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Introduction

The pulse wave velocity (PWV) in major arteries contains information about arterial compliance, which is an
important determinant of the state of the cerebrovascular system. With respect to the brain, aortic stiffness, for
example, has been associated with cerebral small-vessel disease in hypertensive patients and cognitive decline.
By the Moens-Korteweg formula, the PWV is also connected to important physical parameters:

PWV =

√
Eh

ρBd
,

d . . . vascular diameter , h . . . vessel wall thickness ,
E . . . vessel wall’s Young’s modulus , ρB . . . density of blood .

Magnetic Resonance Advection Imaging (MRAI)
In [1], Voss et al. introduced MRAI, a method to estimate the PWV from dynamic MRI data, based
on an advection equation. We tried to improve their method by considering the underlying parameter
estimation problem in the framework of Inverse Problems [2], leading to the algorithm presented here.

Mathematical Model and Discretization

If we denote by v = v(x, y, z) the time-independent PWV vector field and with ρ = ρ(x, y, z, t) the time-
dependent dynamic MRI data, then a model connecting those two quantities is the advection equation:

∂

∂t
ρ(x, y, z, t) +∇ρ(x, y, z, t) · v(x, y, z) = 0 , (x, y, z) ∈ Ω , t ∈ [0, T ] . (1)

To derive this equation, the additional assumption ∇ · v = 0 is made and therefore must also be treated. Due
to the measurement process (ascending slice acquisition), the data ρ is only given at the following points:

(xi, yj, zk, tk,l) , 0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K, 0 ≤ l ≤ L,

xi := x0 + i∆x , yj := y0 + j∆y , zk := z0 + k∆z , tk,l := (k + (K + 1)l)∆t .

We now discretize (1) according to the data, which leads to

ρi,j,k,l − ρi,j,k,l−1

(K + 1)∆t
+Dxiρi,j,k,l v1,i,j,k +Dyjρi,j,k,l v2,i,j,k +Dzkρi,j,k,l v3,i,j,k = 0 , (2)

where ρi,j,k,l = ρ(xi, yj, zk, tk,l) and vs,i,j,k = vs(xi, yj, zk) for s = 1, 2, 3. The operators Dxi, Dyj and
Dzk are finite difference approximations of the differential quotients w.r.t. xi, yj and zk, respectively. In their
definition, the limited amount of data due to the measurement process must be taken into account!

Collecting the ρi,j,k,l values (l > 0) into a vector ρ⃗, the ρi,j,k,l values (l = 0) into a vector ρ⃗0 and the vs,i,j,k
values into a vector v⃗, we can write (2) in the matrix-vector form

A(v⃗)ρ⃗ = b(v⃗, ρ⃗0) . (3)

The forward advection problem consists of calculating ρ⃗ from given v⃗ and ρ⃗0 by solving the linear system (3).

The Inverse Problem

We consider the inverse problem of calculating v⃗ and ρ⃗0 from given ρ⃗ data. Defining the nonlinear operator

F : X → Y , (v⃗, ρ⃗0) 7→ (ρ(v⃗, ρ⃗0), ρ⃗0, Dv⃗) ,

where ρ(v⃗, ρ⃗0) denotes the solution of (3), X and Y are suitable vector spaces and D is matrix such that Dv⃗
approximates the divergence of v, we arrive at the following inverse problem in standard form:

Inverse Problem of MRAI
Approximate (v⃗, ρ⃗0), which is the solution of the nonlinear equation

F (v⃗, ρ⃗0) = (ρ⃗, ρ⃗0, 0⃗ ) , (4)

where, instead of ρ⃗ and ρ⃗0, only noisy (measurement) data ρ⃗ δ and ρ⃗ δ0 are given.

The choice of the vector spaces X and Y and their inner products is of great importance. We use an inner
product on X which leads to smooth velocity reconstructions and which is realized numerically using wavelets.

Reconstruction Algorithm

In order to obtain a stable approximation of the solution of the inverse problem (4), we minimize the functional

1

2

∥∥∥F (v⃗, ρ⃗0)− (ρ⃗ δ, ρ⃗ δ0 , 0)
∥∥∥2
Y
+ α ∥(v⃗, ρ⃗0)∥ℓ1 ,

using the following iterative algorithm (for readability, xδk = (v⃗ δ
k , ρ⃗

δ
0,k), y

δ = (ρ⃗ δ, ρ⃗ δ0 , 0)):

zδk = xδk +
k−1
k+2

(
xδk − xδk−1

)
, ωδk = ωδ(zδk) ,

xδk+1 = Sαωδ
k

(
zδk + ωδk F

′(zδk)
∗(yδ − F (zδk))

)
,

xδ0 = xδ−1 = x0 ,

where x0 is an initial guess, ωδ(zδk) is the steepest descent stepsize defined by

ωδ(z) :=

∥∥∥sδ(z)∥∥∥2∥∥F ′(z)sδ(z)
∥∥2 , sδ(z) := F ′(z)∗(yδ − F (z)) ,

and Sαωδ
k
is a shrinkage function, which acts on a vector w⃗ = [w⃗k]k∈Λ via

Sαωδ
k
(w⃗) := [sgn (w⃗k)max(|w⃗k| − αωδ

k, 0)]k∈Λ .

This method is based on the iterative shrinkage thresholding algorithm, the steepest descent method and Nes-
terov’s acceleration strategy. In order to stop the iteration, we employ the well-known discrepancy principle.

Numerical Simulation

We first tested our algorithm on a 3D numerical simulation phantom featuring several vessels of
different size, shape and orientation. Through each vessel, the initial signal

ρ0(x, y, z) = sin

(
6π

∥v̄∥2

(
v̄1
I∆x

x +
v̄2

J∆y
y +

v̄3
K∆z

z

))
is transported via constant velocity vector fields v̄ = (v̄1, v̄2, v̄3) and the data is created by using the
fact that in this case the function

ρ(x, y, z, t) = ρ0(x− v̄1t, y − v̄2t, z − v̄3t) ,

solves the advection equation (1). Afterwards, random noise of 1% magnitude has been added to the
data. The figures below depict information about the real (upper two) and the reconstructed (lower
two) velocity vector fields. The left figures show maximum intensity projections (MIPs) over the z-axis
of the norm of the velocity fields and the right figures present colour direction MIPs, which depict the
direction in which the velocity fields are pointing (red = x-axis, green = y-axis, blue = z-axis).

Real-World Data Set

The figures below again show a MIP and a colour direction MIP, this time of the results of our algo-
rithm applied to subject 16 of a publicly available natural stimulation dynamic EPI data set obtained
on a 7.0 T MRI scanner [3]. The first 20 s of the second measurement segment were used. The
transversal slices covered most of the frontal and occipital cortex and the regions in between. The
data was sampled with a pulse repetition time of 2 s and an isotropic spatial resolution of 1.4mm.

The location of the major blood vessels and arteries, as well as the orientation of the PWV vector
field, are clearly visible. However, due to the rather low (spatio)temporal resolution, only qualitative
information about the PWV can be obtained at the moment. One possible way towards quantitative
results would be the use of more advanced imaging methods such as multiband EPI, which could
potentially yield data sets with the required resolution.
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