Discretization 000000000 Regularization Approach

Phantom Simulations

Real-World Data

Inverse Problems and MRAI Mapping the pulse wave velocity

Simon Hubmer

Johannes Kepler University, Linz

18.3.2016, Obergurgl

Joint work with: A. Neubauer, R. Ramlau, H. Voss

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization			Real-World Data
000000	00000000	000	00000	000
Introduction and Mot	ivation			

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Motivation				

Two important abbreviations:

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization			Real-World Data	
●000000					
Introduction and Motivation					

Two important abbreviations:

• PWV - Pulse Wave Velocity

Introduction	Discretization	Regularization Approach		Real-World Data
•000000				
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Introduction	Discretization			Real-World Data
●000000	00000000	000	00000	000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Introduction	Discretization			Real-World Data
●000000	00000000	000	00000	000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Three natural questions:

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Three natural questions:

• What is the PWV?

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Three natural questions:

- What is the PWV?
- Why do we want to estimate it?

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- (f)MRI (functional) Magnetic Resonance Imaging

Problem

Estimate the PWV from fMRI data!

Three natural questions:

- What is the PWV?
- Why do we want to estimate it?
- How can we estimate it?

Introduction 0●00000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Motivation				

Pulse Wave Velocity

Introduction	Discretization	Regularization Approach		Real-World Data
000000				
Introduction and Motivation				

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization	Regularization Approach		Real-World Data	
000000					
Introduction and Motivation					

• cardiovascular morbidity and mortality in the elderly

Introduction	Discretization			Real-World Data
000000				
Introduction and Motivation				

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension

Introduction	Discretization	Regularization Approach		Real-World Data
000000				
Introduction and Motivation				

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Introduction	Discretization	Regularization Approach	Real-World Data
000000			
Introduction and Mot	tivation		

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\boxed{\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}}$$

Introduction	Discretization	Regularization Approach	Real-World Data
000000			
Introduction and Mot	tivation		

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}$$

The parameters are

- *h* vessel wall thickness,
- *d* vascular diameter,
- E vessel all's Young modulus,
- ρ_B density of the blood.

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Introduction and Motivation

Inverse Problems and MRAI - mapping the pulse wave velocity

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Introduction and Motivation

How to estimate the $\mathsf{PVW} \to \mathsf{MRAI}$

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

How to estimate the $\mathsf{PVW} \to \mathsf{MRAI}$

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot \mathbf{v} = \mathbf{0}$

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Introduction	Discretization			Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

Introduction	Discretization			Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- fMRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

MRAI = Magnetic Resonance Advection Imaging

Introduction	Discretization			Real-World Data
0000000	00000000	000	00000	000
Introduction and Mot	ivation			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Mot	tivation			

Challenges with the advection equation:

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization	Regularization Approach	Real-World Data
0000000			
Introduction and Mo	tivation		

Challenges with the advection equation:

• No good solution concept \longleftrightarrow Lax Milgram fails!

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Mot	ivation			

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Mot	ivation			

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Introduction and Motivation					

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

• High amount of noise in the fMRI data.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Introduction and Motivation					

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the fMRI data.
- Huge data sets.

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Introduction and Motivation					

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the fMRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Mo	tivation			

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the fMRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Introduction and Mc	tivation			

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the fMRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

• Treatment of boundary conditions.

Introduction 00000●0	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Introduction and Motivation					

Challenges with the advection equation:

- No good solution concept \longleftrightarrow Lax Milgram fails!
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the fMRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

- Treatment of boundary conditions.
- Partial data \leftrightarrow slice-time-acquisition problem.
| Introduction | Discretization | Regularization Approach | Phantom Simulations | Real-World Data |
|-----------------------------|----------------|-------------------------|---------------------|-----------------|
| 000000 | | | | |
| Introduction and Motivation | | | | |

Slice-Time Acquisition

	(and the second	
1		1 in
11		1
1		12
1		

E ► < E ►</p>

< □ > < 同 >

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	00000000			
Disputienties and Inverse Ducklass				

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

▶ ∢ ⊒

Introduction 0000000	Discretization ●00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and In	verse Problem			

The fMRI data ρ is only available at points

 $(x_i, y_j, z_k, t_{k,l})$

Introduction 0000000	Discretization •0000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inv	verse Problem			

The fMRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

Introduction 0000000	Discretization •0000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inv	verse Problem			

The fMRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

 $0 \leq i \leq I \,, \quad 0 \leq j \leq J \,, \quad 0 \leq k \leq K \,, \quad 0 \leq I \leq L \,.$

Introduction 0000000	Discretization •00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

The fMRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

 $0\leq i\leq I\,,\quad 0\leq j\leq J\,,\quad 0\leq k\leq K\,,\quad 0\leq l\leq L\,.$

Idea: Discretize the advection equation according to the data!!

Introduction 0000000	Discretization ○●○○○○○○	Regularization Approach	Phantom Simulations	Real-World Data 000	
Discretization and Inverse Problem					

The continuous advection equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+\nu(x,y,z)\cdot\nabla\rho(x,y,z,t)=0\,,$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 00000000
 000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}
ho(x,y,z,t)+v(x,y,z)\cdot
abla
ho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 00000000
 000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}
ho(x,y,z,t)+v(x,y,z)\cdot
abla
ho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

where

$$\rho_{i,j,k,l} = \rho(x_i, y_j, z_k, t_{k,l}), \quad v_{m,i,j,k} = v_m(x_i, y_j, z_k), \quad m = 1, 2, 3.$$

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and L	nverse Problem			

Discretization - Finite Differences

$$D_{x_{i}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i+1,j,k,l} - \rho_{i-1,j,k,l}}{2\Delta x}, & 1 \le i \le l-1 \\ \frac{\rho_{1,j,k,l} - \rho_{0,j,k,l}}{\Delta x}, & i = 0 \\ \frac{\rho_{l,j,k,l} - \rho_{l-1,j,k,l}}{\Delta x}, & i = l \end{cases}$$
$$D_{y_{j}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i,j+1,k,l} - \rho_{i,j-1,k,l}}{2\Delta y}, & 1 \le j \le J-1 \\ \frac{\rho_{i,1,k,l} - \rho_{i,0,k,l}}{\Delta y}, & j = 0 \\ \frac{\rho_{i,J,k,l} - \rho_{i,J-1,k,l}}{\Delta y}, & j = J \end{cases}$$

Inverse Problems and MRAI - mapping the pulse wave velocity

★ Ξ → ★ Ξ

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and	Inverse Problem			

Discretization - Finite Differences

$$D_{z_k}\rho_{i,j,k,l} := \begin{cases} \frac{(1-r)(\rho_{i,j,k+1,l} - \rho_{i,j,k-1,l+1}) + r(\rho_{i,j,k+1,l-1} - \rho_{i,j,k-1,l})}{2\Delta z}, & 1 \le k \le K - 1, 1 \le l < k \le L \\ \frac{(1-r)\rho_{i,j,k+1,L} - (1+r)\rho_{i,j,k-1,L} + r(\rho_{i,j,k+1,L-1} + \rho_{i,j,k-1,L-1})}{2\Delta z}, & 1 \le k \le K - 1, l = L \\ \frac{(1-r)\rho_{i,j,1,l} + r\rho_{i,j,1,l-1} - \rho_{i,j,0,l}}{\Delta z}, & k = 0, 1 \le l \le L \\ \frac{\rho_{i,j,K,l} - (1-r)\rho_{i,j,K-1,l+1} - r\rho_{i,j,K-1,l}}{\Delta z}, & k = K, 1 \le l < L \\ \frac{\rho_{i,j,K,L} - (1+r)\rho_{i,j,K-1,L} + r\rho_{i,j,K-1,L-1}}{\Delta z}, & k = K, l = L \\ r := \frac{1}{K+1} \end{cases}$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{\rho}$ consists of all ρ (l > 0) values,

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inv	verse Problem			

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{
 ho}$ consists of all ho (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} \, v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} \, v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} \, v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0).$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{
 ho}$ consists of all ho (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0).$$

We denote the solution $\vec{\rho}$ of this equation with $\rho(\vec{v}, \vec{\rho_0})$.

Introduction 0000000	Discretization 00000●000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0} , \langle (\vec{\rho}, \vec{\rho_0}), (\vec{w}, \vec{w_0}) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho_0}^T \vec{w_0} .$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0} , \langle (\vec{\rho}, \vec{\rho_0}), (\vec{w}, \vec{w_0}) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho_0}^T \vec{w_0} .$$

We can now write our problem in standard form, i.e.,

"
$$F(\vec{v}, \vec{
ho_0}) = \left(\vec{
ho}^{\delta}, \vec{
ho}_0^{\delta}\right)$$
"

Introduction 0000000	Discretization 000000●00	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inv	verse Problem			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 000000●00	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

The Frechet derivative is given by

 $F'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) = (\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}),\Delta\vec{\rho_0}),$

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Discretization and Inverse Problem					

The Frechet derivative is given by

$$F'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) = (\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}),\Delta\vec{\rho_0}),$$

where

 $\mathcal{A}(\vec{v})[\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0})] = -(\mathcal{A}'(\vec{v})\Delta\vec{v})\rho(\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) \,.$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Discretization and Inverse Problem					

The Frechet derivative is given by

$$F'(ec v,ec
ho_0)(\Deltaec v,\Deltaec
ho_0)=(
ho'(ec v,ec
ho_0)(\Deltaec v,\Deltaec
ho_0),\Deltaec
ho_0)\,,$$

where

$$\mathcal{A}(\vec{v})[\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0})] = -(\mathcal{A}'(\vec{v})\Delta\vec{v})\rho(\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{v}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{v}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{v}) + b'(\vec{v},\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{v},\vec{v}) + b'(\vec{v},\vec{v}) + b'(\vec{v},\vec{v}) + b'(\vec{v},\vec{$$

It's adjoint is given by

$$F'(\vec{v}, \vec{\rho_0})^*(\vec{w}, \vec{w_0}) = \begin{pmatrix} H^{-1} \left(-D_A(\vec{v}, \rho(\vec{v}, \vec{\rho_0}))^T + b'_{\Delta \vec{\rho_0}}(\vec{v}, \vec{\rho_0})^T \right) A(\vec{v})^{-T} \vec{w} \\ b'_{\Delta \vec{v}}(\vec{v}, \vec{\rho_0})^T A(\vec{v})^{-T} \vec{w} + \vec{w_0} \end{pmatrix}$$

Introduction 0000000	Discretization 0000000●0	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and In	verse Problem			

In the derivation of the advection equation we used

 $\operatorname{div}\left[v(x,y,z)\right]=0\,.$

Introduction 0000000	Discretization 0000000●0	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and In	verse Problem			

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

• Idea: Choose space \mathcal{X} as a divergence free space.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- **Solution:** Enforce *weak* divergence free condition.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- Solution: Enforce *weak* divergence free condition.

$$\implies F(\vec{v},\vec{\rho_0}) := (\rho(\vec{v},\vec{\rho_0}),\vec{\rho_0},\frac{D\vec{v}}{V}).$$

Introduction 0000000	Discretization 00000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and In	verse Problem			

Choosing the matrix ${\boldsymbol{H}}$

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Choosing the matrix ${\boldsymbol{H}}$

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Choosing the matrix ${\boldsymbol{H}}$

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

The matrix H should approximate the H^1 inner product.

• Idea: Derive *H* from FEM basis functions.

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Choosing the matrix \boldsymbol{H}

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 000
Discretization and Inverse Problem				

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.
- Solution 2: Use Wavelets instead of H.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000	●00		000	
Regularization Method and Implementation Details					

Computation Method

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000	
Regularization Method and Implementation Details					

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	000000000	•00		000	
Regularization Method and Implementation Details					

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Steepest descent stepsize:

$$\omega_k^{\delta} = \frac{\|\boldsymbol{s}_k\|^2}{\|\boldsymbol{F}'(\boldsymbol{x}_k^{\delta})\boldsymbol{s}_k^{\delta}\|^2}, \qquad \boldsymbol{s}_k^{\delta} = \boldsymbol{F}'(\boldsymbol{x}_k^{\delta})^*(\boldsymbol{y}^{\delta} - \boldsymbol{F}(\boldsymbol{x}_k^{\delta})).$$
Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	000000000	•00		000	
Regularization Method and Implementation Details					

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Steepest descent stepsize:

$$\omega_k^{\delta} = \frac{\|\boldsymbol{s}_k\|^2}{\|\boldsymbol{F}'(\boldsymbol{x}_k^{\delta})\boldsymbol{s}_k^{\delta}\|^2}, \qquad \boldsymbol{s}_k^{\delta} = \boldsymbol{F}'(\boldsymbol{x}_k^{\delta})^*(\boldsymbol{y}^{\delta} - \boldsymbol{F}(\boldsymbol{x}_k^{\delta})).$$

Discrepancy principle:

$$\left\|y^{\delta} - F(x_{k_*}^{\delta})\right\| \leq \tau \delta \leq \left\|y^{\delta} - F(x_k^{\delta})\right\|, \quad 0 \leq k \leq k_*.$$

	Discretization	Regularization Approach		Real-World Data
		000		
Regularization Method and Implementation Details				

Sparsity

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

-> -< ≣ >

▲□▶ ▲圖▶ ▲ 圏

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	○●○		000
Regularization Method and Implementation Details				

Sparsity

Shrinkage function:

$$S_{ au,p}(x) = egin{cases} {
m sgn}\,(x)\,{
m max}(|x|- au,0)\,, & p=1\,, \ G_{ au,p}^{-1}(x)\,, & p\in(1,2]\,, \end{cases}$$

where

$$G_{\tau,p}(x) = x + \tau \operatorname{sgn}(x) |x|^{p-1} .$$

3

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	○●○		000
Regularization Method and Implementation Details				

Sparsity

Shrinkage function:

$$S_{ au, p}(x) = egin{cases} {
m sgn} (x) \max(|x| - au, 0)\,, & p = 1\,, \ G_{ au, p}^{-1}(x)\,, & p \in (1, 2]\,, \end{cases}$$

where

$$G_{\tau,p}(x) = x + \tau \operatorname{sgn}(x) |x|^{p-1} .$$

Resulting iteration:

$$x_{k+1}^{\delta} = \mathcal{S}_{\omega_k^{\delta} lpha, oldsymbol{\rho}} \left(x_k^{\delta} + \omega_k^{\delta} \, F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta}))
ight) \, .$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	00●		000
Regularization Method and Implementation Details				

• Software: MATLAB R2015b.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	○○●		000
Regularization Method and Implementation Details				

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000	00●		000	
Regularization Method and Implementation Details					

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	00●		000
Regularization Method and Implementation Details				

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000	00●		000	
Regularization Method and Implementation Details					

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

⇒ Runs on a standard home computer in acceptable time!!! (Real-world data set has 3 million unknowns)

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data	
Numerical Simulation Results and Comparisons					

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		•0000	000	
Numerical Simulation Results and Comparisons					

Steps of the data creation:

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		•0000	000	
Numerical Simulation Results and Comparisons					

Steps of the data creation:

• Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		•0000	000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		•0000	000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Numerical Simulation	Results and Comparison	IS		

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Numerical Simulation	Results and Comparison	IS		

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \bar{v}_1 t, y \bar{v}_2 t, z \bar{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Numerical Simulation	Results and Comparison	IS		

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Numerical Simulation Results and Comparisons		IS		

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.
- **4** Add a random data error of magnitude δ .

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	000000000	000	00000	000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.
- **4** Add a random data error of magnitude δ .
- \implies Run the algorithm using the discrepancy principle ($\tau = 1.1$).

Discretization Regularization Approacl

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Simulation Phantom - MIP and direction MIP

Inverse Problems and MRAI - mapping the pulse wave velocity

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
			00000		
Numerical Simulation Results and Comparisons					

Results - Pure Method

ntroduction Discretization Regularization Approach

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Results - Divergence-Free

Image: A mathematical states of the state

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction

Discretizat

Regularization Approac

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Results - Divergence-Free + Sparsity

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Data Set Results				

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00	
Real-World fMRI Data Set Results					

Specifications:

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00	
Real-World fMRI Data Set Results					

Specifications:

• Publicly available natural stimulation dynamic EPI data.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Data Set Results				

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●00
Real-World fMRI Dat	a Set Results			

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

- First 20 seconds of second segment were used.
- Stopping rule: Residual decrease check.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 0●0
Real-World fMRI Dat	a Set Results			

Regression Approach - Results

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
				000
Real-World fMRI Dat	a Set Results			

New Approach - Results

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000

Thank you for your attention!

Inverse Problems and MRAI - mapping the pulse wave velocity