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Introduction and Motivation

Elastography is an imaging modality that can distinguish materials by their biomechanical
properties [1]. Palpation exams at the doctors for detecting abnormal tissue motivates
the development of quantitative elasticity imaging. A specimen of study is subjected to
a deformation and the resulting internal displacement field is measured, which provides
data for identifying the Lamé parameters. In short, we face the following

Problem: Identify the Lamé parameters from displacement measurements.

Mathematical Model

Given a bounded, open and connected set Ω ∈ RN , N = 2,3, with Lipschitz continuous
boundary ∂Ω= ΓD ∪ΓT , ΓD∩ΓT =;, meas(ΓD) > 0 and body forces f , prescribed displace-
ment gD, surface traction gT and Lamé parameters λ and µ, the homogenized equations
of linearized elasticity with displacement-traction boundary conditions are given by

−div(σ(u)) = f +div(σ(Φ)) , inΩ ,

u |ΓD
= 0,

σ(u)~n |ΓT
= gT −σ(Φ)~n |ΓT

,

(1)

where ~n is an outward unit normal, Φ is a function such that Φ|ΓD
= gD, the strain tensor

E and the stress tensor σ defining the stress-strain relation inΩ are given by

E (u) := 1

2

(∇u +∇uT )
, σ(u) := 2µ E (u)+λ div(u) I . (2)

Inverse Problem

We want to precisely define our inverse problem. For this, we first introduce

V := H 1
0,ΓD

(Ω)
N

:= {u ∈ H 1(Ω)N |u|ΓD
= 0} , (3)

as well as the linear and the bilinear forms

l (v) := 〈
f , v

〉
H−1(Ω),H 1(Ω)+

〈
gT , v

〉
H−1

2(ΓT ),H
1
2(ΓT )

, (4)

aλ,µ(u, v) :=
∫
Ω

(
λ div(u)div(v)+2µE (u) : E (v)

)
d x . (5)

Using this, the linearized elasticity problem (1) can be written in the weak form

aλ,µ(u, v) = l (v)−aλ,µ(Φ, v) , ∀v ∈V . (6)

Introducing the nonlinear operator called parameter-to-solution map

F : D(F ) :=
{

(λ,µ) ∈ L∞(Ω)2 |λ≥ 0, µ≥µ> 0
}
⊂ L∞(Ω)2 → L2(Ω)

N
,

(λ,µ) 7→ u(λ,µ) ,
(7)

where u(λ,µ) is defined as the solution of (6), our problem now reads as follows:

Problem. Given f ∈ H−1(Ω)N , gD ∈ H
1
2(ΓD)

N
, Φ ∈ H 1(Ω)N , gT ∈ H−1

2(ΓT )
N

and a mea-
surement uδ ∈ L2(Ω)N of the true displacement field u ∈ V satisfying

∥∥u −uδ
∥∥

L2(Ω) ≤ δ,
compute an approximation of the Lamé parameters λ and µ, which satisfy

F (λ,µ) = u . (8)

Derivative and Adjoint

Defining the operator Ãλ,µ connected to the bilinear form aλ,µ by

Ãλ,µ : H 1(Ω)
N →V ∗ , u 7→ (

v 7→ aλ,µ(u, v)
)

, (9)

and its restriction to V , i.e., A := Ã|V , the operator F can be written in the alternative form:

F (λ,µ) = A−1
λ,µ

(
l − Ãλ,µΦ

)
. (10)

Theorem 1. F is a well-defined, continuously Fréchet differentiable operator satisfying

F ′(λ,µ)(hλ,hµ) =−A−1
λ,µ

(
Ahλ,hµ

u(λ,µ)+ Ãhλ,hµ
Φ

)
. (11)

Since F is defined on the non-reflexive Banach space L∞(Ω)2, our problem does not fit into
the standard Banach or Hilbert space theory [2, 3]. Hence, we embed the problem into a
suitable Hilbert space by defining the following restriction of F :

F̃ : {(λ,µ) ∈ H 2(Ω)
2 |λ≥ 0,µ≥µ> 0} ⊂ H 2(Ω)

2 → L2(Ω)
N

,

(λ,µ) 7→ F̃ (λ,µ) := F (λ,µ) ,
(12)

and instead of (8) restrict ourselves to the problem F̃ (λ,µ) = u, which is much easier to
treat. F̃ is also continuously Fréchet differentiable and furthermore, we have the following
Theorem 2. The adjoint of the Fréchet derivative of F̃ is given by

F̃ ′(λ,µ)∗w =
E

(
div

(
u(λ,µ)+Φ)

div
(
−A−1

λ,µT w
))

E
(
2E

(
u(λ,µ)+Φ)

: E
(
−A−1

λ,µT w
))T

, (13)

where T and E are defined by

T : L2(Ω)
N →V ∗ , w 7→

v 7→
∫
Ω

w · v d x

 , E : L1(Ω) → H 2(Ω) , 〈Eu, v 〉H 2(Ω) =
∫
Ω

uv d x .

Reconstruction Algorithm

In order to solve (8) we use different Landweber type gradient methods, i.e., together with
the abbreviation xδk =

(
λδk,µδk

)
, we employ the following family of gradient methods:

xδk+1 = xδk +ωδ
k

(
xδk

)
sδk

(
xδk

)
, sδk (x) := F ′ (x)∗

(
uδ−F (x)

)
, (14)

where for the stepsize ωδ
k we use both the steepest descent stepsize

ωδ
k(x) :=

∥∥sδk (x)
∥∥2∥∥F ′(x)sδk(x)

∥∥2 , (15)

and the recently introduced [4] stepsize

ωδ
k(x) := (1−η)

∥∥uδ−F (x)
∥∥2− δ

∥∥uδ−F (x)
∥∥ (1+η)∥∥sδk (x)

∥∥2 , (16)

where η is a nonlinearity parameter. As a stopping rule, we employ the well-known dis-
crepancy principle. In order to speed up the iteration, we employ Nesterov’s acceleration
strategy, i.e., we use the modified iteration

zδk = xδk + k−1
k+2

(
xδk −xδk−1

)
, xδk+1 = xδk +ωδ

k

(
zδk

)
sδk

(
zδk

)
. (17)

Numerical Results

Motivated by the physical application, we consider a square object consisting of two lin-
early elastic isotropic materials. On the top edge, the object is fixed, i.e., gD = 0, and on the
left and right edges, the boundary remains free to move, which corresponds to gT = 0. A
constant unidirectional upward displacement gD = (0,0.1) is being applied at the bottom
edge and we assume that no body forces are present, i.e., f = 0. The spatial distributions
of the exact Lamé parameters λ (uniform background of value 2) and µ (background of
value 1 with inclusion of value 5) are depicted in the following figures:

λ µ

Reconstruction with steepest descent stepsize (15) and Nesterov acceleration (1% noise):

Reconstruction with Neubauer’s new stepsize (16) and Nesterov acceleration (1% noise):

Relative error measured in the L2(Ω) norm:

Steepest descent stepsize (15) Neubauer’s new stepsize (16)

Conclusions & Outlook

• We proposed an operator formulation for the nonlinear inverse problem of linearized
elasticity and presented numerical simulations based on Landweber type gradient
methods combined with Nesterov acceleration.

• A concise convergence analysis of the employed algorithms as well as their improvement
and application to real world problems will be topics of future research.
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