Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 4
31.10.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
19. Let the assumptions of Exercise 5 hold. Please show that for some initial value $x_{0} \in X$, the sequence of successive approximations given by $x_{k+1}:=$ $A x_{k}, k \in \mathbb{N}$ converges to the fixed point of A.
20. Let X, Y be normed vector spaces. Let $K: X \rightarrow Y$ be a linear operator and let X be finite dimensional. Please show: K is compact.
21. We consider the following integral equation

$$
x(s)-\int_{0}^{s} x(t) d t=1, \quad s \in[0,1]
$$

The exact solution is $x(s)=e^{s}$. We approximate the Volterra kernel

$$
k(s, t):= \begin{cases}1, & \text { if } t \leq s \\ 0, & \text { if } t>s\end{cases}
$$

with degenerate kernels

$$
k_{n}(s, t):=\sum_{i=1}^{n} \chi_{\left(\frac{i-1}{n}, \frac{i}{n}\right]}(s) \cdot \chi_{\left[0, \frac{i-1}{n}\right]}(t)
$$

where χ_{I} are the characteristic functions on the interval I. Compute the solutions $x_{n}, n \in \mathbb{N}$ of

$$
x_{n}(s)-\int_{0}^{1} k_{n}(s, t) x_{n}(t) d t=1, \quad s \in[0,1]
$$

and the limit as $n \rightarrow \infty$, if it exists.
Hint: Notice that x_{n} is piecewise constant on the intervals $((i-1) / n, i / n]$, $i=1, \ldots, n$. Its values

$$
x_{n}(s)=1+\int_{0}^{1} k_{n}(s, t) x_{n}(t) d t, \quad s \in\left(\frac{i-1}{n}, \frac{i}{n}\right]
$$

can be computed recursively for $i=1, \ldots, n$.
22. Let the integral operator $K: C[0,1] \rightarrow C[0,1]$ be induced by the kernel

$$
k(s, t):=\frac{|s-t|^{1 / 4}}{\sin |s-t|}, \quad s, t \in[0,1], s \neq t .
$$

Please show: K is compact.
Hint: Notice that for $u \in(0,1]$:

$$
\frac{u^{1 / 4}}{\sin u}=\frac{u}{\sin u} \cdot \frac{1}{u^{3 / 4}} .
$$

23. Show that the integral equation

$$
\phi(x)=\sin (x)+\lambda \int_{0}^{\pi / 2} \cos (x-y) \phi(y) d y,
$$

has a solution for $\lambda \neq \frac{4}{ \pm 2+\pi}$ (and calculate it).
24. Solve the following ordinary differential equation

$$
\left\{\begin{array}{l}
x^{\prime \prime}(t)+2 x^{\prime}(t)=-8 \sin (2 t) \\
x(0)=1, x^{\prime}(0)=2
\end{array}\right.
$$

using the Laplace transform.
Hint: You can refer to tables for some known Laplace transforms.

