ON THE INVERSE PROBLEM OF LINEARIZED ELASTICITY

Ekaterina Sherina¹, Simon Hubmer²

¹Technical University of Denmark, Department of Applied Mathematics and Computer Science, Kongens Lyngby, Denmark (sershe@dtu.dk)/ ²Johannes Kepler University Linz, Doctoral Program Computational Mathematics, Linz, Austria (simon.hubmer@dk-compmath.jku.at)

(6)

(7)

(8)

Introduction and Motivation

Elastography is an imaging modality that can distinguish materials by their biomechanical properties [1]. Palpation exams at the doctors for detecting abnormal tissue motivates the development of quantitative elasticity imaging. A specimen of study is subjected to a deformation and the resulting internal displacement field is measured, which provides data for identifying the Lamé parameters. In short, we face the following

Problem: Identify the Lamé parameters from displacement measurements.

Mathematical Model

Reconstruction Algorithm

In order to solve (8) we use different Landweber type gradient methods, i.e., together with the abbreviation $x_k^{\delta} = (\lambda_k^{\delta}, \mu_k^{\delta})$, we employ the following family of gradient methods: $x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} (x_k^{\delta}) s_k^{\delta} (x_k^{\delta}), \qquad s_k^{\delta} (x) := F'(x)^* (u^{\delta} - F(x)),$ (14)

where for the stepsize ω_k^{δ} we use both the **steepest descent** stepsize

 $\omega_k^{\delta}(x) := \frac{(1-\eta) \left\| u^{\delta} - F(x) \right\|^2}{\left\| s_1^{\delta} \right\|}$

$$\omega_k^{\delta}(x) := \frac{\left\| s_k^{\delta}(x) \right\|^2}{\left\| F'(x) s_k^{\delta}(x) \right\|^2},$$

(15)

(16)

and the recently introduced [4] stepsize

$$\frac{-\delta \| u^{\delta} - F(x) \| (1+\eta)}{(x) \|^2},$$

Given a bounded, open and connected set $\Omega \in \mathbb{R}^N$, N = 2,3, with Lipschitz continuous boundary $\partial \Omega = \Gamma_D \cup \Gamma_T$, $\Gamma_D \cap \Gamma_T = \emptyset$, meas (Γ_D) > 0 and body forces *f*, prescribed displacement g_D , surface traction g_T and Lamé parameters λ and μ , the homogenized equations of **linearized elasticity** with displacement-traction boundary conditions are given by

$$-\operatorname{div}(\sigma(u)) = f + \operatorname{div}(\sigma(\Phi)), \quad \text{in }\Omega,$$

$$u|_{\Gamma_D} = 0,$$

$$\sigma(u)\vec{n}|_{\Gamma_T} = g_T - \sigma(\Phi)\vec{n}|_{\Gamma_T},$$
(1)

where \vec{n} is an outward unit normal, Φ is a function such that $\Phi|_{\Gamma_D} = g_D$, the strain tensor \mathscr{E} and **the stress tensor** σ defining the stress-strain relation in Ω are given by

$$\mathscr{E}(u) := \frac{1}{2} \left(\nabla u + \nabla u^T \right), \qquad \sigma(u) := 2\mu \mathscr{E}(u) + \lambda \operatorname{div}(u) I.$$
(2)

Inverse Problem

We want to precisely define our inverse problem. For this, we first introduce

$$V := H_{0,\Gamma_D}^1(\Omega)^N := \{ u \in H^1(\Omega)^N | u|_{\Gamma_D} = 0 \},$$
(3)

as well as the linear and the bilinear forms

$$l(v) := \langle f, v \rangle_{H^{-1}(\Omega), H^{1}(\Omega)} + \langle g_{T}, v \rangle_{H^{-\frac{1}{2}}(\Gamma_{T}), H^{\frac{1}{2}}(\Gamma_{T})}, \qquad (4)$$

$$a_{\lambda,\mu}(u,v) := \int \left(\lambda \operatorname{div}(u) \operatorname{div}(v) + 2\mu \mathscr{E}(u) : \mathscr{E}(v) \right) dx.$$
(5)

Using this, the linearized elasticity problem (1) can be written in the weak form

where η is a nonlinearity parameter. As a stopping rule, we employ the well-known **dis**crepancy principle. In order to speed up the iteration, we employ Nesterov's acceleration **strategy**, i.e., we use the modified iteration

$$z_k^{\delta} = x_k^{\delta} + \frac{k-1}{k+2} \left(x_k^{\delta} - x_{k-1}^{\delta} \right), \qquad x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} \left(z_k^{\delta} \right) s_k^{\delta} \left(z_k^{\delta} \right).$$
(17)

Numerical Results

Motivated by the physical application, we consider a square object consisting of two linearly elastic isotropic materials. On the top edge, the object is fixed, i.e., $g_D = 0$, and on the left and right edges, the boundary remains free to move, which corresponds to $g_T = 0$. A constant unidirectional upward displacement $g_D = (0, 0.1)$ is being applied at the bottom edge and we assume that no body forces are present, i.e., f = 0. The spatial distributions of the exact Lamé parameters λ (uniform background of value 2) and μ (background of value 1 with inclusion of value 5) are depicted in the following figures:

Reconstruction with steepest descent stepsize (15) and Nesterov acceleration (1% noise):

Reconstruction with Neubauer's new stepsize (16) and Nesterov acceleration (1% noise):

Relative error measured in the $L^2(\Omega)$ norm:

 $a_{\lambda,\mu}(u,v) = l(v) - a_{\lambda,\mu}(\Phi,v),$ $\forall v \in V.$

Introducing the nonlinear operator called **parameter-to-solution map**

$$F: \mathscr{D}(F) := \left\{ (\lambda, \mu) \in L^{\infty}(\Omega)^{2} \mid \lambda \geq 0, \, \mu \geq \underline{\mu} > 0 \right\} \subset L^{\infty}(\Omega)^{2} \to L^{2}(\Omega)^{N},$$
$$(\lambda, \mu) \mapsto u(\lambda, \mu),$$

where $u(\lambda, \mu)$ is defined as the solution of (6), our problem now reads as follows:

Problem. Given $f \in H^{-1}(\Omega)^N$, $g_D \in H^{\frac{1}{2}}(\Gamma_D)^N$, $\Phi \in H^1(\Omega)^N$, $g_T \in H^{-\frac{1}{2}}(\Gamma_T)^N$ and a measurement $u^{\delta} \in L^2(\Omega)^N$ of the true displacement field $u \in V$ satisfying $\|u - u^{\delta}\|_{L^2(\Omega)} \leq \delta$, compute an approximation of the Lamé parameters λ and μ , which satisfy

 $F(\lambda, \mu) = u$.

Derivative and Adjoint

Defining the operator $\tilde{A}_{\lambda,\mu}$ connected to the bilinear form $a_{\lambda,\mu}$ by

$$\tilde{A}_{\lambda,\mu} \colon H^1(\Omega)^N \to V^*, \qquad u \mapsto \left(v \mapsto a_{\lambda,\mu}(u,v) \right), \tag{9}$$

and its restriction to V, i.e., $A := \tilde{A}|_V$, the operator F can be written in the alternative form:

$$F(\lambda,\mu) = A_{\lambda,\mu}^{-1} \left(l - \tilde{A}_{\lambda,\mu} \Phi \right).$$
(10)

Theorem 1. F is a well-defined, continuously Fréchet differentiable operator satisfying $F'(\lambda,\mu)(h_{\lambda},h_{\mu}) = -A_{\lambda,\mu}^{-1} \left(A_{h_{\lambda},h_{\mu}} u(\lambda,\mu) + \tilde{A}_{h_{\lambda},h_{\mu}} \Phi \right).$ (11)

Since *F* is defined on the non-reflexive Banach space $L^{\infty}(\Omega)^2$, our problem does not fit into the standard Banach or Hilbert space theory [2, 3]. Hence, we embed the problem into a suitable Hilbert space by defining the following restriction of *F*:

> $\tilde{F}: \{(\lambda,\mu) \in H^2(\Omega)^2 \mid \lambda \ge 0, \mu \ge \mu > 0\} \subset H^2(\Omega)^2 \to L^2(\Omega)^N,$ (12) $(\lambda, \mu) \mapsto \tilde{F}(\lambda, \mu) := F(\lambda, \mu),$

and instead of (8) restrict ourselves to the problem $\tilde{F}(\lambda, \mu) = u$, which is much easier to treat. \tilde{F} is also continuously Fréchet differentiable and furthermore, we have the following **Theorem 2.** The adjoint of the Fréchet derivative of \tilde{F} is given by

$$\tilde{F}'(\lambda,\mu)^* w = \begin{pmatrix} E\left(\operatorname{div}\left(u(\lambda,\mu) + \Phi\right)\operatorname{div}\left(-A_{\lambda,\mu}^{-1}Tw\right)\right) \\ E\left(2\mathscr{E}\left(u(\lambda,\mu) + \Phi\right):\mathscr{E}\left(-A_{\lambda,\mu}^{-1}Tw\right)\right) \end{pmatrix}^T, \quad (13)$$

where T and E are defined by

$$T: L^2(\Omega)^N \to V^*, \ w \mapsto \left(v \mapsto \int_{\Omega} w \cdot v \, dx \right), \qquad E: L^1(\Omega) \to H^2(\Omega), \ \langle Eu, v \rangle_{H^2(\Omega)} = \int_{\Omega} uv \, dx.$$

Conclusions & Outlook

• We proposed an operator formulation for the nonlinear inverse problem of linearized elasticity and presented numerical simulations based on Landweber type gradient methods combined with Nesterov acceleration.

• A concise convergence analysis of the employed algorithms as well as their improvement and application to real world problems will be topics of future research.

Acknowledgement

The authors were funded by the Austrian Science Fund (FWF): W1214-N15, project DK8, and by the Danish Council for Independent Research - Natural Sciences: grant 4002-00123. Furthermore, they would like to thank Prof. Otmar Scherzer, Prof. Andreas Neubauer, Dr. Stefan Kindermann, Prof. Walter Zulehner and Prof. Ulrich Langer.

References

[1] M. M. Doyley. Model-based elastography: a survey of approaches to the inverse elasticity problem. *Physics in Medicine and Biology*, 57(3), 2012.

[2] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems. Dordrecht: Kluwer Academic Publishers, 1996.

[3] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski. *Regularization Methods in Banach Spaces*. Radon series on computational and applied mathematics. De Gruyter, 2012.

[4] A. Neubauer. A new gradient method for ill-posed problems. 2017. submitted