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Introduction and Motivation

Introduction

Two important abbreviations:

• PWV - Pulse Wave Velocity

• (f)MRI - (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Three natural questions:

• What is the PWV?

• Why do we want to estimate it?

• How can we estimate it?
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Pulse Wave Velocity
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Introduction and Motivation

The PWV is used as a prognostic marker for:

• cardiovascular morbidity and mortality in the elderly

• patients with diabetes and hypertension

• aortic stiffness → small-vessel disease and cognitive decline

Moens-Korteweg formula:

PWV =

√
Eh

ρBd

The parameters are
• h - vessel wall thickness, • E - vessel all’s Young modulus,
• d - vascular diameter, • ρB - density of the blood.
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Introduction and Motivation

How to estimate the PVW → MRAI

Problem variables

• fMRI signal ρ(x , y , z , t),

• pulse wave velocity v(x , y , z).

Continuity equation

∂

∂t
ρ(x , y , z , t) = 0 .

Advection (Transport, Optical Flow) equation ⇒

MRAI = Magnetic Resonance Advection Imaging
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Introduction and Motivation

Challenges in MRAI

Challenges with the advection equation:

• No good solution concept ←→ Lax Milgram fails!

• Forward problem is already hard to solve.

Challenges with the data:

• High amount of noise in the fMRI data.

• Huge data sets.

• Low spatiotemporal resolution.

Challenges with the method:

• Treatment of boundary conditions.

• Partial data ←→ slice-time-acquisition problem.
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Slice-Time Acquisition
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Discretization and Inverse Problem

Solution Strategy - Discretization

The fMRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Discretization and Inverse Problem

Solution Strategy - Discretization

The fMRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Discretization and Inverse Problem

Solution Strategy - Discretization

The fMRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Discretization and Inverse Problem

Solution Strategy - Discretization

The fMRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Discretization and Inverse Problem

Solution Strategy - Discretization

The fMRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Discretization and Inverse Problem

Solution Strategy - Discretization

The continuous advection equation

∂

∂t
ρ(x , y , z , t) + v(x , y , z) · ∇ρ(x , y , z , t) = 0 ,

then becomes a discrete linear system of equations:

ρi ,j ,k,l − ρi ,j ,k,l−1

(K + 1)∆t
+ Dxiρi ,j ,k,l v1,i ,j ,k

+ Dyjρi ,j ,k,l v2,i ,j ,k + Dzkρi ,j ,k,l v3,i ,j ,k = 0 ,

where

ρi ,j ,k,l = ρ(xi , yj , zk , tk,l) , vm,i ,j ,k = vm(xi , yj , zk) , m = 1, 2, 3 .
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Discretization and Inverse Problem

Discretization - Finite Differences

Dxiρi ,j ,k,l :=



ρi+1,j ,k,l − ρi−1,j ,k,l

2∆x
, 1 ≤ i ≤ I − 1

ρ1,j ,k,l − ρ0,j ,k,l

∆x
, i = 0

ρI ,j ,k,l − ρI−1,j ,k,l

∆x
, i = I

Dyjρi ,j ,k,l :=



ρi ,j+1,k,l − ρi ,j−1,k,l

2∆y
, 1 ≤ j ≤ J − 1

ρi ,1,k,l − ρi ,0,k,l
∆y

, j = 0

ρi ,J,k,l − ρi ,J−1,k,l

∆y
, j = J
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Discretization and Inverse Problem

Discretization - Finite Differences

Dzk ρi,j,k,l :=



(1− r)(ρi,j,k+1,l − ρi,j,k−1,l+1) + r(ρi,j,k+1,l−1 − ρi,j,k−1,l )

2∆z
,

1 ≤ k ≤ K − 1, 1 ≤ l < L

(1− r)ρi,j,k+1,L − (1 + r)ρi,j,k−1,L + r(ρi,j,k+1,L−1 + ρi,j,k−1,L−1)

2∆z
,

1 ≤ k ≤ K − 1, l = L

(1− r)ρi,j,1,l + rρi,j,1,l−1 − ρi,j,0,l
∆z

,

k = 0, 1 ≤ l ≤ L

ρi,j,K ,l − (1− r)ρi,j,K−1,l+1 − rρi,j,K−1,l

∆z
,

k = K , 1 ≤ l < L

ρi,j,K ,L − (1 + r)ρi,j,K−1,L + rρi,j,K−1,L−1

∆z
,

k = K , l = L

r :=
1

K + 1
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Discretization and Inverse Problem

Solution Strategy - Discretization

Define the vectors:

• ~ρ0 - consists of all ρ (l = 0) values.

• ~ρ - consists of all ρ (l > 0) values,

Then,

ρi ,j ,k,l − ρi ,j ,k,l−1

(K + 1)∆t
+ Dxiρi ,j ,k,l v1,i ,j ,k

+ Dyjρi ,j ,k,l v2,i ,j ,k + Dzkρi ,j ,k,l v3,i ,j ,k = 0 ,

can be written in the form

A(~v)~ρ = b(~v , ~ρ0) .

We denote the solution ~ρ of this equation with ρ(~v , ~ρ0).
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Discretization and Inverse Problem

The Inverse Problem

We define the following operator

F : X → Y , (~v , ~ρ0) 7→ (ρ(~v , ~ρ0), ~ρ0) ,

where the inner products on X and Y are given by

〈 (~v , ~ρ0), (~x , ~w0) 〉X := ~v TH~x + ~ρT
0 ~w0 ,

〈 (~ρ, ~ρ0), (~w , ~w0) 〉Y := ~ρT ~w + ~ρT
0 ~w0 .

We can now write our problem in standard form, i.e.,

” F (~v , ~ρ0) =
(
~ρ δ, ~ρ δ0

)
”
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Discretization and Inverse Problem

Derivative and Adjoint

The Frechet derivative is given by

F ′(~v , ~ρ0)(∆~v ,∆~ρ0) = (ρ′(~v , ~ρ0)(∆~v ,∆~ρ0),∆~ρ0) ,

where

A(~v)[ρ′(~v , ~ρ0)(∆~v ,∆~ρ0)] = −(A′(~v)∆~v)ρ(~v , ~ρ0)+b′(~v , ~ρ0)(∆~v ,∆~ρ0) .

It’s adjoint is given by

F ′(~v , ~ρ0)∗(~w , ~w0) =

(
H−1

(
−DA(~v , ρ(~v , ~ρ0))T + b′∆~ρ0

(~v , ~ρ0)T
)
A(~v)−T ~w

b′∆~v (~v , ~ρ0)TA(~v)−T ~w + ~w0

)
.
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Discretization and Inverse Problem

Divergence Free Condition

In the derivation of the advection equation we used

div [v(x , y , z)] = 0 .

The reconstruction method should take that into account.

• Idea: Choose space X as a divergence free space.

• Problem: Frechet derivative becomes unhandy.

• Solution: Enforce weak divergence free condition.

=⇒ F (~v , ~ρ0) := (ρ(~v , ~ρ0), ~ρ0,D~v) .
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Discretization and Inverse Problem

Choosing the matrix H

Remember the inner product:

〈 (~v , ~ρ0), (~x , ~w0) 〉X = ~v TH~x + ~ρT
0 T ~w0 .

The matrix H should approximate the H1 inner product.

• Idea: Derive H from FEM basis functions.

• Problem: Matrix H becomes hard to invert.

• Solution 1: Use only the diagonal entries.

• Solution 2: Use Wavelets instead of H.
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Regularization Method and Implementation Details

Computation Method

Landweber type gradient method:

xδk+1 = xδk + ωδk F
′(xδk )∗(y δ − F (xδk )) .

Steepest descent stepsize:

ωδk =
‖sk‖2∥∥F ′(xδk )sδk

∥∥2
, sδk = F ′(xδk )∗(y δ − F (xδk )) .

Discrepancy principle:∥∥∥y δ − F (xδk∗)
∥∥∥ ≤ τδ ≤ ∥∥∥y δ − F (xδk )

∥∥∥ , 0 ≤ k ≤ k∗ .
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Regularization Method and Implementation Details

Sparsity

Shrinkage function:

Sτ,p(x) =

{
sgn (x) max(|x | − τ, 0) , p = 1 ,

G−1
τ,p (x) , p ∈ (1, 2] ,

where
Gτ,p(x) = x + τsgn (x) |x |p−1 .

Resulting iteration:

xδk+1 = Sωδkα,p

(
xδk + ωδk F

′(xδk )∗(y δ − F (xδk ))
)
.
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Regularization Method and Implementation Details

Implementation Details

• Software: MATLAB R2015b.

• Solver: biCGstab with iLU preconditioner.

• Parallelization: As far as possible.

• Essential: Stefan Engblom’s fsparse.m file.

=⇒ Runs on a standard home computer in acceptable time!!!

(Real-world data set has 3 million unknowns)
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Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.

• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.

• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).

• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

Inverse Problems and MRAI - mapping the pulse wave velocity Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).
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Numerical Simulation Results and Comparisons

Simulation Phantom - MIP and direction MIP
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Numerical Simulation Results and Comparisons

Results - Pure Method
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Numerical Simulation Results and Comparisons

Results - Divergence-Free
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Numerical Simulation Results and Comparisons

Results - Divergence-Free + Sparsity
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Real-World fMRI Data Set Results

Natural Stimulation Data Set

Specifications:

• Publicly available natural stimulation dynamic EPI data.

• Data has dimension 132× 175× 48.

• 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

• Pulse repetition time (TR) of 2 seconds.

• Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

• Stopping rule: Residual decrease check.
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Real-World fMRI Data Set Results

Regression Approach - Results
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Real-World fMRI Data Set Results

New Approach - Results
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End

Thank you for your attention!
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