Integral Equations and Boundary Value Problems

Exercise, WS 2018/19

Exercise sheet 8

28.11.2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at

For Exercises 43 and 44 assume the following. Let $(X, Y, (\cdot, \cdot))$ be a dual system. Let $S : X \to X$ and $T : Y \to Y$ be linear continuously invertible operators on X and Y respectively and let $A : X \to X$ and $B : Y \to Y$ be compact operators, such that S is adjoint to T and A is adjoint to B.

43. Under the assumptions above please show that: the homogeneous equations

$$Sx - Ax = 0$$

and

$$Ty - By = 0,$$

have the same number of linearly independent solutions.

Hint: You may use the Fredholm's alternative. Use and show that S^{-1} is adjoint to T^{-1} , $S^{-1}A$ is adjoint to BT^{-1} , $\mathcal{N}(S-A) = \mathcal{N}(I-S^{-1}A)$ and $\dim \mathcal{N}(T-B) = \dim \mathcal{N}(I-BT^{-1})$.

44. Under the assumptions above please show that: the inhomogeneous equation

$$Sx - Ax = f, \qquad f \in X,$$

has a solution if and only if for all solutions y of Ty - By = 0, (f, y) = 0. *Hint:* You may use the Fredholm's alternative.

- 45. Compute the nullspaces $\mathcal{N}(I-A)$ and $\mathcal{N}(I-B)$ for A and B from Exercise 42.
- 46. Let $a \in C[0, 1]$. The bounded linear operator $A : C[0, 1] \to C[0, 1]$ is given by (Ax)(s) = a(s)x(s) for $s \in [0, 1]$ and $x \in C[0, 1]$. Please show: The spectrum of A is given by $\sigma(A) = \{a(s) : s \in [0, 1]\}$. To (a): try to invert (I - A).
- 47. Let A be as in Exercise 46. Please show:
 - If A is compact, then A = 0.
 - A has an eigenvalue, if and only if a is constant on an interval.

Hint:

To (a): show that if A is compact, then $0 \in \sigma(A)$; furthermore, $\sigma(A)$ must be at most a countable set.

To (c), " \Leftarrow ": find an $x \in C[0,1], x \neq 0$ such that $x \in \mathcal{N}(\lambda I - A)$.

48. Compute the spectrum of $K: C[0,1] \to C[0,1]$ given by

$$(Kx)(s) := \int_{0}^{s} x(t) dt, \qquad s \in [0, 1].$$

Hint: Show that $0 \in \sigma(K)$. Show that for all $\lambda \neq 0$, $\lambda I - K$ is continuously invertible on C[0, 1] or that λ is not an eigenvalue of K.