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Introduction and Motivation

Introduction

Two important abbreviations:

• PWV - Pulse Wave Velocity

• MRI - Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

• What is the PWV?

• Why do we want to estimate it?

• How can we estimate it?
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The Pulse Wave
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The PWV is used as a prognostic marker for:

• cardiovascular morbidity and mortality in the elderly

• patients with diabetes and hypertension

• aortic stiffness → small-vessel disease and cognitive decline

Moens-Korteweg formula:

PWV =

√
Eh

ρBd

The parameters are
• h - vessel wall thickness, • E - vessel all’s Young modulus,
• d - vascular diameter, • ρB - density of the blood.
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How to estimate the PVW → MRAI

Problem variables

• MRI signal ρ(x , y , z , t),

• pulse wave velocity v(x , y , z).

Continuity equation

∂

∂t
ρ(x , y , z , t) = 0 .

Advection (Transport, Optical Flow) equation ⇒

MRAI = Magnetic Resonance Advection Imaging
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Challenges in MRAI

Challenges with the advection equation:

• Difficult solution concept for non-Lipschitz velocities.

• Forward problem is already hard to solve.

Challenges with the data:

• High amount of noise in the MRI data.

• Huge data sets.

• Low spatiotemporal resolution.

Challenges with the method:

• Treatment of boundary conditions.

• Partial data ←→ slice-time-acquisition problem.
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Slice-Time Acquisition
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Discretization and Inverse Problem

Solution Strategy - Discretization

The MRI data ρ is only available at points

(xi , yj , zk , tk,l)

where

xi = x0 + i∆x , yj = y0 + j∆y , zk = z0 + k∆z ,

tk,l = (k + (K + 1)l)∆t ,

0 ≤ i ≤ I , 0 ≤ j ≤ J , 0 ≤ k ≤ K , 0 ≤ l ≤ L .

Idea: Discretize the advection equation according to the data!!
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Discretization and Inverse Problem

Solution Strategy - Discretization

The continuous advection equation

∂

∂t
ρ(x , y , z , t) + v(x , y , z) · ∇ρ(x , y , z , t) = 0 ,

then becomes a discrete linear system of equations:

ρi ,j ,k,l − ρi ,j ,k,l−1

(K + 1)∆t
+ Dxiρi ,j ,k,l v1,i ,j ,k

+ Dyjρi ,j ,k,l v2,i ,j ,k + Dzkρi ,j ,k,l v3,i ,j ,k = 0 ,

where

ρi ,j ,k,l = ρ(xi , yj , zk , tk,l) , vm,i ,j ,k = vm(xi , yj , zk) , m = 1, 2, 3 .
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Discretization and Inverse Problem

Discretization - Finite Differences

Dxiρi ,j ,k,l :=



ρi+1,j ,k,l − ρi−1,j ,k,l

2∆x
, 1 ≤ i ≤ I − 1

ρ1,j ,k,l − ρ0,j ,k,l

∆x
, i = 0

ρI ,j ,k,l − ρI−1,j ,k,l

∆x
, i = I

Dyjρi ,j ,k,l :=



ρi ,j+1,k,l − ρi ,j−1,k,l

2∆y
, 1 ≤ j ≤ J − 1

ρi ,1,k,l − ρi ,0,k,l
∆y

, j = 0

ρi ,J,k,l − ρi ,J−1,k,l

∆y
, j = J
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Discretization and Inverse Problem

Discretization - Finite Differences

Dzk ρi,j,k,l :=



(1− r)(ρi,j,k+1,l − ρi,j,k−1,l+1) + r(ρi,j,k+1,l−1 − ρi,j,k−1,l )

2∆z
,

1 ≤ k ≤ K − 1, 1 ≤ l < L

(1− r)ρi,j,k+1,L − (1 + r)ρi,j,k−1,L + r(ρi,j,k+1,L−1 + ρi,j,k−1,L−1)

2∆z
,

1 ≤ k ≤ K − 1, l = L

(1− r)ρi,j,1,l + rρi,j,1,l−1 − ρi,j,0,l
∆z

,

k = 0, 1 ≤ l ≤ L

ρi,j,K ,l − (1− r)ρi,j,K−1,l+1 − rρi,j,K−1,l

∆z
,

k = K , 1 ≤ l < L

ρi,j,K ,L − (1 + r)ρi,j,K−1,L + rρi,j,K−1,L−1

∆z
,

k = K , l = L

r :=
1

K + 1
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Discretization and Inverse Problem

Solution Strategy - Discretization

Define the vectors:

• ~ρ0 - consists of all ρ (l = 0) values.

• ~ρ - consists of all ρ (l > 0) values,

Then,

ρi ,j ,k,l − ρi ,j ,k,l−1

(K + 1)∆t
+ Dxiρi ,j ,k,l v1,i ,j ,k

+ Dyjρi ,j ,k,l v2,i ,j ,k + Dzkρi ,j ,k,l v3,i ,j ,k = 0 ,

can be written in the form

A(~v)~ρ = b(~v , ~ρ0) .

We denote the solution ~ρ of this equation with ρ(~v , ~ρ0).

PVW, MRAI and TPG Simon Hubmer
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Discretization and Inverse Problem

The Inverse Problem

We define the following operator

F : X → Y , (~v , ~ρ0) 7→ (ρ(~v , ~ρ0), ~ρ0) ,

where the inner products on X and Y are given by

〈 (~v , ~ρ0), (~x , ~w0) 〉X := ~v TH~x + ~ρT
0 ~w0 ,

〈 (~ρ, ~ρ0), (~w , ~w0) 〉Y := ~ρT ~w + ~ρT
0 ~w0 .

We can now write our problem in standard form, i.e.,

” F (~v , ~ρ0) =
(
~ρ δ, ~ρ δ0

)
”
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Discretization and Inverse Problem

Derivative and Adjoint

The Frechet derivative is given by

F ′(~v , ~ρ0)(∆~v ,∆~ρ0) = (ρ′(~v , ~ρ0)(∆~v ,∆~ρ0),∆~ρ0) ,

where

A(~v)[ρ′(~v , ~ρ0)(∆~v ,∆~ρ0)] = −(A′(~v)∆~v)ρ(~v , ~ρ0)+b′(~v , ~ρ0)(∆~v ,∆~ρ0) .

It’s adjoint is given by

F ′(~v , ~ρ0)∗(~w , ~w0) =

(
H−1

(
−DA(~v , ρ(~v , ~ρ0))T + b′∆~ρ0

(~v , ~ρ0)T
)
A(~v)−T ~w

b′∆~v (~v , ~ρ0)TA(~v)−T ~w + ~w0

)
.
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Discretization and Inverse Problem

Divergence Free Condition

In the derivation of the advection equation we used

div [v(x , y , z)] = 0 .

The reconstruction method should take that into account.

• Idea: Choose space X as a divergence free space.

• Problem: Frechet derivative becomes unhandy.

• Solution: Enforce weak divergence free condition.

=⇒ F (~v , ~ρ0) := (ρ(~v , ~ρ0), ~ρ0,D~v) .
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Discretization and Inverse Problem

Choosing the matrix H

Remember the inner product:

〈 (~v , ~ρ0), (~x , ~w0) 〉X = ~v TH~x + ~ρT
0 ~w0 .

The matrix H should approximate the H1 inner product.

• Idea: Derive H from FEM basis functions.

• Problem: Matrix H becomes hard to invert.

• Solution 1: Use only the diagonal entries.

• Solution 2: Use Wavelets instead of H.
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Nonlinear Inverse Problems and TPG methods

Nonlinear Inverse Problems

Problem

F (x) = y δ

Important questions:

• Existence and uniqueness of solutions.

• How to approximate/compute particular solutions.

• How to do it in an efficient way!!
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Nonlinear Inverse Problems and TPG methods

• Tikhonov Regularization (suitable α)

min
x

{
1

2

∥∥∥F (x)− y δ
∥∥∥2

+
α

2
‖x − x0‖2

}
.

• Landweber Iteration (suitable stopping rule)

xδk+1 = xδk + F ′(xδk )∗(y δ − F (xδk )) .

• Levenberg Marquardt method

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αI )−1F ′(xδk )∗(y δ − F (xδk )) .

• Iteratively regularized Gauss-Newton method

xδk+1 = xδk + (F ′(xδk )∗F ′(xδk ) + αI )−1(F ′(xδk )∗(y δ − F (xδk ))

+αk(x0 − xδk )) .

PVW, MRAI and TPG Simon Hubmer
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Nonlinear Inverse Problems and TPG methods

Connection: Residual Functional

Φ(x) =
1

2

∥∥∥F (x)− y δ
∥∥∥2

• Tikhonov = Minimize{ Φ(x) + Regularization(x) }.
• Landweber = Gradient Descent for Φ(x).

• Levenberg Marquardt = 2nd order descent for Φ(x).

• Iteratively regularized Gauss-Newton
= 2nd order descent for Φ(x) + Tikhonov Type Stabilization

PVW, MRAI and TPG Simon Hubmer
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Nonlinear Inverse Problems and TPG methods

Pros and Cons

• Tikhonov Regularization
• Pros: Weak conditions for analysis, very versatile.
• Cons: Computation of the minimum.

• Landweber Iteration
• Pros: Easily implementable, often produces good results.
• Cons: Strong conditions for analysis, slow convergence.

• Second Order Methods
• Pros: Fast convergence.
• Cons: Even stronger conditions for analysis. Inversion of

(F ′(x)∗F ′(x) + αk I )

in every iteration step → difficult and takes time.

PVW, MRAI and TPG Simon Hubmer
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• Tikhonov Regularization
• Pros: Weak conditions for analysis, very versatile.
• Cons: Computation of the minimum.
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Nonlinear Inverse Problems and TPG methods

Acceleration Techniques

• Landweber Iteration with operator approximation:

xδk+1 = xδk + F̃ ′(xδk )∗(y δ − F̃ (xδk )) .

• Landweber Iteration in Hilbert Scales:

xδk+1 = xδk + L−2sF ′(xδk )∗(y δ − F (xδk )) .

• Landweber Iteration with intelligent stepsizes:

xδk+1 = xδk + αδkF
′(xδk )∗(y δ − F (xδk )) .

Examples: Steepest Descent, Barzilai-Borwein, Neubauer.
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Nesterov Acceleration

General minimization problem

min
x
{Φ(x)} .

Yurii Nesterov: Instead of using gradient descent:

xk+1 = xk − ω∇Φ(xk) ,

use the following iteration:

zk = xk + k−1
k+α−1(xk − xk−1)

xk+1 = zk − ω∇Φ(zk) .
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Nonlinear Inverse Problems and TPG methods

What’s so good about that?

• Assume: Φ is convex.

• Gradient Descent:∥∥∥Φ(xk)− Φ(x†)
∥∥∥ = O(k−1)

• Nesterov Acceleration:∥∥∥Φ(xk)− Φ(x†)
∥∥∥ = O(k−2)

PVW, MRAI and TPG Simon Hubmer
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Application to Nonlinear Ill-Posed Problems

For our problem, the method reads as

zδk = xδk + k−1
k+α−1 (xδk − xδk−1)

xδk+1 = zδk + αδk F
′(zδk )∗(y δ − F (zδk )) .

There is a generalization to deal with

min{Φ(x) + Ψ(x)} .

This can be used to incorporate sparsity constraints via

zδk = xδk + k−1
k+α−1 (xδk − xδk−1) ,

xδk+1 = Sαδkα,p

(
zδk + αδk F

′(zδk )∗(y δ − F (zδk ))
)
.

PVW, MRAI and TPG Simon Hubmer
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Neubauer strikes again

• Assumptions: Linear operator F (x) = Tx , source condition
x† ∈ R((T ∗T )µ), a priori stopping rule.

• If 0 ≤ µ ≤ 1
2 , then

k(δ) = O(δ−
1

2µ+1 ) ,
∥∥∥xδk(δ) − x†

∥∥∥ = o(δ
2µ

2µ+1 ) .

• If µ > 1
2 , then

k(δ) = O(δ−
2

2µ+3 ) ,
∥∥∥xδk(δ) − x†

∥∥∥ = o(δ
2µ+1
2µ+3 ) .

• Similar results also when using the discrepancy principle.

Andreas Neubauer, On Nesterov Acceleration for Landweber Iteration of Linear Ill-Posed Problems, in press
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Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

zδk = xδk + λδk(xδk − xδk−1) ,

xδk+1 = zδk + αδkF
′(zδk )∗(y δ − F (zδk )) .

Question: Do they converge under standard assumptions?

• Yes for linear problems and λδk = k−1
k+α−1 ← Neubauer

• Yes for λδk → 0 fast enough.

• Yes for some explicit choices of λδk .

• Yes for λδk defined via a backtracking search.

Open: Convergence for nonlinear problems and λδk = k−1
k+α−1

PVW, MRAI and TPG Simon Hubmer
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Convergence Conditions

• Nonlinearity Condition∥∥F (x)− F (x̃)− F ′(x)(x − x̃)
∥∥ ≤ η ‖F (x)− F (x̃)‖ ,

x , x̃ ∈ B4ρ(x0) ⊂ D(F ) , η <
1

2
.

• Parameters 0 ≤ λδk ≤ 1 and stepsizes αδk > 0 satisfy

λδk(λδk + 1)
∥∥∥xδk − xδk+1

∥∥∥2
−
(

1 +
Ψ

µ

)
αδk

∥∥∥F (zδk )− y δ
∥∥∥2

+(αδk)2
∥∥∥F ′(zδk )∗(F (zδk )− y δ)

∥∥∥2
≤ 0 .

• Parameters λδk satisfy

∞∑
k=0

λ0
k

∥∥x0
k − x0

k−1

∥∥ <∞ .
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Nonlinear Inverse Problems and TPG methods

Some Possible Choices

For the stepsizes αδk , one can use

• a constant stepsize αδk = ω,

• the steepest descent stepsize or the minimal error stepsize.

The parameters λδk can be chosen

• as any sequence decaying sufficiently fast,

• explicitly via

λδk = min

{
−1

2
+

√
1

4
+

Ψ(τδ)2

µω̄2
∥∥xδk − xδk−1

∥∥2
, 1

}
,

• via a backtracking algorithm.
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Nonlinear Inverse Problems and TPG methods

Example Problem: SPECT

A(f , µ)(s, ω) :=

∫
R

f (sω⊥ + tω) exp

− ∞∫
t

µ(sω⊥ + rω) dr

 dt .

λδk = 0 Backtracking λδk Explicit λδk Nesterov λδk k∗ Time

x 3433 489 s

x 631 90 s

x 345 77 s

x 205 30 s

Reading suggestion: Convergence Analysis of a Two-Point Gradient

Method for Nonlinear Ill-Posed Problems, Hubmer, Ramlau, submitted.

PVW, MRAI and TPG Simon Hubmer
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Nonlinear Inverse Problems and TPG methods

Application to MRAI

Iterative procedure

zδk = xδk + k−1
k+2 (xδk − xδk−1) ,

xδk+1 = Sαδkα,p

(
zδk + αδk F

′(zδk )∗(y δ − F (zδk ))
)
.

Steepest descent stepsize:

αδk =
‖sk‖2∥∥F ′(zδk )sδk

∥∥2
, sδk = F ′(zδk )∗(y δ − F (zδk )) .

Discrepancy principle:∥∥∥y δ − F (zδk∗)
∥∥∥ ≤ τδ < ∥∥∥y δ − F (zδk )

∥∥∥ , 0 ≤ k ≤ k∗ .
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Nonlinear Inverse Problems and TPG methods

Implementation Details

• Software: MATLAB R2015b.

• Solver: biCGstab with iLU preconditioner.

• Parallelization: As far as possible.

• Essential: Stefan Engblom’s fsparse.m file.

=⇒ Runs on a standard home computer in acceptable time!!!

(Real-world data set has 3 million unknowns)

PVW, MRAI and TPG Simon Hubmer
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Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.

• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.

• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).

• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Outline

Steps of the data creation:

1 Prepare a phantom of size 40× 30× 30 featuring several
vessels of different thickness and orientation.

2 For every vessel:
• Choose a constant velocity v̄ pointing in vessel direction.
• Choose an initial signal ρ0 of sinusoidal form.
• Notice that then ρ(x , y , z , t) = ρ0(x − v̄1t, y − v̄2t, z − v̄3t).
• Sample at the right space-time points to get ρi,j,k,l

3 Combine the vessel contributions.

4 Add a random data error of magnitude δ.

=⇒ Run the algorithm using the discrepancy principle (τ = 1.1).

PVW, MRAI and TPG Simon Hubmer



Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Numerical Simulation Results and Comparisons

Simulation Phantom - MIP and direction MIP
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Numerical Simulation Results and Comparisons

Results - Pure Method
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Numerical Simulation Results and Comparisons

Results - Divergence-Free
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Numerical Simulation Results and Comparisons

Results - Divergence-Free + Wavelets + Sparsity
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Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Real-World MRI Data Set Results

Natural Stimulation Data Set

Specifications:

• Publicly available natural stimulation dynamic EPI data.

• Data has dimension 132× 175× 48.

• 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

• Pulse repetition time (TR) of 2 seconds.

• Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

• Stopping rule: Residual decrease check.
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• Publicly available natural stimulation dynamic EPI data.

• Data has dimension 132× 175× 48.

• 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

• Pulse repetition time (TR) of 2 seconds.

• Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

• Stopping rule: Residual decrease check.
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Real-World MRI Data Set Results

Regression Approach - Results
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New Approach - Results
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New Approach - Results
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End

Thank you for your attention!

PVW, MRAI and TPG Simon Hubmer
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