Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 6
14.11.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
31. Find a normed space X and a compact operator $K: X \rightarrow X$ for which

$$
X \neq \mathcal{N}(I-K) \oplus \mathcal{R}(I-K) .
$$

32. Let X, Y, Z be normed spaces, $B: X \rightarrow Y$ and $A: Y \rightarrow Z$ be linear and bounded operators. Show or find a counter-example: the operator $C=A B$ is compact if and only if A or B are compact.
33. Let X be a Banach space and let X^{*} be its dual space. Let $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow$ \mathbb{R} be the duality mapping given by $\langle f, x\rangle:=f(x)$. Please show that $\langle\cdot, \cdot\rangle$ is a non-degenerate bilinear form.
Hint: To show $\forall(x \in X, x \neq 0)$ there exists $f \in X^{*}: f(x) \neq 0$, first construct a linear bounded operator $f: Y_{x} \rightarrow \mathbb{R}$, where $Y_{x}=\{z \in X$: $z=\alpha x, \alpha \in \mathbb{R}\}$ for a fixed $x \in X$. As Y_{x} is a linear subspace of X, use the Hahn-Banach Theorem to argue the existence of a linear bounded f defined on the whole space X.
34. Let $(X, Y,(\cdot, \cdot))$ be a dual system. Please show that if $A: X \rightarrow X$ has an adjoint operator $B: Y \rightarrow Y$, then B is unique and both A and B are linear.
35. Let the normed space X be given by

$$
X:=\left\{x \in C(0,1]: \exists M, \alpha>0:|x(t)| \leq M t^{\alpha-\frac{1}{2}}, t \in(0,1]\right\},
$$

with the norm

$$
\|x\|:=\sup _{t \in(0,1]} \sqrt{t}|x(t)| .
$$

Please show that

$$
(x, y):=\int_{0}^{1} x(t) y(t) d t, \quad x, y \in X
$$

is a non-degenerate unbounded bilinear form on $X \times X$.
Hint: To show unboundedness, consider the choice $x=y=x_{n}:=t^{1 / n-1 / 2}$.
36. Please show that for $B \in \mathbb{R}^{n \times n}$ holds ν is Riesz index of $B \Longleftrightarrow \nu=\inf \left\{s \in \mathbb{N}_{0} \mid\right.$ rank $\left.B^{s}=\operatorname{rank} B^{s+1}\right\}$.

