Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 3
24.10 .2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
13. Solve the following integral equation using the matrix approach:

$$
g(s)-\frac{1}{\pi} \int_{0}^{2 \pi} \sin (s+t) g(t) d t=1, \quad s \in[0,2 \pi]
$$

14. Please prove or contradict:
(a) The space $C[-1,1]$ is complete wrt the L^{2}-norm.
(b) The differential operator $D: C^{1}[0,1] \rightarrow C[0,1]$ is continuous, where the spaces $C^{1}[0,1]$ and $C[0,1]$ are equipped with the maximum-norm $\|\cdot\|_{\infty}$.
15. Solve the following integral equation using the Laplace transform:

$$
\phi(x)=x+\int_{0}^{x}(x-y) \phi(y) d y
$$

Hint: Use that $\mathcal{L}\left(\int_{0}^{x} g(x-y) f(y) d y\right)=\mathcal{L}(g) \mathcal{L}(f)$ and that $(\mathcal{L} t)(s)=\frac{1}{s^{2}}$ and $(\mathcal{L} \sinh)(s)=\frac{1}{s^{2}-1}$.
16. Solve the following integral equation (find one special solution):

$$
3 \sin (x)+2 \cos (x)=\int_{-\pi}^{\pi} \sin (x+y) \phi(y) d y, \quad x \in[-\pi, \pi]
$$

17. Solve the following integral equation:

$$
\phi(x)=x^{2}+\lambda \int_{0}^{1} x^{3} s^{2} \phi(s) d s, \quad \lambda \neq 6
$$

18. Find all continuous solutions of the integral equation

$$
\int_{a}^{b} x(t) d t=g(s), \quad s \in[a, b]
$$

in terms of the given function $g \in C[a, b]$.

