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Introduction and Motivation

Elastography is an imaging modality that can distinguish materials by their
biomechanical properties [1]. Doctors use palpation to detect abnormal tis-
sues, which motivates the development of quantitative elasticity imaging.

Problem: Identify the Lamé parameters from displacement
measurements.

Mathematical Model

Given a bounded, open and connected set Ω ∈ RN , N = 2,3, with Lipschitz
continuous boundary ∂Ω = ΓD ∪ΓT , ΓD ∩ΓT = ;, meas(ΓD) > 0 and body
forces f , prescribed displacement gD, surface traction gT and Lamé pa-
rameters λ and µ, the homogenized equations of linearized elasticity with
displacement-traction boundary conditions are given by

−div(σ(u)) = f +div(σ(Φ)) , inΩ ,
u |ΓD = 0,

σ(u)~n |ΓT = gT −σ(Φ)~n |ΓT ,
(1)

where ~n is an outward unit normal, Φ is a function such that Φ|ΓD = gD, the
strain tensor E and the stress tensor σ defining the stress-strain relation in
Ω are given by

E (u) := 1

2

(
∇u +∇uT

)
, σ(u) := 2µ E (u)+λ div(u) I . (2)

Inverse Problem

The linearized elasticity problem (1) in the weak form:

aλ,µ(u, v) = l (v)−aλ,µ(Φ, v) , ∀v ∈V , (3)

with the linear and the bilinear forms

l (v) := 〈
f , v

〉+〈
gT , v

〉
, (4)

aλ,µ(u, v) :=
∫
Ω

(
λ div(u)div(v)+2µE (u) : E (v)

)
d x . (5)

The nonlinear operator called parameter-to-solution map is

F : D(F ) :=
{

(λ,µ) ∈ H 2(Ω)
2 |λ≥ 0, µ≥µ> 0

}
⊂ H 2(Ω)

2 → L2(Ω)
N

,

(λ,µ) 7→ u(λ,µ) ,
(6)

where u(λ,µ) is the solution of (3), then our inverse problem is:

Problem. Given f , gD, Φ, gT and a measurement uδ of the true displace-

ment field u satisfying
∥∥∥u −uδ

∥∥∥ ≤ δ, compute an approximation of the
Lamé parameters λ and µ, which satisfy

F (λ,µ) = u . (7)

Derivative and Adjoint

In the alternative form:

F (λ,µ) = A−1
λ,µ

(
l − Ãλ,µΦ

)
, (8)

where the operator Ãλ,µ connected to the bilinear form aλ,µ by

Ãλ,µ : u 7→ (
v 7→ aλ,µ(u, v)

)
, (9)

and A is its restriction to V , i.e., A := Ã|V .
Theorem 1. F is a well-defined, continuously Fréchet differentiable operator
satisfying

F ′(λ,µ)(hλ,hµ) =−A−1
λ,µ

(
Ahλ,hµu(λ,µ)+ Ãhλ,hµΦ

)
. (10)

Theorem 2. The adjoint of the Fréchet derivative of F is given by

F ′(λ,µ)∗w =
E

(
div

(
u(λ,µ)+Φ)

div
(
−A−1

λ,µT w
))

E
(
2E

(
u(λ,µ)+Φ)

: E
(
−A−1

λ,µT w
))T

, (11)

where T and E are defined by

T : w 7→

v 7→
∫
Ω

w · v d x

 , 〈Eu, v 〉 =
∫
Ω

uv d x .

Reconstruction Algorithm

Landweber type gradient methods with the abbreviation xδk =
(
λδk,µδk

)
:

xδk+1 = xδk +ωδk
(
xδk

)
sδk

(
xδk

)
, sδk (x) := F ′ (x)∗

(
uδ−F (x)

)
, (12)

where for the stepsize ωδk we use both the steepest descent stepsize

ωδk(x) :=
∥∥∥sδk (x)

∥∥∥2
/
∥∥∥F ′(x)sδk(x)

∥∥∥2
, (13)

and the recently introduced [2] stepsize

ωδk(x) :=
(
(1−η)

∥∥∥uδ−F (x)
∥∥∥2− δ

∥∥∥uδ−F (x)
∥∥∥ (1+η)

)
/
∥∥∥sδk (x)

∥∥∥2
, (14)

where η is a nonlinearity parameter. As a stopping rule, we employ the well-
known discrepancy principle. For speeding up the methods, we employ
Nesterov’s acceleration strategy, the modified iteration is:

zδk = xδk + k−1
k+2

(
xδk −xδk−1

)
, xδk+1 = xδk +ωδk

(
zδk

)
sδk

(
zδk

)
. (15)

Numerical Results

The exact Lamé parameters and the homogenized displacement field:
λ µ uδ

Reconstruction with steepest descent stepsize (13) and Nesterov acceleration (1% noise):

Reconstruction with Neubauer’s new stepsize (14) and Nesterov acceleration (1% noise):

The displacement field from the physical experiment:
Pos0: MIPs of polar transform, OCT(green), PAT(magenta)
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Reconstruction with steepest descent stepsize (13) and Nesterov acceleration:

Conclusions & Outlook

• We proposed an operator formulation for the nonlinear inverse problem of linearized
elasticity and presented numerical simulations based on Landweber type gradient
methods combined with Nesterov acceleration.

• A concise convergence analysis of the employed algorithms as well as their improvement
and application to further real world problems will be topics of future research.
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