Discretization 00000000 Regularization Approach

Phantom Simulations

Real-World Data

Inverse Problems and MRAI Mapping the pulse wave velocity

Simon Hubmer

Johannes Kepler University, Linz

23.9.2016, Chemnitz

Joint work with: A. Neubauer, R. Ramlau, H. Voss

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction ●000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Mo	otivation			

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction ●000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Mo	otivation			

Two important abbreviations:

Introduction •000000	Discretization 0000000	Regularization Approach	Phantom Simulations 0000	Real-World Data 00000	
Introduction and Motivation					

Two important abbreviations:

• PWV - Pulse Wave Velocity

Introduction	Discretization			Real-World Data
●000000	0000000	0000	0000	00000
Introduction and I	Motivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

Introduction ●000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

• What is the PWV?

Introduction •000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and N	lotivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

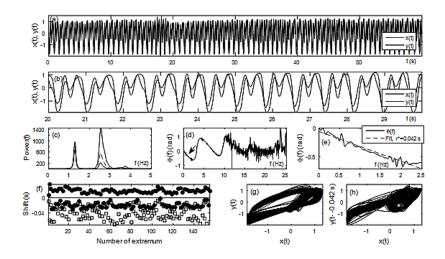
- What is the PWV?
- Why do we want to estimate it?

Introduction •000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and N	lotivation			

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem


Estimate the PWV from dynamic MRI data!

Three natural questions:

- What is the PWV?
- Why do we want to estimate it?
- How can we estimate it?

Introduction	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	lotivation			

The Pulse Wave

Introduction	Discretization	Regularization Approach	Real-World Data
000000			
Introduction and I	Motivation		

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
00●0000	0000000		0000	00000
Introduction and Mo	otivation			

• cardiovascular morbidity and mortality in the elderly

Introduction 000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension

Introduction 000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	lotivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Introduction 000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and N	lotivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\boxed{\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}}$$

Introduction	Discretization 00000000	Regularization Approach 0000	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}$$

The parameters are

- *h* vessel wall thickness,
- *d* vascular diameter,
- E vessel all's Young modulus,
- ρ_B density of the blood.

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Introduction and Motivation

Inverse Problems and MRAI - mapping the pulse wave velocity

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Introduction and Motivation

How to estimate the $\mathsf{PVW} \to \mathsf{MRAI}$

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000●00	0000000		0000	00000
Introduction and N	lotivation			

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Introduction	Discretization	Regularization Approach	Real-World Data
0000000			
Introduction and	Motivation		

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction	Discretization	Regularization Approach	Real-World Data
0000000			
Introduction and	Motivation		

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot \mathbf{v} = \mathbf{0}$

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction 0000●00	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Introduction 0000●00	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

Introduction 0000●00	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

MRAI = Magnetic Resonance Advection Imaging

Introduction 00000●0	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Mo	otivation			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 00000●0	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and N	lotivation			

Challenges with the advection equation:

• Difficult solution concept for non-Lipschitzian velocities.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	0000000	0000	0000	00000
Introduction and Mo	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Introduction 00000●0	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	lotivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

• High amount of noise in the MRI data.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	lotivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

• Treatment of boundary conditions.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and M	otivation			

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitzian velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

- Treatment of boundary conditions.
- Partial data \leftrightarrow slice-time-acquisition problem.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
000000				
Introduction and	Motivation			

Slice-Time Acquisition

	(and the second	
		1
1	A D F	311

< ロ > < 回 > < 回 > < 回 > < 回 >

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	0000000			
Discretization and	Inverse Broblem			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

▶ ∢ ⊒

Introduction 0000000	Discretization •0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

The MRI data ρ is only available at points

 $\left(x_{i}, y_{j}, z_{k}, t_{k, l}\right)$

Introduction 0000000	Discretization ●0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

The MRI data ρ is only available at points

 $(x_i, y_j, z_k, t_{k,l})$

where

$$x_i = x_0 + i\Delta x$$
, $y_j = y_0 + j\Delta y$, $z_k = z_0 + k\Delta z$,
 $t_{k,l} = (k + (K+1)l)\Delta t$,

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 000

Solution Strategy - Discretization

The MRI data ρ is only available at points

 $(x_i, y_j, z_k, t_{k,l})$

where

$$x_i = x_0 + i\Delta x$$
, $y_j = y_0 + j\Delta y$, $z_k = z_0 + k\Delta z$,
 $t_{k,l} = (k + (K+1)l)\Delta t$,

Idea: Discretize the advection equation according to the data!!

Introduction 0000000	Discretization 0●000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

The continuous advection equation

$$\frac{\partial}{\partial t}
ho(x,y,z,t)+v(x,y,z)\cdot
abla
ho(x,y,z,t)=0\,,$$

Inverse Problems and MRAI - mapping the pulse wave velocity

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 0000000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+\nu(x,y,z)\cdot\nabla\rho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

э.

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 0000000
 0000
 0000
 0000
 00000

 Discretization and Inverse Problem
 0000
 0000
 0000
 0000
 0000

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}
ho(x,y,z,t)+v(x,y,z)\cdot
abla
ho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

where

$$\rho_{i,j,k,l} = \rho(x_i, y_j, z_k, t_{k,l}), \quad v_{m,i,j,k} = v_m(x_i, y_j, z_k), \quad m = 1, 2, 3.$$

э.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	I Inverse Problem			

Discretization - Finite Differences

$$D_{x_{i}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i+1,j,k,l} - \rho_{i-1,j,k,l}}{2\Delta x}, & 1 \le i \le l-1 \\ \frac{\rho_{1,j,k,l} - \rho_{0,j,k,l}}{\Delta x}, & i = 0 \\ \frac{\rho_{l,j,k,l} - \rho_{l-1,j,k,l}}{\Delta x}, & i = l \end{cases}$$
$$D_{y_{j}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i,j+1,k,l} - \rho_{i,j-1,k,l}}{2\Delta y}, & 1 \le j \le J-1 \\ \frac{\rho_{i,1,k,l} - \rho_{i,0,k,l}}{\Delta y}, & j = 0 \\ \frac{\rho_{i,J,k,l} - \rho_{i,J-1,k,l}}{\Delta y}, & j = J \end{cases}$$

Inverse Problems and MRAI - mapping the pulse wave velocity

★ 3 → < 3</p>

Introduction 0000000	Discretization 000●0000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and Inverse Problem				

Discretization - Finite Differences

$$D_{z_k}\rho_{i,j,k,l} := \begin{cases} \frac{(1-r)(\rho_{i,j,k+1,l} - \rho_{i,j,k-1,l+1}) + r(\rho_{i,j,k+1,l-1} - \rho_{i,j,k-1,l})}{2\Delta z}, & 1 \le k \le K - 1, 1 \le l < k \le L \\ \frac{(1-r)\rho_{i,j,k+1,L} - (1+r)\rho_{i,j,k-1,L} + r(\rho_{i,j,k+1,L-1} + \rho_{i,j,k-1,L-1})}{2\Delta z}, & 1 \le k \le K - 1, l = L \\ \frac{(1-r)\rho_{i,j,1,l} + r\rho_{i,j,1,l-1} - \rho_{i,j,0,l}}{\Delta z}, & k = 0, 1 \le l \le L \\ \frac{\rho_{i,j,K,l} - (1-r)\rho_{i,j,K-1,l+1} - r\rho_{i,j,K-1,l}}{\Delta z}, & k = K, 1 \le l < L \\ \frac{\rho_{i,j,K,L} - (1+r)\rho_{i,j,K-1,L} + r\rho_{i,j,K-1,L-1}}{\Delta z}, & k = K, l = L \\ r := \frac{1}{K+1} \end{cases}$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 0000●000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{\rho}$ consists of all ρ (l > 0) values,

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{\rho}$ consists of all ρ (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0).$$

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{
 ho}$ consists of all ho (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0)\,.$$

We denote the solution $\vec{\rho}$ of this equation with $\rho(\vec{v}, \vec{\rho_0})$.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and I	nverse Problem			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 00000●00	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0} , \langle (\vec{\rho}, \vec{\rho_0}), (\vec{w}, \vec{w_0}) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho_0}^T \vec{w_0} .$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 00000●00	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and	Inverse Problem			

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0} , \langle (\vec{\rho}, \vec{\rho_0}), (\vec{w}, \vec{w_0}) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho_0}^T \vec{w_0} .$$

We can now write our problem in standard form, i.e.,

"
$$F(\vec{v}, \vec{
ho_0}) = \left(\vec{
ho}^{\delta}, \vec{
ho_0}\right)$$
 "

Introduction 0000000	Discretization 000000●0	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

In the derivation of the advection equation we used

 $\operatorname{div}\left[v(x,y,z)\right]=0\,.$

Introduction 0000000	Discretization 000000●0	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

• Idea: Choose space \mathcal{X} as a divergence free space.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- **Solution:** Enforce *weak* divergence free condition.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- Solution: Enforce *weak* divergence free condition.

$$\implies F(\vec{v},\vec{\rho_0}) := (\rho(\vec{v},\vec{\rho_0}),\vec{\rho_0},\frac{D\vec{v}}{V}).$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

The matrix H should approximate the H^1 inner product.

• Idea: Derive *H* from FEM basis functions.

Introduction 0000000	Discretization 000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Discretization and Inverse Problem					

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho}_0^T \vec{w}_0.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.
- Solution 2: Use Wavelets instead of H.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data			
0000000	00000000	●000		00000			
Regularization Meth	Regularization Method and Implementation Details						

Computation Method

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data		
0000000	0000000	●000		00000		
Regularization Method and Implementation Details						

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data		
0000000	0000000	●000		00000		
Regularization Method and Implementation Details						

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Steepest descent stepsize:

$$\omega_k^{\delta} = \frac{\left\| s_k \right\|^2}{\left\| F'(x_k^{\delta}) s_k^{\delta} \right\|^2}, \qquad s_k^{\delta} = F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 0000000
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

Computation Method

Landweber type gradient method:

$$x_{k+1}^{\delta} = x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Steepest descent stepsize:

$$\omega_k^{\delta} = \frac{\|\boldsymbol{s}_k\|^2}{\|\boldsymbol{F}'(\boldsymbol{x}_k^{\delta})\boldsymbol{s}_k^{\delta}\|^2}, \qquad \boldsymbol{s}_k^{\delta} = \boldsymbol{F}'(\boldsymbol{x}_k^{\delta})^*(\boldsymbol{y}^{\delta} - \boldsymbol{F}(\boldsymbol{x}_k^{\delta})).$$

Discrepancy principle:

$$\left\|y^{\delta} - F(x_{k_*}^{\delta})\right\| \leq \tau \delta \leq \left\|y^{\delta} - F(x_k^{\delta})\right\|, \quad 0 \leq k \leq k_*.$$

▶ ∢ ⊒ ▶

	Discretization	Regularization Approach		Real-World Data		
		0000				
Regularization Method and Implementation Details						

Sparsity

Inverse Problems and MRAI - mapping the pulse wave velocity

-> -< ≣ >

< □ > < □ > < □ > < 三

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000		
Regularization Method and Implementation Details						

Sparsity

Shrinkage function:

$$S_{ au,p}(x) = egin{cases} {
m sgn}\,(x)\,{
m max}(|x|- au,0)\,, & p=1\,, \ G_{ au,p}^{-1}(x)\,, & p\in(1,2]\,, \end{cases}$$

where

$$G_{\tau,p}(x) = x + \tau \operatorname{sgn}(x) |x|^{p-1} .$$

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000		
Regularization Method and Implementation Details						

Sparsity

Shrinkage function:

$$S_{ au, p}(x) = egin{cases} {
m sgn} (x) \max(|x| - au, 0)\,, & p = 1\,, \ G_{ au, p}^{-1}(x)\,, & p \in (1, 2]\,, \end{cases}$$

where

$$G_{\tau,p}(x) = x + \tau \operatorname{sgn}(x) |x|^{p-1} .$$

Resulting iteration:

$$x_{k+1}^{\delta} = \mathcal{S}_{\omega_k^{\delta} lpha, oldsymbol{p}}\left(x_k^{\delta} + \omega_k^{\delta} \, F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta}))
ight)\,.$$

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000		
Regularization Method and Implementation Details						

Nesterov Acceleration

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Regularization Meth	od and Implementation	Details		

Nesterov Acceleration

Instead of using

$$x_{k+1}^{\delta} = S_{\omega_k^{\delta} \alpha, p} \left(x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta}))
ight) \,,$$

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 0000000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000

Nesterov Acceleration

Instead of using

$$x_{k+1}^{\delta} = S_{\omega_k^{\delta}\alpha, p}\left(x_k^{\delta} + \omega_k^{\delta} F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta}))\right) ,$$

we can use

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+2} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= S_{\omega_k^{\delta} \alpha, p} \left(z_k^{\delta} + \omega_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \right) \,. \end{aligned}$$

Inverse Problems and MRAI - mapping the pulse wave velocity

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	0000000	000●		00000
Regularization Met	thod and Implementation	on Details		

• Software: MATLAB R2015b.

	Discretization	Regularization Approach		Real-World Data	
0000000	00000000	0000	0000	00000	
Regularization Method and Implementation Details					

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	0000	0000	00000
Regularization Met	thod and Implementation	on Details		

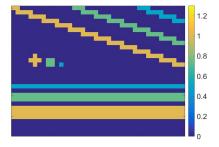
- Software: MATLAB R2015b.
- **Solver:** biCGstab with iLU preconditioner.
- Parallelization: As far as possible.

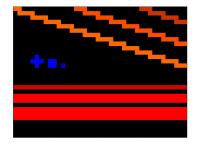
Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Regularization Meth	hod and Implementatic	on Details		

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000	0000	0000	00000	
Regularization Method and Implementation Details					

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

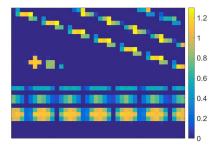

⇒ Runs on a standard home computer in acceptable time!!! (Real-world data set has 3 million unknowns) duction Discretization Regularization Approach Phantom 0000 0000000 0000 •000

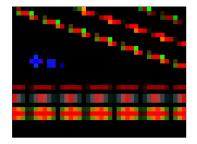

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Simulation Phantom - MIP and direction MIP



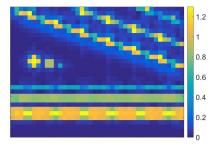


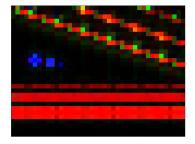
< ∃ →

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
			0000	
Numerical Simulat	ion Results and Compa	risons		

Results - Pure Method

duction Discretization Regu


Regularization Approach


Phantom Simulations

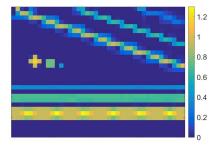
Real-World Data

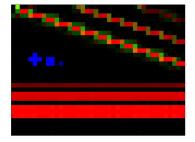
Numerical Simulation Results and Comparisons

Results - Divergence-Free

Introduction

Discretizat


Regularization Approact


Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Results - Divergence-Free + Wavelets + Sparsity

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000		0000	●0000
Real-World MRI D	ata Set Results			

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Dat	ta Set Results			

Specifications:

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Da	ta Set Results			

Specifications:

• Publicly available natural stimulation dynamic EPI data.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI D	ata Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000		0000	●0000
Real-World MRI Da	ita Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	0000		●0000
Real-World MRI Dat	ta Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Dat	ta Set Results			

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Dat	ta Set Results			

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Dat	ta Set Results			

Specifications:

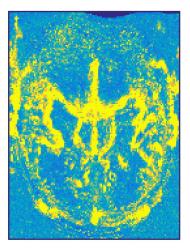
- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000
Real-World MRI Dat	ta Set Results			

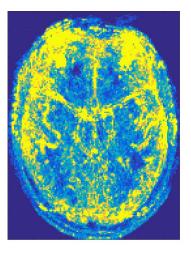
Specifications:

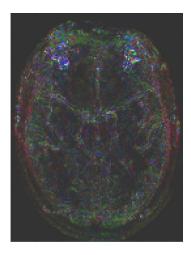

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

- First 20 seconds of second segment were used.
- Stopping rule: Residual decrease check.

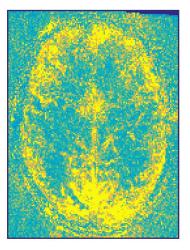
Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000	0000	0000	0●000
Real-World MRL)ata Set Results			

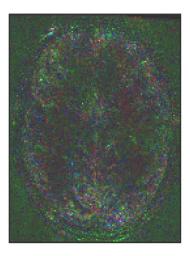

Regression Approach - Results



Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00●00
Real-World MRI [Data Set Results			

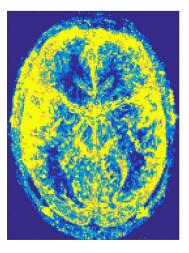
New Approach - Results

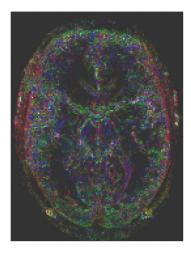




▶ ★ 문 ▶ ★ 문

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 000●0
Real-World MRI D	Data Set Results			


Regression Approach - Results



Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 0000●
Real-World MRI [Data Set Results			

New Approach - Results

▶ ★ 문 ▶ ★ 문

Inverse Problems and MRAI - mapping the pulse wave velocity

Introduction 0000000	Discretization 0000000	Regularization Approach	Phantom Simulations	Real-World Data 00000

End

Thank you for your attention!

Inverse Problems and MRAI - mapping the pulse wave velocity

Simon Hubmer