^{\alpha-1}} ?
$$

Please explain why this is true or show that it does not always hold.
78. Consider, analogously to Exercise 73, the Volterra integral equation

$$
\int_{0}^{s}(s-t) x(t) d t=f(s), \quad s \in[0,1]
$$

for $f(s):=\frac{1}{720}\left(s^{6}-20 s^{3}+45 s^{2}\right)$. What happens for the "noisy" right hand side $f_{n}^{\delta}(s):=f(s)+\delta \cdot \sin \left(\frac{n s}{\delta}\right)$ to the solution x_{n}^{δ} of this equation?

