Regularization Approach

Phantom Simulations

Real-World Data

Pulse Wave Velocity Estimation

via Magnetic Resonance Advection Imaging

Simon Hubmer

Johannes Kepler University, Linz

20.12.2016, Mülheim a.d. Ruhr

Joint work with: A. Neubauer, R. Ramlau, H. Voss

PVW, MRAI and TPG

Simon Hubmer

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000				
Introduction and Motivation				

< ロ > < 回 > < 回 > < 回 > < 回 >

Simon Hubmer

PVW, MRAI and TPG

Introduction	Discretization	Regularization Approach		Real-World Data
•000000				
Introduction and Motivation				

Two important abbreviations:

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Mot	ivation			

Two important abbreviations:

• PWV - Pulse Wave Velocity

Introduction	Discretization			Real-World Data
•000000				
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

• What is the PWV?

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

- What is the PWV?
- Why do we want to estimate it?

Introduction •000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

Two important abbreviations:

- PWV Pulse Wave Velocity
- MRI Magnetic Resonance Imaging

Problem

Estimate the PWV from dynamic MRI data!

Three natural questions:

- What is the PWV?
- Why do we want to estimate it?
- How can we estimate it?

Introduction 000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

The Pulse Wave

Introduction	Discretization	Regularization Approach		Real-World Data
000000				
Introduction and Motivation				

Simon Hubmer

Introduction 000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Motivation				

• cardiovascular morbidity and mortality in the elderly

Introduction	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Introduction and Mot	ivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
000000				
Introduction and Mo	tivation			

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Introduction	Discretization	Regularization Approach	Real-World Data
000000			
Introduction and Mo	tivation		

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\boxed{\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}}$$

Introduction	Discretization	Regularization Approach	Real-World Data
000000			
Introduction and Mot	ivation		

- cardiovascular morbidity and mortality in the elderly
- patients with diabetes and hypertension
- aortic stiffness \rightarrow small-vessel disease and cognitive decline

Moens-Korteweg formula:

$$\mathsf{PWV} = \sqrt{\frac{Eh}{\rho_B d}}$$

The parameters are

- *h* vessel wall thickness,
- *d* vascular diameter,
- E vessel all's Young modulus,
- ρ_B density of the blood.

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Introduction and Motivation

How to estimate the $\mathsf{PVW} \to \mathsf{MRAI}$

PVW, MRAI and TPG

Simon Hubmer

イロト イロト イヨト イヨト

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

How to estimate the $\mathsf{PVW} \to \mathsf{MRAI}$

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot \mathbf{v} = \mathbf{0}$

$$\frac{\partial}{\partial t}\rho(x,y,z,t) + \operatorname{div} \left(v(x,y,z)\rho(x,y,z,t)\right) = 0.$$

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Problem variables

- MRI signal $\rho(x, y, z, t)$,
- pulse wave velocity v(x, y, z).

Continuity equation and $\nabla \cdot v = 0$ leads to

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+v(x,y,z)\cdot\nabla\rho(x,y,z,t)=0.$$

Advection (Transport, Optical Flow) equation \Rightarrow

MRAI = Magnetic Resonance Advection Imaging

Introduction	Discretization	Regularization Approach		Real-World Data
0000000				
Introduction and Motivation				

Simon Hubmer

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Introduction and Mot	ivation			00000

Challenges with the advection equation:

Introduction	Discretization	Regularization Approach	Real-World Data
0000000			
Introduction and Mo	tivation		

Challenges with the advection equation:

• Difficult solution concept for non-Lipschitz velocities.

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

• High amount of noise in the MRI data.

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

Introduction	Discretization	Regularization Approach		Real-World Data	
0000000					
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

• Treatment of boundary conditions.

Introduction 00000●0	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Introduction and Motivation					

Challenges with the advection equation:

- Difficult solution concept for non-Lipschitz velocities.
- Forward problem is already hard to solve.

Challenges with the data:

- High amount of noise in the MRI data.
- Huge data sets.
- Low spatiotemporal resolution.

Challenges with the method:

- Treatment of boundary conditions.
- Partial data \leftrightarrow slice-time-acquisition problem.
| Introduction | Discretization | Regularization Approach | Real-World Data |
|------------------|----------------|-------------------------|-----------------|
| 000000 | | | |
| Introduction and | Motivation | | |

Slice-Time Acquisition

	(and the second	
1		1 in
11		1
1		12
1		

< ロ > < 回 > < 回 > < 回 > < 回 >

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	00000000			
D:				

Solution Strategy - Discretization

▶ ▲ 둘 ▶ ▲ 둘 ▶

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Data

 0000000
 0000000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000</

Solution Strategy - Discretization

The MRI data ρ is only available at points

 $(x_i, y_j, z_k, t_{k,l})$

(日)

Solution Strategy - Discretization

The MRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

(日)

Solution Strategy - Discretization

The MRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

 $0 \leq i \leq I \,, \quad 0 \leq j \leq J \,, \quad 0 \leq k \leq K \,, \quad 0 \leq I \leq L \,.$

(日)

Solution Strategy - Discretization

The MRI data ρ is only available at points

$$(x_i, y_j, z_k, t_{k,l})$$

where

$$\begin{aligned} x_i &= x_0 + i\Delta x , \quad y_j &= y_0 + j\Delta y , \quad z_k &= z_0 + k\Delta z , \\ t_{k,l} &= (k + (K+1)l)\Delta t , \end{aligned}$$

 $0 \leq i \leq I \,, \quad 0 \leq j \leq J \,, \quad 0 \leq k \leq K \,, \quad 0 \leq I \leq L \,.$

Idea: Discretize the advection equation according to the data!!

• • = • • = •

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}
ho(x,y,z,t)+v(x,y,z)\cdot
abla
ho(x,y,z,t)=0\,,$$

イロト イヨト イヨト イヨト

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+\nu(x,y,z)\cdot\nabla\rho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

< ロ > < 同 > < 三 > < 三 >

Solution Strategy - Discretization

The continuous advection equation

$$\frac{\partial}{\partial t}\rho(x,y,z,t)+\nu(x,y,z)\cdot\nabla\rho(x,y,z,t)=0\,,$$

then becomes a discrete linear system of equations:

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

where

$$\rho_{i,j,k,l} = \rho(x_i, y_j, z_k, t_{k,l}), \quad v_{m,i,j,k} = v_m(x_i, y_j, z_k), \quad m = 1, 2, 3.$$

A B M A B M

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	00000000			
Discretization and Inverse Problem				

Discretization - Finite Differences

$$D_{x_{i}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i+1,j,k,l} - \rho_{i-1,j,k,l}}{2\Delta x}, & 1 \le i \le l-1 \\ \frac{\rho_{1,j,k,l} - \rho_{0,j,k,l}}{\Delta x}, & i = 0 \\ \frac{\rho_{l,j,k,l} - \rho_{l-1,j,k,l}}{\Delta x}, & i = l \end{cases}$$
$$D_{y_{j}}\rho_{i,j,k,l} := \begin{cases} \frac{\rho_{i,j+1,k,l} - \rho_{i,j-1,k,l}}{2\Delta y}, & 1 \le j \le J-1 \\ \frac{\rho_{i,1,k,l} - \rho_{i,0,k,l}}{\Delta y}, & j = 0 \\ \frac{\rho_{i,J,k,l} - \rho_{i,J-1,k,l}}{\Delta y}, & j = J \end{cases}$$

▶ ▲ 둘 ▶ ▲ 둘 ▶

	Discretization	Regularization Approach		Real-World Data
	00000000			
Discretization and Inverse Problem				

Discretization - Finite Differences

$$D_{z_k}\rho_{i,j,k,l} := \begin{cases} \frac{(1-r)(\rho_{i,j,k+1,l} - \rho_{i,j,k-1,l+1}) + r(\rho_{i,j,k+1,l-1} - \rho_{i,j,k-1,l})}{2\Delta z}, & 1 \le k \le K - 1, 1 \le l < k \le K \\ \frac{(1-r)\rho_{i,j,k+1,L} - (1+r)\rho_{i,j,k-1,L} + r(\rho_{i,j,k+1,L-1} + \rho_{i,j,k-1,L-1})}{2\Delta z}, & 1 \le k \le K - 1, l = L \\ \frac{(1-r)\rho_{i,j,1,l} + r\rho_{i,j,1,l-1} - \rho_{i,j,0,l}}{\Delta z}, & k = 0, 1 \le l \le L \\ \frac{\rho_{i,j,K,l} - (1-r)\rho_{i,j,K-1,l+1} - r\rho_{i,j,K-1,l-1}}{\Delta z}, & k = K, 1 \le l < L \\ \frac{\rho_{i,j,K,L} - (1+r)\rho_{i,j,K-1,L} + r\rho_{i,j,K-1,L-1}}{\Delta z}, & k = K, l = L \end{cases}$$

$$r := \frac{1}{K+1}$$

.

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Solution Strategy - Discretization

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{\rho}$ consists of all ρ (l > 0) values,

Solution Strategy - Discretization

Define the vectors:

- $\vec{\rho_0}$ consists of all ρ (l = 0) values.
- $\vec{
 ho}$ consists of all ho (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0).$$

A B M A B M

Solution Strategy - Discretization

Define the vectors:

- $\vec{\rho}_0$ consists of all ρ (l = 0) values.
- $\vec{
 ho}$ consists of all ho (l > 0) values,

Then,

$$\begin{aligned} \frac{\rho_{i,j,k,l} - \rho_{i,j,k,l-1}}{(K+1)\Delta t} + D_{x_i}\rho_{i,j,k,l} v_{1,i,j,k} \\ &+ D_{y_j}\rho_{i,j,k,l} v_{2,i,j,k} + D_{z_k}\rho_{i,j,k,l} v_{3,i,j,k} = 0 \,, \end{aligned}$$

can be written in the form

$$A(\vec{v})\vec{\rho}=b(\vec{v},\vec{\rho}_0).$$

We denote the solution $\vec{\rho}$ of this equation with $\rho(\vec{v}, \vec{\rho_0})$.

	Discretization	Regularization Approach		Real-World Data	
	000000000				
Discretization and Inverse Problem					

▷ ★ 문 ▶ ★ 문

Introduction 0000000	Discretization 00000●000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

Introduction 0000000	Discretization 00000●000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho}_0), (\vec{x}, \vec{w}_0) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho}_0^T \vec{w}_0, \langle (\vec{\rho}, \vec{\rho}_0), (\vec{w}, \vec{w}_0) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho}_0^T \vec{w}_0.$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and Inv	verse Problem			

We define the following operator

$$F: \mathcal{X} \to \mathcal{Y}, \quad (\vec{v}, \vec{\rho_0}) \mapsto (\rho(\vec{v}, \vec{\rho_0}), \vec{\rho_0}),$$

where the inner products on ${\mathcal X}$ and ${\mathcal Y}$ are given by

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} := \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0} , \langle (\vec{\rho}, \vec{\rho_0}), (\vec{w}, \vec{w_0}) \rangle_{\mathcal{Y}} := \vec{\rho}^T \vec{w} + \vec{\rho_0}^T \vec{w_0} .$$

We can now write our problem in standard form, i.e.,

"
$$F(\vec{v}, \vec{
ho}_0) = \left(\vec{
ho}^{\delta}, \vec{
ho}_0^{\delta}\right)$$
"

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	000000000			
Discretization and	Inverse Problem			

Simon Hubmer

≺ ≣

Introduction 0000000	Discretization 000000●00	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

The Frechet derivative is given by

 $F'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) = (\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}),\Delta\vec{\rho_0}),$

Introduction 0000000	Discretization 000000●00	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

The Frechet derivative is given by

$$F'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) = (\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}),\Delta\vec{\rho_0}),$$

where

 $\mathcal{A}(\vec{v})[\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0})] = -(\mathcal{A}'(\vec{v})\Delta\vec{v})\rho(\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) \,.$

Introduction 0000000	Discretization 000000●00	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and Inv	verse Problem			

The Frechet derivative is given by

$$F'(ec v,ec
ho_0)(\Deltaec v,\Deltaec
ho_0)=(
ho'(ec v,ec
ho_0)(\Deltaec v,\Deltaec
ho_0),\Deltaec
ho_0)\,,$$

where

$$\mathcal{A}(\vec{v})[\rho'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0})] = -(\mathcal{A}'(\vec{v})\Delta\vec{v})\rho(\vec{v},\vec{\rho_0}) + b'(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) + \mathcal{A}(\vec{v},\vec{\rho_0})(\Delta\vec{v},\Delta\vec{\rho_0}) + \mathcal{A}(\vec{v},\vec{\rho_0})(\Delta\vec{v},\vec{\rho_0}) + \mathcal{A}(\vec{v},\vec{\rho_0})(\vec{v},\vec{\rho_0}) + \mathcal{A}(\vec{v},\vec{\rho_0}) + \mathcal$$

It's adjoint is given by

$$F'(\vec{v}, \vec{\rho_0})^*(\vec{w}, \vec{w_0}) = \begin{pmatrix} H^{-1} \left(-D_A(\vec{v}, \rho(\vec{v}, \vec{\rho_0}))^T + b'_{\Delta \vec{\rho_0}}(\vec{v}, \vec{\rho_0})^T \right) A(\vec{v})^{-T} \vec{w} \\ b'_{\Delta \vec{v}}(\vec{v}, \vec{\rho_0})^T A(\vec{v})^{-T} \vec{w} + \vec{w_0} \end{pmatrix}$$

In the derivation of the advection equation we used

 $\operatorname{div}\left[v(x,y,z)\right]=0\,.$

The reconstruction method should take that into account.

∃ ► < ∃ ►</p>

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

• Idea: Choose space \mathcal{X} as a divergence free space.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- **Solution:** Enforce *weak* divergence free condition.

In the derivation of the advection equation we used

$$\operatorname{div}\left[v(x,y,z)\right]=0\,.$$

The reconstruction method should take that into account.

- Idea: Choose space \mathcal{X} as a divergence free space.
- Problem: Frechet derivative becomes unhandy.
- Solution: Enforce *weak* divergence free condition.

$$\implies F(\vec{v},\vec{\rho}_0) := (\rho(\vec{v},\vec{\rho}_0),\vec{\rho}_0,\mathbf{D}\vec{v}).$$

Introduction 0000000	Discretization 00000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

Introduction 0000000	Discretization 0000000●	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

The matrix H should approximate the H^1 inner product.

• Idea: Derive *H* from FEM basis functions.

Introduction 0000000	Discretization	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.

Introduction 0000000	Discretization	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.

Introduction 0000000	Discretization	Regularization Approach	Phantom Simulations	Real-World Data 00000
Discretization and In	verse Problem			

Choosing the matrix H

Remember the inner product:

$$\langle (\vec{v}, \vec{\rho_0}), (\vec{x}, \vec{w_0}) \rangle_{\mathcal{X}} = \vec{v}^T H \vec{x} + \vec{\rho_0}^T \vec{w_0}.$$

- Idea: Derive *H* from FEM basis functions.
- **Problem:** Matrix *H* becomes hard to invert.
- Solution 1: Use only the diagonal entries.
- Solution 2: Use Wavelets instead of H.

	Discretization	Regularization Approach	Real-World Data
		•0000000000000	
Nonlinear Inverse Pro	blems and TPG method	s	

Nonlinear Inverse Problems

イロト イヨト イヨト イヨト

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		•0000000000000			
Nanjaran Juwana Draklama and TDC mathada					

Nonlinear Inverse Problems

Problem

$$F(x) = y^{\delta}$$

PVW, MRAI and TPG

Simon Hubmer

イロト イヨト イヨト イヨト

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		●00000000000000			
Nonlinear Inverse Problems and TPC methods					

Nonlinear Inverse Problems

Problem

$$F(x) = y^{\delta}$$

Important questions:

Simon Hubmer

▶ < E >
	Discretization	Regularization Approach		Real-World Data	
		••••••			
Nonlinear Inverse Problems and TPC methods					

Nonlinear Inverse Problems

Problem

$$F(x) = y^{\delta}$$

Important questions:

• Existence and uniqueness of solutions.

	Discretization	Regularization Approach		Real-World Data	
		••••••			
Nonlinear Inverse Problems and TPC methods					

Nonlinear Inverse Problems

Problem

$$F(x) = y^{\delta}$$

Important questions:

- Existence and uniqueness of solutions.
- How to approximate/compute particular solutions.

	Discretization	Regularization Approach		Real-World Data	
		000000000000000			
Nonlinear Inverse Problems and TPC methods					

Nonlinear Inverse Problems

Problem

$$F(x) = y^{\delta}$$

Important questions:

- Existence and uniqueness of solutions.
- How to approximate/compute particular solutions.
- How to do it in an efficient way!!

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		00000000000000			
Nonlinear Inverse Problems and TPG methods					

PVW, MRAI and TPG

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Discretization	Regularization Approach	Phantom Simulations	Real-World Data
	0000000000000		

Nonlinear Inverse Problems and TPG methods

• Tikhonov Regularization (suitable α)

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2 + \frac{\alpha}{2} \left\| x - x_0 \right\|^2 \right\} \,.$$

イロト イ団ト イヨト イヨト

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		000000000000000			

Nonlinear Inverse Problems and TPG methods

• Tikhonov Regularization (suitable α)

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

• Landweber Iteration (suitable stopping rule)

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

Nonlinear Inverse Problems and TPG methods

• Tikhonov Regularization (suitable α)

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

• Landweber Iteration (suitable stopping rule)

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

• Levenberg Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

• • = • • = •

Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Nonlinear Inverse Problems and TPG methods

• Tikhonov Regularization (suitable α)

$$\min_{x} \left\{ \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^{2} + \frac{\alpha}{2} \left\| x - x_{0} \right\|^{2} \right\} \,.$$

• Landweber Iteration (suitable stopping rule)

$$x_{k+1}^{\delta} = x_k^{\delta} + F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})).$$

• Levenberg Marquardt method

$$x_{k+1}^{\delta} = x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha I)^{-1} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

• Iteratively regularized Gauss-Newton method

$$\begin{aligned} x_{k+1}^{\delta} &= x_k^{\delta} + (F'(x_k^{\delta})^* F'(x_k^{\delta}) + \alpha I)^{-1} (F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})) \\ &+ \alpha_k (x_0 - x_k^{\delta})) \,. \end{aligned}$$

Connection: Residual Functional

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

Connection: Residual Functional

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

• Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.

(日)

Connection: Residual Functional

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.

(日)

Connection: Residual Functional

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.
- Levenberg Marquardt = 2nd order descent for $\Phi(x)$.

• • = • • = •

Connection: Residual Functional

$$\Phi(x) = \frac{1}{2} \left\| F(x) - y^{\delta} \right\|^2$$

- Tikhonov = Minimize{ $\Phi(x)$ + Regularization(x) }.
- Landweber = Gradient Descent for $\Phi(x)$.
- Levenberg Marquardt = 2nd order descent for $\Phi(x)$.
- Iteratively regularized Gauss-Newton
 - = 2nd order descent for $\Phi(x)$ + Tikhonov Type Stabilization

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

Pros and Cons

Simon Hubmer

イロト イ団ト イヨト イヨト

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Problems and TPG methods				

Pros and Cons

- Tikhonov Regularization
 - Pros: Weak conditions for analysis, very versatile.
 - Cons: Computation of the minimum.

Pros and Cons

- Tikhonov Regularization
 - Pros: Weak conditions for analysis, very versatile.
 - Cons: Computation of the minimum.
- Landweber Iteration
 - Pros: Easily implementable, often produces good results.
 - Cons: Strong conditions for analysis, slow convergence.

Pros and Cons

- Tikhonov Regularization
 - Pros: Weak conditions for analysis, very versatile.
 - Cons: Computation of the minimum.
- Landweber Iteration
 - Pros: Easily implementable, often produces good results.
 - Cons: Strong conditions for analysis, slow convergence.
- Second Order Methods
 - Pros: Fast convergence.
 - Cons: Even stronger conditions for analysis.

Pros and Cons

- Tikhonov Regularization
 - Pros: Weak conditions for analysis, very versatile.
 - Cons: Computation of the minimum.
- Landweber Iteration
 - Pros: Easily implementable, often produces good results.
 - Cons: Strong conditions for analysis, slow convergence.
- Second Order Methods
 - Pros: Fast convergence.
 - Cons: Even stronger conditions for analysis. Inversion of

$$(F'(x)^*F'(x) + \alpha_k I)$$

in every iteration step \rightarrow difficult and takes time.

Nonlinear Inverse Problems and TPG methods

Acceleration Techniques

Simon Hubmer

PVW, MRAI and TPG

	Discretization	Regularization Approach		Real-World Data
		00000000000000		
Nonlinear Inverse Problems and TPG methods				

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta})).$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Problems and TPG methods				

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta})).$$

• Landweber Iteration in Hilbert Scales:

$$x_{k+1}^{\delta} = x_k^{\delta} + L^{-2s} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Problems and TPG methods				

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta})).$$

• Landweber Iteration in Hilbert Scales:

$$x_{k+1}^{\delta} = x_k^{\delta} + \boldsymbol{L}^{-2s} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

• Landweber Iteration with intelligent stepsizes:

$$x_{k+1}^{\delta} = x_k^{\delta} + lpha_k^{\delta} F'(x_k^{\delta})^*(y^{\delta} - F(x_k^{\delta})) \,.$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Problems and TPG methods				

• Landweber Iteration with operator approximation:

$$x_{k+1}^{\delta} = x_k^{\delta} + \tilde{F}'(x_k^{\delta})^*(y^{\delta} - \tilde{F}(x_k^{\delta})).$$

• Landweber Iteration in Hilbert Scales:

$$x_{k+1}^{\delta} = x_k^{\delta} + L^{-2s} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

• Landweber Iteration with intelligent stepsizes:

$$x_{k+1}^{\delta} = x_k^{\delta} + \alpha_k^{\delta} F'(x_k^{\delta})^* (y^{\delta} - F(x_k^{\delta})).$$

Examples: Steepest Descent, Barzilai-Borwein, Neubauer.

	Discretization	Regularization Approach		Real-World Data	
		000000000000000			
Nonlinear Inverse Problems and TPG methods					

Nesterov Acceleration

Simon Hubmer

▶ ★ 문 ▶ ★ 문

PVW, MRAI and TPG

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Problems and TPG methods				

Nesterov Acceleration

General minimization problem

 $\min_x \left\{ \Phi(x) \right\} \, .$

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	000000000	000000000000000	00000	00000	
Nonlinear Inverse Problems and TPG methods					

Nesterov Acceleration

General minimization problem

 $\min_{x} \left\{ \Phi(x) \right\} \, .$

Yurii Nesterov: Instead of using gradient descent:

$$x_{k+1} = x_k - \omega \nabla \Phi(x_k),$$

Nesterov Acceleration

General minimization problem

$$\min_{x} \left\{ \Phi(x) \right\} \, .$$

Yurii Nesterov: Instead of using gradient descent:

$$x_{k+1} = x_k - \omega \nabla \Phi(x_k),$$

use the following iteration:

$$egin{aligned} & z_k = x_k + rac{k-1}{k+lpha-1}(x_k - x_{k-1}) \ & x_{k+1} = z_k - \omega
abla \Phi(z_k) \,. \end{aligned}$$

.⊒ . ▶

Nonlinear Inverse Problems and TPG methods

What's so good about that?

What's so good about that?

• Assume: Φ is convex.

イロト イ団ト イヨト イヨト

Introduction Discretization Regularization Approach Phantom Simulations Real-World Data occococo occococo occococo occoco occo occo occoco occoco occoco occoco occo occo occoco occo occo

What's so good about that?

- Assume: Φ is convex.
- Gradient Descent:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-1})$$

(日)

Introduction Discretization Regularization Approach Phantom Simulations Real-World Data occococo occocococo occocococo occoco occo occoco occoco occoco occoco occo occoco occo occo occoco occo o

What's so good about that?

- Assume: Φ is convex.
- Gradient Descent:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-1})$$

• Nesterov Acceleration:

$$\left\|\Phi(x_k)-\Phi(x^{\dagger})\right\|=\mathcal{O}(k^{-2})$$

< ∃ →

Introduction

Discretizati

Regularization Approach

Phantom Simulations

Real-World Data

Nonlinear Inverse Problems and TPG methods

Application to Nonlinear III-Posed Problems

PVW, MRAI and TPG

Simon Hubmer

イロト イヨト イヨト イヨト

 Introduction
 Discretization
 Regularization Approach
 Phantom Simulations
 Real-World Da

 00000000
 00000000
 00000
 00000
 00000
 00000

Nonlinear Inverse Problems and TPG methods

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \, \mathsf{F}'(z_k^{\delta})^* (y^{\delta} - \mathsf{F}(z_k^{\delta})) \,. \end{aligned}$$

(日)

Nonlinear Inverse Problems and TPG methods

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{aligned}$$

There is a generalization to deal with

 $\min\{\Phi(x)+\Psi(x)\}.$

A B M A B M

Nonlinear Inverse Problems and TPG methods

Application to Nonlinear III-Posed Problems

For our problem, the method reads as

$$\begin{aligned} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}) \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{aligned}$$

There is a generalization to deal with

$$\min\{\Phi(x)+\Psi(x)\}\,.$$

This can be used to incorporate sparsity constraints via

$$z_k^{\delta} = x_k^{\delta} + \frac{k-1}{k+\alpha-1} (x_k^{\delta} - x_{k-1}^{\delta}),$$

$$x_{k+1}^{\delta} = S_{\alpha_k^{\delta}\alpha, p} \left(z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \right)$$

.

		000000000000000	
Neulineau Income F	bucklama and TDC ma	المعام	

Neubauer strikes again

Simon Hubmer
Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Nonlinear Inverse Problems and TPG methods					

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Nonlinear Inverse Pro	blems and TPG method	s		

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then

$$k(\delta) = \mathcal{O}(\delta^{-rac{1}{2\mu+1}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{rac{2\mu}{2\mu+1}}).$$

▶ ★ ≣ ▶ .

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		00000	00000	
Nonlinear Inverse Problems and TPG methods					

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

• If
$$\mu > \frac{1}{2}$$
, then

$$k(\delta) = \mathcal{O}(\delta^{-\frac{2}{2\mu+3}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{\frac{2\mu+1}{2\mu+3}}).$$

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		00000	00000	
Nonlinear Inverse Problems and TPG methods					

• Assumptions: Linear operator F(x) = Tx, source condition $x^{\dagger} \in \mathcal{R}((T^*T)^{\mu})$, a priori stopping rule.

• If
$$0 \le \mu \le \frac{1}{2}$$
, then
 $k(\delta) = \mathcal{O}(\delta^{-\frac{1}{2\mu+1}}), \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}\right\| = o(\delta^{\frac{2\mu}{2\mu+1}}).$

• If $\mu > \frac{1}{2}$, then

$$k(\delta) = \mathcal{O}(\delta^{-rac{2}{2\mu+3}})\,, \qquad \left\|x_{k(\delta)}^{\delta} - x^{\dagger}
ight\| = o(\delta^{rac{2\mu+1}{2\mu+3}})\,.$$

• Similar results also when using the discrepancy principle.

Andreas Neubauer, On Nesterov Acceleration for Landweber Iteration of Linear III-Posed Problems, in press.

Introduction

PVW. MRAI and TPG

Discretizati

Regularization Approach

Phantom Simulations

Real-World Data

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

Simon Hubmer

イロト イヨト イヨト イヨト

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

(日)

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} \mathcal{F}'(z_k^{\delta})^* (y^{\delta} - \mathcal{F}(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

A B M A B M

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

• Yes for linear problems and $\lambda_k^\delta = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$

★ ∃ ► < ∃ ►</p>

Introduction Discretization Regularization Approach Phantom Simulations Real-World Data

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.

4 3 4 3 4

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .
- Yes for λ_k^{δ} defined via a backtracking search.

Nonlinear Inverse Problems and TPG methods

Two-Point Gradient (TPG) Methods

How about general methods of the form

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \lambda_k^{\delta} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= z_k^{\delta} + \alpha_k^{\delta} F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \,. \end{split}$$

Question: Do they converge under standard assumptions?

- Yes for linear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1} \leftarrow \text{Neubauer}$
- Yes for $\lambda_k^{\delta} \to 0$ fast enough.
- Yes for some explicit choices of λ_k^{δ} .
- Yes for λ_k^{δ} defined via a backtracking search.

Open: Convergence for nonlinear problems and $\lambda_k^{\delta} = \frac{k-1}{k+\alpha-1}$

Nonlinear Inverse Problems and TPG methods

Convergence Conditions

Simon Hubmer

PVW, MRAI and TPG

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Nonlinear Inverse Problems and TPG methods					

Convergence Conditions

• Nonlinearity Condition

$$egin{aligned} &\left\| F(x) - F(ilde{x}) - F'(x)(x - ilde{x})
ight\| &\leq \eta \left\| F(x) - F(ilde{x})
ight\| \ , \ & x, ilde{x} \in \mathcal{B}_{4
ho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < rac{1}{2} \,. \end{aligned}$$

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Nonlinear Inverse Problems and TPG methods					

Convergence Conditions

• Nonlinearity Condition

$$egin{aligned} &\left\| F(x) - F(ilde{x}) - F'(x)(x - ilde{x})
ight\| &\leq \eta \left\| F(x) - F(ilde{x})
ight\| \ , \ & x, ilde{x} \in \mathcal{B}_{4
ho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < rac{1}{2} \,. \end{aligned}$$

• Parameters $0 \leq \lambda_k^{\delta} \leq 1$ and stepsizes $\alpha_k^{\delta} > 0$ satisfy

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Nonlinear Inverse Problems and TPG methods					

Convergence Conditions

• Nonlinearity Condition

$$\begin{split} \left|F(x)-F(\tilde{x})-F'(x)(x-\tilde{x})\right\| &\leq \eta \left\|F(x)-F(\tilde{x})\right\| \,,\\ x,\tilde{x}\in\mathcal{B}_{4\rho}(x_0)\subset\mathcal{D}(F)\,,\qquad \eta<\frac{1}{2}\,. \end{split}$$

- Parameters 0 $\leq \lambda_k^\delta \leq 1$ and stepsizes $\alpha_k^\delta > 0$ satisfy

$$\begin{split} \lambda_k^{\delta} (\lambda_k^{\delta} + 1) \left\| x_k^{\delta} - x_{k+1}^{\delta} \right\|^2 &- \left(1 + \frac{\Psi}{\mu} \right) \alpha_k^{\delta} \left\| F(z_k^{\delta}) - y^{\delta} \right\|^2 \\ &+ (\alpha_k^{\delta})^2 \left\| F'(z_k^{\delta})^* (F(z_k^{\delta}) - y^{\delta}) \right\|^2 \leq 0 \,. \end{split}$$

Convergence Conditions

• Nonlinearity Condition

$$\begin{split} \left| F(x) - F(\tilde{x}) - F'(x)(x - \tilde{x}) \right\| &\leq \eta \left\| F(x) - F(\tilde{x}) \right\| \,, \\ x, \tilde{x} \in \mathcal{B}_{4\rho}(x_0) \subset \mathcal{D}(F) \,, \qquad \eta < \frac{1}{2} \,. \end{split}$$

- Parameters 0 $\leq \lambda_k^\delta \leq 1$ and stepsizes $\alpha_k^\delta > 0$ satisfy

$$\begin{split} \lambda_k^{\delta} (\lambda_k^{\delta}+1) \left\| x_k^{\delta} - x_{k+1}^{\delta} \right\|^2 &- \left(1 + \frac{\Psi}{\mu} \right) \alpha_k^{\delta} \left\| F(z_k^{\delta}) - y^{\delta} \right\|^2 \\ &+ (\alpha_k^{\delta})^2 \left\| F'(z_k^{\delta})^* (F(z_k^{\delta}) - y^{\delta}) \right\|^2 \leq 0 \,. \end{split}$$

• Parameters λ_k^{δ} satisfy

$$\sum_{k=0}^{\infty}\lambda_k^0\left\|x_k^0-x_{k-1}^0\right\|<\infty.$$

< ∃ →

	Discretization	Regularization Approach		Real-World Data	
		0000000000000000			
Nonlinear Inverse Problems and TPG methods					

PVW, MRAI and TPG

Simon Hubmer

イロト イヨト イヨト イヨト

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

For the stepsizes α_k^{δ} , one can use

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Pre	oblems and TPG method	ls		

For the stepsizes α_k^{δ} , one can use

• a constant stepsize
$$\alpha_k^{\delta} = \omega$$
,

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data 00000
Nonlinear Inverse Pro	oblems and TPG method	s		

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

	Discretization	Regularization Approach		Real-World Data	
		000000000000000			
Nonlinear Inverse Problems and TPG methods					

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

	Discretization	Regularization Approach		Real-World Data	
		000000000000000			
Nonlinear Inverse Problems and TPG methods					

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

• as any sequence decaying sufficiently fast,

	Discretization	Regularization Approach		Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

- as any sequence decaying sufficiently fast,
- explicitly via

$$\lambda_{k}^{\delta} = \min\left\{-\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\Psi(\tau\delta)^{2}}{\mu\bar{\omega}^{2}\left\|x_{k}^{\delta} - x_{k-1}^{\delta}\right\|^{2}}}, 1\right\},$$

	Discretization	Regularization Approach		Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

For the stepsizes α_k^{δ} , one can use

- a constant stepsize $\alpha_k^{\delta} = \omega$,
- the steepest descent stepsize or the minimal error stepsize.

The parameters λ_k^{δ} can be chosen

- as any sequence decaying sufficiently fast,
- explicitly via

$$\lambda_k^{\delta} = \min\left\{-\frac{1}{2} + \sqrt{\frac{1}{4} + \frac{\Psi(\tau\delta)^2}{\mu \bar{\omega}^2 \left\|x_k^{\delta} - x_{k-1}^{\delta}\right\|^2}}, 1\right\},$$

• via a backtracking algorithm.

Introduction

Discretizatio

Regularization Approach

Phantom Simulations

Real-World Data

Nonlinear Inverse Problems and TPG methods

Example Problem: SPECT

PVW, MRAI and TPG

Simon Hubmer

	Discretization	Regularization Approach		Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

Example Problem: SPECT

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) dr\right) dt.$$

イロト イ団ト イヨト イヨト

	Discretization	Regularization Approach		Real-World Data	
		000000000000000000000000000000000000000			
Nonlinear Inverse Problems and TPG methods					

Example Problem: SPECT

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) \, dr\right) \, dt \, .$$

$\lambda_k^\delta = 0$	Backtracking λ_k^δ	Explicit λ_k^{δ}	Nesterov λ_k^δ	k_*	Time
х				3433	489 s
	х			631	90 s
		x		345	77 s
			x	205	30 s

イロト イ団ト イヨト イヨト

	Discretization	Regularization Approach	Real-World Data
		0000000000000000	
NU DE LE DE			

Example Problem: SPECT

$$A(f,\mu)(s,\omega) := \int_{\mathbb{R}} f(s\omega^{\perp} + t\omega) \exp\left(-\int_{t}^{\infty} \mu(s\omega^{\perp} + r\omega) \, dr\right) \, dt \, .$$

$\lambda_k^\delta = 0$	Backtracking λ_k^δ	Explicit λ_k^{δ}	Nesterov λ_k^δ	k_*	Time
x				3433	489 s
	х			631	90 s
		x		345	77 s
			x	205	30 s

Reading suggestion: Convergence Analysis of a Two-Point Gradient Method for Nonlinear III-Posed Problems, Hubmer, Ramlau, submitted.

Application to MRAI

イロト イロト イヨト イヨト

Application to MRAI

Iterative procedure

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+2} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= S_{\alpha_k^{\delta} \alpha, p} \left(z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \right) \,. \end{split}$$

Application to MRAI

Iterative procedure

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+2} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= S_{\alpha_k^{\delta} \alpha, p} \left(z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \right) \,. \end{split}$$

Steepest descent stepsize:

$$\alpha_k^{\delta} = \frac{\|\boldsymbol{s}_k\|^2}{\|\boldsymbol{F}'(\boldsymbol{z}_k^{\delta})\boldsymbol{s}_k^{\delta}\|^2}, \qquad \boldsymbol{s}_k^{\delta} = \boldsymbol{F}'(\boldsymbol{z}_k^{\delta})^*(\boldsymbol{y}^{\delta} - \boldsymbol{F}(\boldsymbol{z}_k^{\delta})).$$

イロト イ団ト イヨト イヨト

Application to MRAI

Iterative procedure

$$\begin{split} z_k^{\delta} &= x_k^{\delta} + \frac{k-1}{k+2} (x_k^{\delta} - x_{k-1}^{\delta}) \,, \\ x_{k+1}^{\delta} &= S_{\alpha_k^{\delta} \alpha, p} \left(z_k^{\delta} + \alpha_k^{\delta} \, F'(z_k^{\delta})^* (y^{\delta} - F(z_k^{\delta})) \right) \,. \end{split}$$

Steepest descent stepsize:

$$\alpha_k^{\delta} = \frac{\|\boldsymbol{s}_k\|^2}{\|\boldsymbol{F}'(\boldsymbol{z}_k^{\delta})\boldsymbol{s}_k^{\delta}\|^2}, \qquad \boldsymbol{s}_k^{\delta} = \boldsymbol{F}'(\boldsymbol{z}_k^{\delta})^*(\boldsymbol{y}^{\delta} - \boldsymbol{F}(\boldsymbol{z}_k^{\delta})).$$

Discrepancy principle:

$$\left\|y^{\delta} - F(z_{k_*}^{\delta})\right\| \leq \tau \delta < \left\|y^{\delta} - F(z_k^{\delta})\right\|, \quad 0 \leq k \leq k_*.$$

A B M A B M

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
		00000000000000			
Nonlinear Inverse Problems and TPG methods					

Implementation Details

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

	Discretization	Regularization Approach		Real-World Data	
		000000000000000			
Nonlinear Inverse Problems and TPG methods					

Implementation Details

- Software: MATLAB R2015b.
- Solver: biCGstab with iLU preconditioner.
- Parallelization: As far as possible.
- Essential: Stefan Engblom's *fsparse.m* file.

⇒ Runs on a standard home computer in acceptable time!!! (Real-world data set has 3 million unknowns)

	Discretization		Phantom Simulations	Real-World Data	
			•0000		
Numerical Simulation Results and Comparisons					

Simulation Outline

▷ ★ 문 ▶ ★ 문
Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000	
Numerical Simulation Results and Comparisons					

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		•0000	00000	
Numerical Simulation Results and Comparisons					

Steps of the data creation:

• Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		●0000	00000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	00000000		●0000	00000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.

	Discretization		Phantom Simulations	Real-World Data	
0000000	00000000	00000000000000	●0000	00000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data	
0000000	000000000	00000000000000	•0000	00000	
Numerical Simulation Results and Comparisons					

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \bar{v}_1 t, y \bar{v}_2 t, z \bar{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.
- **4** Add a random data error of magnitude δ .

- Prepare a phantom of size $40 \times 30 \times 30$ featuring several vessels of different thickness and orientation.
- **2** For every vessel:
 - Choose a constant velocity \bar{v} pointing in vessel direction.
 - Choose an initial signal ρ_0 of sinusoidal form.
 - Notice that then $\rho(x, y, z, t) = \rho_0(x \overline{v}_1 t, y \overline{v}_2 t, z \overline{v}_3 t)$.
 - Sample at the right space-time points to get $\rho_{i,j,k,l}$
- **3** Combine the vessel contributions.
- **4** Add a random data error of magnitude δ .
- \implies Run the algorithm using the discrepancy principle ($\tau = 1.1$).

Phantom Simulations 00000

Numerical Simulation Results and Comparisons

Simulation Phantom - MIP and direction MIP

(日)

	Discretization	Regularization Approach	Phantom Simulations	Real-World Data		
			00000			
Numerical Simulation Results and Comparisons						

Results - Pure Method

Introduction

Discretizati

Regularization Approac

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Results - Divergence-Free

(日)

Introduction

Discretiza

Regularization Approach

Phantom Simulations

Real-World Data

Numerical Simulation Results and Comparisons

Results - Divergence-Free + Wavelets + Sparsity

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

PVW, MRAI and TPG

Simon Hubmer

▶ ★ 문 ▶ ★ 문

Introduction 0000000	Discretization 000000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

Specifications:

• Publicly available natural stimulation dynamic EPI data.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data ●0000	
Real-World MRI Data Set Results					

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

• First 20 seconds of second segment were used.

Specifications:

- Publicly available natural stimulation dynamic EPI data.
- Data has dimension $132 \times 175 \times 48$.
- 7.0 T MRI scanner, 1.4 mm isotropic spatial resolution.
- Pulse repetition time (TR) of 2 seconds.
- Eight 15 minutes long segments for each subject.

Algorithm specifics:

- First 20 seconds of second segment were used.
- Stopping rule: Residual decrease check.

	Discretization		Real-World Data
			00000
Pool World MPL	ata Sat Paculta		

Regression Approach - Results

▶ ★ 문 ▶ ★ 문

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
Dest Month MPL Date		000000000000000000000000000000000000000	00000	00000

New Approach - Results

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discretization	Regularization Approach	Phantom Simulations	Real-World Data
0000000	00000000		00000	000●0
Real World MRLD	ata Set Results			

Regression Approach - Results

	Discretization			Real-World Data
0000000	000000000	000000000000000	00000	00000
Deal Ward MDLE	Anto Cat Danulta			

New Approach - Results

イロト イ団ト イヨト イヨト

Introduction 0000000	Discretization 00000000	Regularization Approach	Phantom Simulations	Real-World Data 00000

End

Thank you for your attention!