Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 2
17.10 .2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
7. Let the functions f, p, q be fixed and continuous in the closed interval $a \leq s \leq b$ and $c_{0}, c_{1} \in \mathbb{R}$ such that p is continuously differentiable and has no roots on the interval $[a, b]$, i.e., $p(s) \neq 0, \forall s \in[a, b]$. Rewrite the following initial value problem using an integral equation and classify it:

$$
\left(p y^{\prime}\right)^{\prime}(s)+q(s) y(s)=f(s), y(a)=c_{0}, y^{\prime}(a)=c_{1}
$$

8. Does the Fredholm integral equation

$$
x(s)-\int_{0}^{1} x(t) d t=s
$$

have solutions in $C[0,1]$? Why/why not?
9. Please show that the integral equation

$$
g(s)=f(s)+\frac{1}{\pi} \int_{0}^{2 \pi} \sin (s+t) g(t) d t
$$

has no solution for $f(s)=s$. What can be said about the case $f(s)=1$? Hint: Show and use that the kernel is degenerate.
10. Let $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{n}, \ldots\right\}$ be an orthonormal basis of $L^{2}(G)$ with $G \subset \mathbb{R}^{n}$. Let $\alpha_{i, j}(s, t):=\phi_{i}(s) \phi_{j}(t)$. Show that $\left\{\alpha_{i, j}\right\}_{i, j \in \mathbb{N}}$ is a complete orthonormal system of $L^{2}(G \times G)$.
11. Solve the following integral equation:

$$
g(s)-\lambda \int_{0}^{1}\left(20 s t^{2}+12 s^{2} t\right) g(t) d t=s, \quad s \in[0,1]
$$

12. Let the kernel k be given by

$$
k(s, t):=\left\{\begin{array}{ll}
s(1-t) & s \leq t, \\
t(1-s) & s>t
\end{array} \quad s, t \in[0,1]\right.
$$

and the integral operator $K: C[0,1] \rightarrow C[0,1]$ be given by

$$
(K x)(s):=\int_{0}^{1} k(s, t) x(t) d t
$$

Show that the range of K is a subset of $D:=\left\{f \in C^{2}[0,1], f(0)=f(1)=\right.$ $0\}$. Show that, indeed, $\mathcal{R}(K)=D$. In other words, show that $f \in \mathcal{R}(K)$ if and only if $f \in D$.
Hint: To show $f \in \mathcal{R}(K) \Rightarrow f \in D$, notice that all elements of $\mathcal{R}(K)$ are given by $\int_{0}^{1} k(s, t) x(t) d t$ with $x \in C[0,1]$, i.e., it is enough show that $\int_{0}^{1} k(s, t) x(t) d t \in D$. To show $f \in D \Rightarrow f \in \mathcal{R}(K) K$, observe that by definition, $f \in \mathcal{R}(K) \Longleftrightarrow$ there exists $x \in C[0,1]: K x=f$. Let $f \in D$. Try differentiating both sides to find an $x \in C[0,1]$ which solves $K x=f$.

