Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 7
21.11.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
37. Show that a symmetric matrix has Riesz index 0 or 1 . Furthermore, give an example for a non symmetric matrix with Riesz index 0 or 1 .
38. Let H be a complex Hilbert space with inner product (\cdot, \cdot). Furthermore, let $A: X \rightarrow X$ be linear, bounded, self adjoint and positiv semidefinit. Show that it holds

$$
|(A x, y)|^{2} \leq(A x, x)(A y, y), \quad x, y \in H
$$

39. Let K be the integral operator induced by the kernel $k(s, t):=e^{-t^{2}(s+1)}$ on $C[0,1]$ with the supremum-norm. Calculate the Riesz index of $L:=I-K$.
40. Consider the integral equation

$$
x(s)-\int_{0}^{1} k(s, t) x(t) d t=f_{i}(s), \quad s \in[0,1], i=1,2,3,
$$

with $k(s, t)$ from Exercise 39 and $f_{1}(x)=\sin s, f_{2}(x)=s^{3}-e^{s}$ and $f_{3}(s)=$ $e^{s^{2}}$. For which of the right hand sides is the integral equation solvable?
41. Let $A: X \longrightarrow X$ be a bounded linear operator mapping a Banach space X to itself with $\left\|A^{k}\right\|<1$ for some $k \in \mathbb{N}$. Let $I: X \longrightarrow X$ denote the identity operator on X. Show that

$$
\phi_{n+1}=A \phi_{n}+f, \quad n=0,1,2, \ldots,
$$

with some arbitrary $\phi_{0} \in X$ converges to the unique solution of

$$
\phi-A \phi=f .
$$

42. Let $(\cdot, \cdot): C[a, b] \times C[a, b] \rightarrow \mathbb{R}$ be a degenerate bilinear form. In other words there exists an $x \in C[a, b], x \neq 0$, such that for all $y \in C[a, b],(x, y)=$ 0 . Without loss of generality, we may assume that $x(a)=1$. Consider the operators A and B given by

$$
\begin{aligned}
A: C[a, b] & \rightarrow C[a, b], & B: C[a, b] & \rightarrow C[a, b], \\
\phi & \mapsto \phi(a) x, & \psi & \mapsto 0 .
\end{aligned}
$$

Please show that A and B are compact and adjoint w.r.t. (\cdot, \cdot).
Hint: Show and use: A is bounded and $\operatorname{dim} \mathcal{R}(A)<\infty$ to conclude that A is compact.

