Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Exercise sheet 9
12.12 .2018

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
49. Please solve:

$$
\int_{0}^{s}(s-t) x(t) d t=\sin (s)-s, \quad s \in[0,1] .
$$

50. Let $K: L^{2}[0,1] \rightarrow L^{2}[0,1]$ be the integral operator induced by the kernel

$$
k(s, t):=4 \pi^{2} \begin{cases}(1-s) t, & t \leq s \\ (1-t) s, & t>s\end{cases}
$$

Compute $\mathcal{N}(I-K)$ and $\mathcal{N}\left(I-K^{\prime}\right)$.
51. Let K be as in Exercise 50. Under which conditions exists a solution of the inhomogeneous equalities $x-K x=f$ and $y-K^{\prime} y=g$ in $L^{2}[0,1]$?
52. Let H be a Hilbert space and $T \in \mathcal{L}(H)$. Please show:
(a) T invertible $\Longrightarrow T^{-1}$ commutes with each operator which commutes with T.
(b) $K \in \mathcal{L}(H)$ compact and $\lambda I-K$ invertible $\Longrightarrow(\lambda I-K)^{-1}$ can be represented as sum of a multiple of I and a compact Operator J.
53. Let H be a complex Hilbert space and $T \in \mathcal{L}(H)$ be skew-adjoint, i.e., $T^{*}=-T$. Show that $\sigma(T) \in\{i x: x \in \mathbb{R}\}$. Use this fact to show that if $S \in \mathcal{L}(H)$ then $I+S-S^{*}$ is invertible. (You can assume S and T are compact)
54. Please solve

$$
x(s)-\int_{0}^{s}(t-s) x(t) d t=s, \quad s \in[0,1],
$$

using successive approximation.

