Integral Equations and Boundary Value Problems

Exercise, WS 2018/19
Programming Exercises
16.01.2019

Dr. Simon Hubmer, S2 503-1, simon.hubmer@ricam.oeaw.ac.at
Reminder: The programming exercises constitute 20% of your final grade!
This tutorial deals with the numerical implementation of the Nyström Method. Your code may be written only in MATLAB. Please send me your entire code per email until 16.01.2019 as one single .zip file with the name FamilyName.zip
Please put small comments in your code explaining the function of different code sections. This is an important requirement for all computer code and helps both me and you to read your code.

Consider the following integral equation:

$$
\lambda x(s)-\int_{0}^{1} k(s, t) x(t) d t=f(s), \quad s \in[0,1] .
$$

Let us define the quadrature operator Q_{n} that approximates the integral of a continuous function,

$$
\begin{aligned}
& Q_{n}: C[0,1] \rightarrow \mathbb{R} \\
& x \mapsto \sum_{j=1}^{n} \omega_{j} x\left(t_{j}\right) .
\end{aligned}
$$

For the purpose of this tutorial, we will use Gaussian quadrature of order 4 on subintervals of $[0,1]$. The Gaussian quadrature of order 4 on the interval $[0,1]$ is given by four points t_{1}, \ldots, t_{4} and the corresponding weights $\omega_{1}, \ldots, \omega_{4}$,

$$
\begin{array}{ll}
t_{1}=0.06943184420297371 & \omega_{1}=0.1739274225687269 \\
t_{2}=0.33000947820757719 & \omega_{2}=0.3260725774312731 \\
t_{3}=1-t_{2} & \omega_{3}=\omega_{2} \\
t_{4}=1-t_{1} & \omega_{4}=\omega_{1} .
\end{array}
$$

Let $I_{k}:=\left[\frac{k-1}{m}, \frac{k}{m}\right]$ for $k=1, \ldots, m$ be m equidistant subintervals of $[0,1]$. The Gaussian quadrature of order 4 on the interval I_{k} is given by four points t_{j} and corresponding weights ω_{j} correctly scaled to the interval I_{k}. By considering all subintervals I_{k}, we obtain $n=4 m$ points t_{j} and corresponding weights ω_{j} that define Q_{n}.

1. The interval $[0,1]$ is decomposed into m subintervals I_{k}. Gaussian quadrature of order 4 is used on each interval I_{k}. Write a function

$$
[\mathrm{t}, \mathrm{w}]=\text { gaussDomain }(\mathrm{m}),
$$

that returns two vectors t and w of length $4 m$ that correspond to the quadrature points and weights on $[0,1]$ for evaluating integrals.
Test your code: e.g., $\int_{0}^{1} t^{2} d t=1 / 3$ should coincide with the numerical approximation $\operatorname{sum}(\mathrm{w} . * \mathrm{t} . \wedge 2)$.

Quadrature points and weights t_{j} and ω_{j} define Q_{n}. The discretized integral operator K_{n} is given by $\left(K_{n} x\right)(s):=Q_{n}(k(s, \cdot) x)$ for any $s \in[0,1]$. By choosing $s=t_{i}$, we obtain the fully discretized problem $\lambda z-M z=g$ where the matrix M and the vector g are given by

$$
M_{i j}:=\omega_{j} k\left(t_{i}, t_{j}\right), \quad g_{i}:=f\left(t_{i}\right), \quad i, j=\overline{1, n}
$$

2. Write functions

$$
\mathrm{M}=\operatorname{assembleM}(\text { kernel }, \mathrm{t}, \mathrm{w})
$$

and

$$
\mathrm{g}=\text { assembleg }(\text { func }, \mathrm{t}),
$$

that create the matrix M and the vector g. Here kernel and func are functions with two and one argument respectively. Vectors t and w are generated by gaussDomain.

Vector z is computed by solving the linear system of equations $\lambda z-M z=g$. Values of the solution x are obtained via z using the following interpolation:

$$
x(s):=\frac{1}{\lambda}\left[\sum_{j=1}^{n} \omega_{j} k\left(s, t_{j}\right) z_{j}+f(s)\right],
$$

at any point $s \in[0,1]$.
3. Write a function

$$
\mathrm{x}=\text { interpNystrom(lambda, kernel, func, } \mathrm{z}, \mathrm{t}, \mathrm{w}, \mathrm{~s}),
$$

that returns a vector x of interpolated values at points defined by the vector s . Variables kernel, func, t and w are as above; z is a vector of length n and lambda is a scalar parameter corresponding to λ.
4. Write a function

$$
\mathrm{x}=\text { solveNystrom(lambda, kernel, func, m, s), }
$$

that solves the integral equation of the second kind numerically using the Nyström Method. Function solveNystrom should use all the functions defined above. You may use the MATLAB command $z=A \backslash b$ to solve a linear system of equations $\mathrm{Az}=\mathrm{b}$.
Variable lambda corresponds to λ, kernel to $k(\cdot, \cdot)$, and func to $f(\cdot) ; \mathrm{m}$ is the number of subintervals used for discretization and the vector s defines the points where the solution vector x is to be computed.
5. Test your program. Try some of the equations you already solved:
(a)

$$
x(s)-\int_{0}^{1}\left(20 s t^{2}+12 s^{2} t\right) x(t) d t=s, \quad s \in[0,1]
$$

(b)

$$
x(s)-\int_{0}^{s} x(t) d t=1, \quad s \in[0,1]
$$

(c)

$$
x(s)-\int_{0}^{s}(t-s) x(t) d t=s, \quad s \in[0,1] .
$$

Define the functions kernel and func. Set $\mathrm{s}=0: 0.01: 1$. Call your function: $\mathrm{x}=$ solveNystrom(lambda, @kernel, @func, m, s). Plot the solution: $\operatorname{plot}(\mathrm{s}, \mathrm{x}, \mathrm{s}, \mathrm{sol})$, where sol is the vector of the function values of the real solution. E.g., sol $=s / 4-s . \wedge 2 / 2$ for the first equation (a) above.

