Integral Equations and Boundary Value Problems

Exercise, WS 2018/19

Exercise sheet 7

21.11.2018

- Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
- 37. Show that a symmetric matrix has Riesz index 0 or 1. Furthermore, give an example for a non symmetric matrix with Riesz index 0 or 1.
- 38. Let *H* be a complex Hilbert space with inner product (\cdot, \cdot) . Furthermore, let $A : X \to X$ be linear, bounded, self adjoint and positiv semidefinit. Show that it holds

$$|(Ax, y)|^2 \le (Ax, x)(Ay, y), \qquad x, y \in H.$$

- 39. Let K be the integral operator induced by the kernel $k(s,t) := e^{-t^2(s+1)}$ on C[0,1] with the supremum-norm. Calculate the Riesz index of L := I K.
- 40. Consider the integral equation

$$x(s) - \int_0^1 k(s,t)x(t) dt = f_i(s), \quad s \in [0,1], \ i = 1, 2, 3,$$

with k(s,t) from Exercise 39 and $f_1(x) = \sin s$, $f_2(x) = s^3 - e^s$ and $f_3(s) = e^{s^2}$. For which of the right hand sides is the integral equation solvable?

41. Let $A: X \longrightarrow X$ be a bounded linear operator mapping a Banach space X to itself with $||A^k|| < 1$ for some $k \in \mathbb{N}$. Let $I: X \longrightarrow X$ denote the identity operator on X. Show that

$$\phi_{n+1} = A\phi_n + f, \ n = 0, 1, 2, \dots,$$

with some arbitrary $\phi_0 \in X$ converges to the unique solution of

$$\phi - A\phi = f.$$

42. Let $(\cdot, \cdot) : C[a, b] \times C[a, b] \to \mathbb{R}$ be a degenerate bilinear form. In other words there exists an $x \in C[a, b], x \neq 0$, such that for all $y \in C[a, b], (x, y) = 0$. Without loss of generality, we may assume that x(a) = 1. Consider the operators A and B given by

$$\begin{array}{rcl} A: C[a,b] & \to & C[a,b] \,, & & B: C[a,b] \, \to \, C[a,b] \,, \\ \phi & \mapsto & \phi(a)x \,, & & \psi & \mapsto \, 0 \,. \end{array}$$

Please show that A and B are compact and adjoint w.r.t. (\cdot, \cdot) . *Hint:* Show and use: A is bounded and dim $\mathcal{R}(A) < \infty$ to conclude that A is compact.