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Reconstruction Algorithm

Introduction and Motivation

Elastography is an imaging modality that can distinguish materials by their
biomechanical properties [1]. Doctors use palpation to detect abnormal tis-
sues, which motivates the development of quantitative elasticity imaging.

Problem: Identity the Lamé parameters from displacement
measurements.

Mathematical Model

Given a bounded, open and connected set Q € R, N = 2,3, with Lipschitz
continuous boundary 0Q =I'pul'r, I'pNnI't = @, meas(I'p) > 0 and body
forces f, prescribed displacement gp, surface traction gr and Lamé pa-
rameters A and u, the homogenized equations of linearized elasticity with

Landweber type gradient methods with the abbreviation x (/15 7] k)

xiﬂ =x2+wi (x‘g) 32 (xg), sz(x) ::F'(x)*(u —F(x)), (12)
where for the stepsize w‘lz we use both the steepest descent stepsize
wh(x):= | 55 (13)
and the recently introduced [2] stepsize
2
wl(x) 1= ((1 -m|u-Fe)| -8 |u’ - Fw|a+ n)) /58 (14)

where 7 is a nonlinearity parameter. As a stopping rule, we employ the well-
known discrepancy principle. For speeding up the methods, we employ
Nesterov’s acceleration strategy, the modified iteration is:
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where 71 is an outward unit normal, @ is a function such that ®|r, = gp, the , | |
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where u(A, 1) is the solution of (3), then our inverse problem is: o - - - I—
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Problem. Given f, gp, @, gr and a measurement u° of the true displace-
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The displacement field from the physical experiment:

green), PAT(magenta)

FA,u)=u.

Derivative and Adjoint

In the alternative form:
F(A, u)

Appru— (v—ay,u(u,v),

and A is its restriction to V, i.e., A:= Aly.

Theorem 1. F is a well-defined, continuously Fréchet differentiable operator

- Ai,lu (1= Apu®),

where the operator A, , connected to the bilinear form a, , by

(7)
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Reconstruction with steepest descent stepsize (13) and Nesterov acceleration:
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satisfying Conclusions & Outlook
') (hay by = = A7 Ayl ) + Ay 1, @) (10)
ORI P Ao\ sy H fr  We proposed an operator formulation for the nonlinear inverse problem of linearized
o S o elasticity and presented numerical simulations based on Landweber type gradient
Theorem 2. The adjoint of the Fréchet derivative of F is given by methods combined with Nesterov acceleration.
E f div ( u(d, ) + D) div [ -1 Tw\ N * A concise convergence analysis of the employed algorithms as well as their improvement
)
F'(A, ) W = \( i (\ A,lu H , (11) and application to further real world problems will be topics of future research.
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